UCLID: Deciding Combinations of Theories via Eager Translation to SAT. SAT-based Decision Procedures

Size: px
Start display at page:

Download "UCLID: Deciding Combinations of Theories via Eager Translation to SAT. SAT-based Decision Procedures"

Transcription

1 UCLID: Deciding Combinations of Theories via Eager Translation to SAT Sanjit A. Seshia SAT-based Decision Procedures Input Formula Input Formula Satisfiability-preserving Boolean Encoder Boolean Formula SAT Solver Approximate Boolean Encoder Boolean Formula SAT Solver additional clause satisfiable satisfying assignment unsatisfiable First-order ground decision procedure satisfiable unsatisfiable unsatisfiable satisfiable EAGER ENCODING LAZY ENCODING 2

2 UCLID Logic Atomic Predicates/Formulas from the following Theories: Equality & Uninterpreted Functions (EUF) Quantifier-Free Presburger Arithmetic (QFP) Also called Integer Linear Arithmetic Restricted Lambda expressions (Rλ)( For modeling arrays, memories, etc. Finite-precision Bit-Vector Arithmetic [new] Quantifier-free, free, arbitrary Boolean combination of atomic formulas 3 Modeling Arrays with λ s Array M Modeled as Function a M Array Operations UCLID Expressions Select(M, a) M(a) Update(M, a, d) λ i. ITE( i = a, d, M(i) ) ) 4

3 UCLID Operation Input Formula Eager Encoding to SAT Lambda Expansion λ-free Formula Operation Series of transformations leading to Boolean formula Each step is validity (satisfiability) preserving Each step performs optimizations Function & Predicate Elimination Encoding Integer Linear Arith. Linear Arithmetic Formula Boolean Formula Boolean Satisfiability 5 Counterexample Generation Partial Interpretation of Lambdas Lambda Expansion Partial Interpretation of Function Symbols Concrete Counterexample Maps a counterexample of the Boolean formula to (partial) interpretation of symbols in input formula Function & Predicate Elimination Encoding Integer Linear Arith. Integer Assignment Boolean Satisfiability Boolean Assignment 6

4 Talk Focus Input Formula Lambda Expansion λ-free Formula Function & Predicate Elimination Linear Arithmetic Formula Encoding Integer Linear Arith. Boolean Formula Boolean Satisfiability 7 Eliminating Function Applications Two applications of an uninterpreted function f in a formula f(x 1 ) and f(x 2 ) Ackermann s Encoding Bryant, German, Velev s Encoding f(x 1 ) vf 1 f(x 1 ) vf 1 f(x 2 ) vf 2 f(x 2 ) x 1 = x 2 vf 1 = vf 2 ITE(x 1 = x 2, vf 1,, vf 2 ) 8

5 Main Part: Encoding Linear Arithmetic using Finite Instantiation 9 Quantifier-Free Presburger Arithmetic (QFP) φ a 1 x 1 + a 2 x 2 + a n x n b φ 1 φ 2 φ 1 φ 2 φ a i, x i, b Z Also called integer linear arithmetic Decision problem: Is φ satisfiable? Only conjunctions: Integer linear programs (ILP) 10

6 Deciding QFP is NP-complete In NP: If a satisfying solution exists, then one exists within a bound d log d is polynomial in input size small model property Expression for d (n+m) (b max +1) ( m a max [Papadimitriou, 82] max ) 2m+3 Input size: m # constraints n # variables b max largest constant (absolute value) largest coefficient (absolute value) a max 11 Finite Instantiation Steps Calculate the solution bound d Encode each integer variable with log d bits & translate to Boolean formula Run SAT solver Problem: For QFP, d is Ω( m m ) Ω( m log m ) bits per variable 12

7 Equality Logic Linear constraints are equalities x i = x j Result: d = n Reason x 1 x 2 x 3... x n Difference Logic Also called separation logic Only difference-bound constraints x i x j + b, ± x i b Result: d = n (b max + 1) 1) [Bryant, Lahiri,, Seshia, CAV 02] 14

8 Constraint Graph Directed multigraph with edges labeled by constants Vertices Variables Edges Constraint is true in current assignment x x y + c 1 c 1 y x Zero variable, x 0 (thus, n n+1) x i b x i x 0 + b Assume original formula in negation normal form New b max b max + 1 y z 15 Bounding Paths Formula satisfiable assignment that yields a graph without positive cycles x = y = 6 z = 6 Maximum spread in variable values = length of longest path (that repeats no vertices) = n b max n b max

9 General Case [Seshia & Bryant, LICS 04] New parameterized solution bound d Parameters characterize sparse structure Occurs in software verification 17 Linear Constraints in Software Verification Characteristics Mostly difference constraints Non-difference constraints are sparse Project Blast [UC Berkeley] Magic [CMU] Upgrade checking [MIT] WiSA [U. Wisc.] Max fraction of non- difference Max width Some similar observations: Pratt 77, ESC/Java- Simplify-TR TR 03 18

10 Parameterized Solution Bound New parameters: k non-difference constraints, w variables per constraint (width) Our solution bound: (n+2) n (b max +1) ( w a max ) k m n b max a max #constraints #variables max constant max coefficient Previous: (n+m) (b max +1) ( m a max ) 2m+3 Direct dependence on m eliminated (and k m ) 19 Proof of Our Bound: Steps 1. Previous result for integer linear programming (ILP) by Borosh-Treybig Treybig-Flahive [ 76, 86] 2. Express above result in k and w,, in addition to other parameters 3. Derive QFP bound from ILP bound 20

11 Integer Linear Programming (ILP) Notation A x = b, x 0 n m a max = max i,j a ij b max = max i b i 21 Borosh-Treybig-Flahive Result [1986] Solution bound d is (n+2) where = largest sub-determinant of [A[ b] (abs. value) Problem: Exponentially many sub-determinants! 22

12 Matrix Structure k w non-zeroes per row Non-difference constraints m n 23 k = 0 : Only Difference Constraints x i - x j b, ± x i b Totally Unimodular: All subdeterminants are in {0, -1, +1} i b i min(n+1, m) b max 24

13 Arbitrary k w Each term a max k #Terms w k k Det. {0,±1} i b i (a maxk w k ) min(n+1, m) b max (a maxk w k ) 25 Bound for ILP min(n+1, m) b max (a maxk w k ) d = (n+2)( [Borosh-Treybig-Flahive] = (n+2)( min(n+1, m) b max (a maxk w k ) (n+2) n b max (a maxk w k ) (assuming m n) 26

14 QFP Bound from ILP Bound Consider DNF of arbitrary QFP formula φ φ = φ 1 φ 2... φ N Satisfying assignment to φ must satisfy some φ i Each φ i is an ILP Parameters of φ i are bounded by those of φ Therefore: d = (n+2) n b max (a maxk w k ) 27 Other Main Approaches to Solving QFP ILP + SAT [Pugh, SC [Pugh, SC 92; Berezin et al., TACAS 03] Worst-case exponential number of ILPs to solve Automata-based methods [Boigelot SAS 95] Boigelot, Wolper et al., Accepted words = Binary encoded solutions Exponential-sized automata 28

15 Experimental Comparison: Setup Our decision procedure: UCLID Uses zchaff SAT solver [Zhang et al., Princeton] Compared against ILP+SAT: CVC-Lite [Barrett, Also uses zchaff Automata-based: LASH [Boigelot [Barrett, Berezin,, et al., Stanford] Boigelot et al., U.Liège ge] Benchmarks From software verification projects cited earlier n 100, m > 1000 Several 1000 Boolean operators 29 Experimental Results (3600) UCLID faster CVC-Lite faster 30

16 Experimental Results (3600) UCLID faster CVC-Lite faster LASH (automata-based solver) timed out on all benchmarks 31 Newer Results Generalized 2SAT constraints x i + x j b, - x i - x j b, x i - x j b, x i b O ( n2 (b max + 1) 2 m ) 2 n (b max + 1) [Seshia, Subramani,, Bryant, 04] Lazy encoding to SAT [Kroening, Ouaknine,, Seshia, Strichman,, CAV 04] Instead of conservative d, start with smaller d,, and increase on demand 32

17 Summary of d Values Logic Equality logic Separation logic Generalized 2SAT logic Quantifier-Free Presburger logic d n n ( b max + 1 ) 2 n ( b max + 1 ) (n+2) n (b max + 1) (a maxk w k ) 33 UCLID Decision Procedure Features Eager translation to a Boolean formula Can plug in the champion SAT solver E.g., 100x speedup with zchaff Siege Novel translation schemes Positive equality (uninterpreted( functions) Finite instantiation Terms interpreted over integers Not proof-generating, yet Produces concrete counterexamples 34

18 Other Work on UCLID Encoding methods for difference logic Eager explication of transitivity axioms [Strichman Seshia, Bryant, CAV 02] Hybrid encoding [Seshia, Verification Deductive verification [Seshia, Lahiri,, Bryant, DAC 03] Strichman, [Lahiri,, Seshia, Bryant, FMCAD 02; Lahiri & Bryant CAV 03] Predicate abstraction [Lahiri,, Bryant, Cook, CAV 03] 35

The Eager Approach to SMT. Eager Approach to SMT

The Eager Approach to SMT. Eager Approach to SMT The Eager Approach to SMT Sanjit A. Seshia UC Berkeley Slides based on ICCAD 09 Tutorial Eager Approach to SMT Input Formula Satisfiability-preserving Boolean Encoder Boolean Formula SAT Solver SAT Solver

More information

DECIDING QUANTIFIER-FREE PRESBURGER FORMULAS USING PARAMETERIZED SOLUTION BOUNDS

DECIDING QUANTIFIER-FREE PRESBURGER FORMULAS USING PARAMETERIZED SOLUTION BOUNDS Logical Methods in Computer Science Vol. 1 (2:6) 2005, pp. 1 26 www.lmcs-online.org Submitted Nov. 19, 2004 Published Dec. 19, 2005 DECIDING QUANTIFIER-FREE PRESBURGER FORMULAS USING PARAMETERIZED SOLUTION

More information

Deciding Quantifier-Free Presburger Formulas using Finite Instantiation based on Parameterized Solution Bounds

Deciding Quantifier-Free Presburger Formulas using Finite Instantiation based on Parameterized Solution Bounds Deciding Quantifier-Free Presburger Formulas using Finite Instantiation based on Parameterized Solution Bounds Sanjit A. Seshia Randal E. Bryant December 2003 CMU-CS-03-210 School of Computer Science Carnegie

More information

Handbook of Satisfiability

Handbook of Satisfiability Handbook of Satisfiability Clark Barrett 1 Roberto Sebastiani 2 Sanjit A. Seshia 3 Cesare Tinelli 4 1 New York University, barrett@cs.nyu.edu 2 Università di Trento, rseba@disi.unitn.it 3 University of

More information

Tutorial 1: Modern SMT Solvers and Verification

Tutorial 1: Modern SMT Solvers and Verification University of Illinois at Urbana-Champaign Tutorial 1: Modern SMT Solvers and Verification Sayan Mitra Electrical & Computer Engineering Coordinated Science Laboratory University of Illinois at Urbana

More information

Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods

Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods Unbounded, Fully Symbolic Model Checking of Timed Automata using Boolean Methods Sanjit A. Seshia and Randal E. Bryant Computer Science Department Carnegie Mellon University Verifying Timed Embedded Systems

More information

CSE507. Satisfiability Modulo Theories. Computer-Aided Reasoning for Software. Emina Torlak

CSE507. Satisfiability Modulo Theories. Computer-Aided Reasoning for Software. Emina Torlak Computer-Aided Reasoning for Software CSE507 Satisfiability Modulo Theories courses.cs.washington.edu/courses/cse507/18sp/ Emina Torlak emina@cs.washington.edu Today Last lecture Practical applications

More information

1.5 Non-linear Real Arithmetic

1.5 Non-linear Real Arithmetic A Simplex variant: Transform the satisfiability problem into the form A x = 0 l x u (where l i may be and u i may be + ). Relation to optimization problem is obscured. But: More efficient if one needs

More information

Satisfiability Modulo Theories (SMT)

Satisfiability Modulo Theories (SMT) CS510 Software Engineering Satisfiability Modulo Theories (SMT) Slides modified from those by Aarti Gupta Textbook: The Calculus of Computation by A. Bradley and Z. Manna 1 Satisfiability Modulo Theory

More information

Linear Arithmetic with Stars

Linear Arithmetic with Stars Linear Arithmetic with Stars Ruzica Piskac and Viktor Kuncak School of Computer and Communication Sciences, EPFL, Switzerland Abstract. We consider an extension of integer linear arithmetic with a star

More information

Predicate Abstraction via Symbolic Decision Procedures

Predicate Abstraction via Symbolic Decision Procedures Predicate Abstraction via Symbolic Decision Procedures Shuvendu K. Lahiri Thomas Ball Byron Cook May 26, 2005 Technical Report MSR-TR-2005-53 Microsoft Research Microsoft Corporation One Microsoft Way

More information

Interpolation. Seminar Slides. Betim Musa. 27 th June Albert-Ludwigs-Universität Freiburg

Interpolation. Seminar Slides. Betim Musa. 27 th June Albert-Ludwigs-Universität Freiburg Interpolation Seminar Slides Albert-Ludwigs-Universität Freiburg Betim Musa 27 th June 2015 Motivation program add(int a, int b) { var x,i : int; l 0 assume(b 0); l 1 x := a; l 2 i := 0; while(i < b) {

More information

On Solving Boolean Combinations of UTVPI Constraints

On Solving Boolean Combinations of UTVPI Constraints Journal on Satisfiability, Boolean Modeling and Computation N (007) xx-yy On Solving Boolean Combinations of UTVPI Constraints Sanjit A. Seshia Department of Electrical Engineering and Computer Sciences

More information

Motivation. CS389L: Automated Logical Reasoning. Lecture 10: Overview of First-Order Theories. Signature and Axioms of First-Order Theory

Motivation. CS389L: Automated Logical Reasoning. Lecture 10: Overview of First-Order Theories. Signature and Axioms of First-Order Theory Motivation CS389L: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories Işıl Dillig Last few lectures: Full first-order logic In FOL, functions/predicates are uninterpreted (i.e., structure

More information

(Yet another) decision procedure for Equality Logic

(Yet another) decision procedure for Equality Logic (Yet another) decision procedure for Equality Logic Ofer Strichman and Orly Meir echnion echnion 1 Equality Logic 0 0 0 1 0 1 E : (x 1 = x 2 Æ (x 2 x 3 Ç x 1 x 3 )) Domain: x 1,x 2,x 3 2 N he satisfiability

More information

Efficient Sampling of SAT Solutions for Testing

Efficient Sampling of SAT Solutions for Testing Efficient Sampling of SAT Solutions for Testing Rafael Dutra, Kevin Laeufer, Jonathan Bachrach, Koushik Sen EECS Department UC Berkeley International Conference in Software Engineering May 31, 2018 1 Problem

More information

SAT/SMT/AR Introduction and Applications

SAT/SMT/AR Introduction and Applications SAT/SMT/AR Introduction and Applications Ákos Hajdu Budapest University of Technology and Economics Department of Measurement and Information Systems 1 Ákos Hajdu About me o PhD student at BME MIT (2016

More information

Solving Quantified Verification Conditions using Satisfiability Modulo Theories

Solving Quantified Verification Conditions using Satisfiability Modulo Theories Solving Quantified Verification Conditions using Satisfiability Modulo Theories Yeting Ge, Clark Barrett, Cesare Tinelli Solving Quantified Verification Conditions using Satisfiability Modulo Theories

More information

Round 9: Satisfiability Modulo Theories, Part II

Round 9: Satisfiability Modulo Theories, Part II Round 9: Satisfiability Modulo Theories, Part II Tommi Junttila Aalto University School of Science Department of Computer Science CS-E322 Declarative Programming Spring 218 Tommi Junttila (Aalto University)

More information

SMT BASICS WS 2017/2018 ( ) LOGIC SATISFIABILITY MODULO THEORIES. Institute for Formal Models and Verification Johannes Kepler Universität Linz

SMT BASICS WS 2017/2018 ( ) LOGIC SATISFIABILITY MODULO THEORIES. Institute for Formal Models and Verification Johannes Kepler Universität Linz LOGIC SATISFIABILITY MODULO THEORIES SMT BASICS WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität

More information

Foundations of Lazy SMT and DPLL(T)

Foundations of Lazy SMT and DPLL(T) Foundations of Lazy SMT and DPLL(T) Cesare Tinelli The University of Iowa Foundations of Lazy SMT and DPLL(T) p.1/86 Acknowledgments: Many thanks to Albert Oliveras for contributing some of the material

More information

Comp487/587 - Boolean Formulas

Comp487/587 - Boolean Formulas Comp487/587 - Boolean Formulas 1 Logic and SAT 1.1 What is a Boolean Formula Logic is a way through which we can analyze and reason about simple or complicated events. In particular, we are interested

More information

Applications of Craig Interpolants in Model Checking

Applications of Craig Interpolants in Model Checking Applications of Craig Interpolants in Model Checking K. L. McMillan Cadence Berkeley Labs Abstract. A Craig interpolant for a mutually inconsistent pair of formulas (A, B) is a formula that is (1) implied

More information

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem.

an efficient procedure for the decision problem. We illustrate this phenomenon for the Satisfiability problem. 1 More on NP In this set of lecture notes, we examine the class NP in more detail. We give a characterization of NP which justifies the guess and verify paradigm, and study the complexity of solving search

More information

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig First-Order Logic First-Order Theories Roopsha Samanta Partly based on slides by Aaron Bradley and Isil Dillig Roadmap Review: propositional logic Syntax and semantics of first-order logic (FOL) Semantic

More information

Propositional Logic. Methods & Tools for Software Engineering (MTSE) Fall Prof. Arie Gurfinkel

Propositional Logic. Methods & Tools for Software Engineering (MTSE) Fall Prof. Arie Gurfinkel Propositional Logic Methods & Tools for Software Engineering (MTSE) Fall 2017 Prof. Arie Gurfinkel References Chpater 1 of Logic for Computer Scientists http://www.springerlink.com/content/978-0-8176-4762-9/

More information

Internals of SMT Solvers. Leonardo de Moura Microsoft Research

Internals of SMT Solvers. Leonardo de Moura Microsoft Research Internals of SMT Solvers Leonardo de Moura Microsoft Research Acknowledgements Dejan Jovanovic (SRI International, NYU) Grant Passmore (Univ. Edinburgh) Herbrand Award 2013 Greg Nelson What is a SMT Solver?

More information

LOGIC PROPOSITIONAL REASONING

LOGIC PROPOSITIONAL REASONING LOGIC PROPOSITIONAL REASONING WS 2017/2018 (342.208) Armin Biere Martina Seidl biere@jku.at martina.seidl@jku.at Institute for Formal Models and Verification Johannes Kepler Universität Linz Version 2018.1

More information

EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization

EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Discrete Systems Lecture: State-Space Exploration Stavros Tripakis University of California, Berkeley Stavros Tripakis:

More information

CS156: The Calculus of Computation

CS156: The Calculus of Computation CS156: The Calculus of Computation Zohar Manna Winter 2010 It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between

More information

Introduction to SAT (constraint) solving. Justyna Petke

Introduction to SAT (constraint) solving. Justyna Petke Introduction to SAT (constraint) solving Justyna Petke SAT, SMT and CSP solvers are used for solving problems involving constraints. The term constraint solver, however, usually refers to a CSP solver.

More information

Verification using Satisfiability Checking, Predicate Abstraction, and Craig Interpolation. Himanshu Jain THESIS ORAL TALK

Verification using Satisfiability Checking, Predicate Abstraction, and Craig Interpolation. Himanshu Jain THESIS ORAL TALK Verification using Satisfiability Checking, Predicate Abstraction, and Craig Interpolation Himanshu Jain THESIS ORAL TALK 1 Computer Systems are Pervasive Computer Systems = Software + Hardware Software/Hardware

More information

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction

Notes for Lecture 2. Statement of the PCP Theorem and Constraint Satisfaction U.C. Berkeley Handout N2 CS294: PCP and Hardness of Approximation January 23, 2006 Professor Luca Trevisan Scribe: Luca Trevisan Notes for Lecture 2 These notes are based on my survey paper [5]. L.T. Statement

More information

Topics in Model-Based Reasoning

Topics in Model-Based Reasoning Towards Integration of Proving and Solving Dipartimento di Informatica Università degli Studi di Verona Verona, Italy March, 2014 Automated reasoning Artificial Intelligence Automated Reasoning Computational

More information

Mixed and Integer Linear Programming Using Automata Techniques

Mixed and Integer Linear Programming Using Automata Techniques Mixed and Integer Linear Programming Using Automata Techniques Mia Minnes Cornell University Ithaca, NY minnes@math.cornell.edu ABSTRACT We present a comprehensive overview of automata techniques for deciding

More information

Propositional Logic: Evaluating the Formulas

Propositional Logic: Evaluating the Formulas Institute for Formal Models and Verification Johannes Kepler University Linz VL Logik (LVA-Nr. 342208) Winter Semester 2015/2016 Propositional Logic: Evaluating the Formulas Version 2015.2 Armin Biere

More information

SAT in Formal Hardware Verification

SAT in Formal Hardware Verification SAT in Formal Hardware Verification Armin Biere Institute for Formal Models and Verification Johannes Kepler University Linz, Austria Invited Talk SAT 05 St. Andrews, Scotland 20. June 2005 Overview Hardware

More information

Leonardo de Moura Microsoft Research

Leonardo de Moura Microsoft Research Leonardo de Moura Microsoft Research Is formula F satisfiable modulo theory T? SMT solvers have specialized algorithms for T b + 2 = c and f(read(write(a,b,3), c-2)) f(c-b+1) b + 2 = c and f(read(write(a,b,3),

More information

Lecture 2/11: Satisfiability Modulo Theories, Part I

Lecture 2/11: Satisfiability Modulo Theories, Part I EECS 219C: Computer-Aided Verification, Spr 15 Lecturer: S. A. Seshia Lecture 2/11: Satisfiability Modulo Theories, Part I Scribe: Daniel Bundala Editor: Sanjit A. Seshia Satisfiability modulo theories

More information

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams

Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams Solving Quantified Bit-Vector Formulas Using Binary Decision Diagrams Martin Jonáš and Jan Strejček Faculty of Informatics, Masaryk University, Brno, Czech Republic {martin.jonas, strejcek}@mail.muni.cz

More information

Efficient E-matching for SMT Solvers. Leonardo de Moura, Nikolaj Bjørner Microsoft Research, Redmond

Efficient E-matching for SMT Solvers. Leonardo de Moura, Nikolaj Bjørner Microsoft Research, Redmond Efficient E-matching for SMT Solvers Leonardo de Moura, Nikolaj Bjørner Microsoft Research, Redmond The Z3tting Z3 is an inference engine tailored towards formulas arising from program verification tools

More information

Solvers for the Problem of Boolean Satisfiability (SAT) Will Klieber Aug 31, 2011

Solvers for the Problem of Boolean Satisfiability (SAT) Will Klieber Aug 31, 2011 Solvers for the Problem of Boolean Satisfiability (SAT) Will Klieber 15-414 Aug 31, 2011 Why study SAT solvers? Many problems reduce to SAT. Formal verification CAD, VLSI Optimization AI, planning, automated

More information

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving III & Binary Decision Diagrams. Sanjit A. Seshia EECS, UC Berkeley

EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving III & Binary Decision Diagrams. Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Boolean Satisfiability Solving III & Binary Decision Diagrams Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: Lintao Zhang Announcement Project proposals due

More information

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39

Bounded Model Checking with SAT/SMT. Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Bounded Model Checking with SAT/SMT Edmund M. Clarke School of Computer Science Carnegie Mellon University 1/39 Recap: Symbolic Model Checking with BDDs Method used by most industrial strength model checkers:

More information

Determine the size of an instance of the minimum spanning tree problem.

Determine the size of an instance of the minimum spanning tree problem. 3.1 Algorithm complexity Consider two alternative algorithms A and B for solving a given problem. Suppose A is O(n 2 ) and B is O(2 n ), where n is the size of the instance. Let n A 0 be the size of the

More information

Using Bit Vector Decision Procedures for Analysis of Protein Folding Pathways

Using Bit Vector Decision Procedures for Analysis of Protein Folding Pathways Carnegie Mellon University Research Showcase @ CMU Computer Science Department School of Computer Science 7-2007 Using Bit Vector Decision Procedures for Analysis of Protein Folding Pathways Christopher

More information

A brief introduction to Logic. (slides from

A brief introduction to Logic. (slides from A brief introduction to Logic (slides from http://www.decision-procedures.org/) 1 A Brief Introduction to Logic - Outline Propositional Logic :Syntax Propositional Logic :Semantics Satisfiability and validity

More information

Conjunctive Normal Form and SAT

Conjunctive Normal Form and SAT Notes on Satisfiability-Based Problem Solving Conjunctive Normal Form and SAT David Mitchell mitchell@cs.sfu.ca October 4, 2015 These notes are a preliminary draft. Please use freely, but do not re-distribute

More information

Algebraic Methods. Motivation: Systems like this: v 1 v 2 v 3 v 4 = 1 v 1 v 2 v 3 v 4 = 0 v 2 v 4 = 0

Algebraic Methods. Motivation: Systems like this: v 1 v 2 v 3 v 4 = 1 v 1 v 2 v 3 v 4 = 0 v 2 v 4 = 0 Motivation: Systems like this: v v 2 v 3 v 4 = v v 2 v 3 v 4 = 0 v 2 v 4 = 0 are very difficult for CNF SAT solvers although they can be solved using simple algebraic manipulations Let c 0, c,...,c 2 n

More information

Integer vs. constraint programming. IP vs. CP: Language

Integer vs. constraint programming. IP vs. CP: Language Discrete Math for Bioinformatics WS 0/, by A. Bockmayr/K. Reinert,. Januar 0, 0:6 00 Integer vs. constraint programming Practical Problem Solving Model building: Language Model solving: Algorithms IP vs.

More information

Quantifiers. Leonardo de Moura Microsoft Research

Quantifiers. Leonardo de Moura Microsoft Research Quantifiers Leonardo de Moura Microsoft Research Satisfiability a > b + 2, a = 2c + 10, c + b 1000 SAT a = 0, b = 3, c = 5 Model 0 > 3 + 2, 0 = 2 5 + 10, 5 + ( 3) 1000 Quantifiers x y x > 0 f x, y = 0

More information

WHAT IS AN SMT SOLVER? Jaeheon Yi - April 17, 2008

WHAT IS AN SMT SOLVER? Jaeheon Yi - April 17, 2008 WHAT IS AN SMT SOLVER? Jaeheon Yi - April 17, 2008 WHAT I LL TALK ABOUT Propositional Logic Terminology, Satisfiability, Decision Procedure First-Order Logic Terminology, Background Theories Satisfiability

More information

An Interpolating Theorem Prover

An Interpolating Theorem Prover An Interpolating Theorem Prover K.L. McMillan Cadence Berkeley Labs Abstract. We present a method of deriving Craig interpolants from proofs in the quantifier-free theory of linear inequality and uninterpreted

More information

Equalities and Uninterpreted Functions. Chapter 3. Decision Procedures. An Algorithmic Point of View. Revision 1.0

Equalities and Uninterpreted Functions. Chapter 3. Decision Procedures. An Algorithmic Point of View. Revision 1.0 Equalities and Uninterpreted Functions Chapter 3 Decision Procedures An Algorithmic Point of View D.Kroening O.Strichman Revision 1.0 Outline Decision Procedures Equalities and Uninterpreted Functions

More information

Interpolant-based Transition Relation Approximation

Interpolant-based Transition Relation Approximation Interpolant-based Transition Relation Approximation Ranjit Jhala and K. L. McMillan 1 University of California, San Diego 2 Cadence Berkeley Labs Abstract. In predicate abstraction, exact image computation

More information

Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic

Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic Efficient Interpolant Generation in Satisfiability Modulo Linear Integer Arithmetic Alberto Griggio, Thi Thieu Hoa Le 2, and Roberto Sebastiani 2 FBK-Irst, Trento, Italy 2 DISI, University of Trento, Italy

More information

Equality Logic and Uninterpreted Functions

Equality Logic and Uninterpreted Functions Equality Logic and Uninterpreted Functions Seminar: Decision Procedures Michaela Tießler 28.06.2016 Agenda 1. Definitions 2. Use of Uninterpreted Functions 3. Decision Procedures formula: atom: term: Equality

More information

Algebraic Proof Systems

Algebraic Proof Systems Algebraic Proof Systems Pavel Pudlák Mathematical Institute, Academy of Sciences, Prague and Charles University, Prague Fall School of Logic, Prague, 2009 2 Overview 1 a survey of proof systems 2 a lower

More information

Essential facts about NP-completeness:

Essential facts about NP-completeness: CMPSCI611: NP Completeness Lecture 17 Essential facts about NP-completeness: Any NP-complete problem can be solved by a simple, but exponentially slow algorithm. We don t have polynomial-time solutions

More information

Decision Procedures for Equality Logic and Uninterpreted Functions

Decision Procedures for Equality Logic and Uninterpreted Functions 4 Decision Procedures for Equality Logic and Uninterpreted Functions In Chap. 3, we saw how useful the theory of equality logic with uninterpretedfunction (EUF) is. In this chapter, we concentrate on decision

More information

Quantifier Instantiation Techniques for Finite Model Finding in SMT

Quantifier Instantiation Techniques for Finite Model Finding in SMT Quantifier Instantiation Techniques for Finite Model Finding in SMT Andrew Reynolds, Cesare Tinelli Amit Goel, Sava Krstic Morgan Deters, Clark Barrett Satisfiability Modulo Theories (SMT) SMT solvers

More information

Synthesizing from Components: Building from Blocks

Synthesizing from Components: Building from Blocks Synthesizing from Components: Building from Blocks Ashish Tiwari SRI International 333 Ravenswood Ave Menlo Park, CA 94025 Joint work with Sumit Gulwani (MSR), Vijay Anand Korthikanti (UIUC), Susmit Jha

More information

Symbolic Reachability Analysis of Lazy Linear Hybrid Automata. Susmit Jha, Bryan Brady and Sanjit A. Seshia

Symbolic Reachability Analysis of Lazy Linear Hybrid Automata. Susmit Jha, Bryan Brady and Sanjit A. Seshia Symbolic Reachability Analysis of Lazy Linear Hybrid Automata Susmit Jha, Bryan Brady and Sanjit A. Seshia Traditional Hybrid Automata Traditional Hybrid Automata do not model delay and finite precision

More information

Conjunctive Normal Form and SAT

Conjunctive Normal Form and SAT Notes on Satisfiability-Based Problem Solving Conjunctive Normal Form and SAT David Mitchell mitchell@cs.sfu.ca September 19, 2013 This is a preliminary draft of these notes. Please do not distribute without

More information

Symbolic Analysis. Xiangyu Zhang

Symbolic Analysis. Xiangyu Zhang Symbolic Analysis Xiangyu Zhang What is Symbolic Analysis CS510 S o f t w a r e E n g i n e e r i n g Static analysis considers all paths are feasible Dynamic considers one path or a number of paths Symbolic

More information

CS 6505, Complexity and Algorithms Week 7: NP Completeness

CS 6505, Complexity and Algorithms Week 7: NP Completeness CS 6505, Complexity and Algorithms Week 7: NP Completeness Reductions We have seen some problems in P and NP, and we ve talked about space complexity. The Space Hierarchy Theorem showed us that there are

More information

CSE 555 HW 5 SAMPLE SOLUTION. Question 1.

CSE 555 HW 5 SAMPLE SOLUTION. Question 1. CSE 555 HW 5 SAMPLE SOLUTION Question 1. Show that if L is PSPACE-complete, then L is NP-hard. Show that the converse is not true. If L is PSPACE-complete, then for all A PSPACE, A P L. We know SAT PSPACE

More information

SMT: Satisfiability Modulo Theories

SMT: Satisfiability Modulo Theories SMT: Satisfiability Modulo Theories Ranjit Jhala, UC San Diego April 9, 2013 Decision Procedures Last Time Propositional Logic Today 1. Combining SAT and Theory Solvers 2. Theory Solvers Theory of Equality

More information

Taming Past LTL and Flat Counter Systems

Taming Past LTL and Flat Counter Systems Taming Past LTL and Flat Counter Systems Amit Kumar Dhar LIAFA, Univ Paris Diderot, Paris Cité Sorbonne, CNRS, France April 2, 2012 Joint work with : Stéphane Demri(LSV) and Arnaud Sangnier(LIAFA) LIAFA

More information

NP and Computational Intractability

NP and Computational Intractability NP and Computational Intractability 1 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.

More information

Reversal-Bounded Counter Machines

Reversal-Bounded Counter Machines Reversal-Bounded Counter Machines Stéphane Demri LSV, CNRS, ENS Cachan Workshop on Logics for Resource-Bounded Agents, Barcelona, August 2015 Overview Presburger Counter Machines Reversal-Bounded Counter

More information

A two-tier technique for supporting quantifiers in a lazily proof-explicating theorem prover

A two-tier technique for supporting quantifiers in a lazily proof-explicating theorem prover A two-tier technique for supporting quantifiers in a lazily proof-explicating theorem prover K. Rustan M. Leino 0, Madan Musuvathi 0, and Xinming Ou 1 0 Microsoft Research, Redmond, WA, USA {leino,madanm@microsoft.com

More information

Vinter: A Vampire-Based Tool for Interpolation

Vinter: A Vampire-Based Tool for Interpolation Vinter: A Vampire-Based Tool for Interpolation Kryštof Hoder 1, Andreas Holzer 2, Laura Kovács 2, and Andrei Voronkov 1 1 University of Manchester 2 TU Vienna Abstract. This paper describes the Vinter

More information

Formal Verification Methods 1: Propositional Logic

Formal Verification Methods 1: Propositional Logic Formal Verification Methods 1: Propositional Logic John Harrison Intel Corporation Course overview Propositional logic A resurgence of interest Logic and circuits Normal forms The Davis-Putnam procedure

More information

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1

U.C. Berkeley CS278: Computational Complexity Professor Luca Trevisan August 30, Notes for Lecture 1 U.C. Berkeley CS278: Computational Complexity Handout N1 Professor Luca Trevisan August 30, 2004 Notes for Lecture 1 This course assumes CS170, or equivalent, as a prerequisite. We will assume that the

More information

CSE507. Introduction. Computer-Aided Reasoning for Software. Emina Torlak courses.cs.washington.edu/courses/cse507/17wi/

CSE507. Introduction. Computer-Aided Reasoning for Software. Emina Torlak courses.cs.washington.edu/courses/cse507/17wi/ Computer-Aided Reasoning for Software CSE507 courses.cs.washington.edu/courses/cse507/17wi/ Introduction Emina Torlak emina@cs.washington.edu Today What is this course about? Course logistics Review of

More information

A Boolean Approach to Unbounded, Fully Symbolic Model Checking of Timed Automata

A Boolean Approach to Unbounded, Fully Symbolic Model Checking of Timed Automata A Boolean Approach to Unbounded, Fully Symbolic Model Checking of Timed Automata Sanjit A. Seshia Randal E. Bryant March 2003 CMU-CS-03-117 School of Computer Science Carnegie Mellon University Pittsburgh,

More information

Satisfiability Modulo Theories

Satisfiability Modulo Theories Satisfiability Modulo Theories Tjark Weber webertj@in.tum.de Oberseminar Statische Analyse November 11, 2004 Satisfiability Modulo Theories p.1/16 Goal To decide the satisfiability of formulas with respect

More information

Linear Arithmetic Satisfiability via Strategy Improvement

Linear Arithmetic Satisfiability via Strategy Improvement Linear Arithmetic Satisfiability via Strategy Improvement Azadeh Farzan 1 Zachary Kincaid 1,2 1 University of Toronto 2 Princeton University July 13, 2016 The problem: satisfiability modulo the theory

More information

Optimal Metric Planning with State Sets in Automata Representation [3]

Optimal Metric Planning with State Sets in Automata Representation [3] Optimal Metric Planning with State Sets in Automata Representation [3] Björn Ulrich Borowsky Stefan Edelkamp Fakultät für Informatik, Technische Universität Dortmund, Germany 2008 (Slides by ) Goal and

More information

Scalable and Accurate Verification of Data Flow Systems. Cesare Tinelli The University of Iowa

Scalable and Accurate Verification of Data Flow Systems. Cesare Tinelli The University of Iowa Scalable and Accurate Verification of Data Flow Systems Cesare Tinelli The University of Iowa Overview AFOSR Supported Research Collaborations NYU (project partner) Chalmers University (research collaborator)

More information

Finite model finding in satisfiability modulo theories

Finite model finding in satisfiability modulo theories University of Iowa Iowa Research Online Theses and Dissertations Fall 2013 Finite model finding in satisfiability modulo theories Andrew Joseph Reynolds University of Iowa Copyright 2013 Andrew J. Reynolds

More information

Satisfiability Modulo Theories

Satisfiability Modulo Theories Satisfiability Modulo Theories Clark Barrett and Cesare Tinelli Abstract Satisfiability Modulo Theories (SMT) refers to the problem of determining whether a first-order formula is satisfiable with respect

More information

NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University

NP-Completeness. CptS 223 Advanced Data Structures. Larry Holder School of Electrical Engineering and Computer Science Washington State University NP-Completeness CptS 223 Advanced Data Structures Larry Holder School of Electrical Engineering and Computer Science Washington State University 1 Hard Graph Problems Hard means no known solutions with

More information

A Lower Bound of 2 n Conditional Jumps for Boolean Satisfiability on A Random Access Machine

A Lower Bound of 2 n Conditional Jumps for Boolean Satisfiability on A Random Access Machine A Lower Bound of 2 n Conditional Jumps for Boolean Satisfiability on A Random Access Machine Samuel C. Hsieh Computer Science Department, Ball State University July 3, 2014 Abstract We establish a lower

More information

Automata-Based String Analysis

Automata-Based String Analysis 1 / 46 Automata-Based String Analysis Model Counting Tevfik Bultan, Abdulbaki Aydin, Lucas Bang Verification Laboratory http://vlab.cs.ucsb.edu Department of Computer Science Overview Overview String Constraints

More information

Undecidable Problems. Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, / 65

Undecidable Problems. Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, / 65 Undecidable Problems Z. Sawa (TU Ostrava) Introd. to Theoretical Computer Science May 12, 2018 1/ 65 Algorithmically Solvable Problems Let us assume we have a problem P. If there is an algorithm solving

More information

Lecture 25: Cook s Theorem (1997) Steven Skiena. skiena

Lecture 25: Cook s Theorem (1997) Steven Skiena.   skiena Lecture 25: Cook s Theorem (1997) Steven Skiena Department of Computer Science State University of New York Stony Brook, NY 11794 4400 http://www.cs.sunysb.edu/ skiena Prove that Hamiltonian Path is NP

More information

The Cook-Levin Theorem

The Cook-Levin Theorem An Exposition Sandip Sinha Anamay Chaturvedi Indian Institute of Science, Bangalore 14th November 14 Introduction Deciding a Language Let L {0, 1} be a language, and let M be a Turing machine. We say M

More information

Solving SAT Modulo Theories

Solving SAT Modulo Theories Solving SAT Modulo Theories R. Nieuwenhuis, A. Oliveras, and C.Tinelli. Solving SAT and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T) Mooly Sagiv Motivation

More information

Groebner Bases in Boolean Rings. for Model Checking and. Applications in Bioinformatics

Groebner Bases in Boolean Rings. for Model Checking and. Applications in Bioinformatics Groebner Bases in Boolean Rings for Model Checking and Applications in Bioinformatics Quoc-Nam Tran, Ph.D. Professor of Computer Science Lamar University Invited Talk at CMU on October 8, 2010 Outline

More information

New Complexity Results for Some Linear Counting Problems Using Minimal Solutions to Linear Diophantine Equations

New Complexity Results for Some Linear Counting Problems Using Minimal Solutions to Linear Diophantine Equations New Complexity Results for Some Linear Counting Problems Using Minimal Solutions to Linear Diophantine Equations (Extended Abstract) Gaoyan Xie, Cheng Li and Zhe Dang School of Electrical Engineering and

More information

Zap: Automated Theorem Proving for Software Analysis

Zap: Automated Theorem Proving for Software Analysis Zap: Automated Theorem Proving for Software Analysis Thomas Ball Shuvendu K. Lahiri Madanlal Musuvathi October 8, 2005 Technical Report MSR-TR-2005-137 Microsoft Research Microsoft Corporation One Microsoft

More information

On Linear Arithmetic with Stars

On Linear Arithmetic with Stars On Linear Arithmetic with Stars Ruzica Piskac and Viktor Kuncak LARA - I&C - EPFL Abstract. We consider an extension of integer linear arithmetic with a star operator that takes closure under vector addition

More information

What s Decidable About Arrays?

What s Decidable About Arrays? What s Decidable About Arrays? Aaron R. Bradley Zohar Manna Henny B. Sipma Computer Science Department Stanford University 1 Outline 0. Motivation 1. Theories of Arrays 2. SAT A 4. Undecidable Problems

More information

Conjunctive Normal Form and SAT

Conjunctive Normal Form and SAT Notes on Satisfiability-Based Problem Solving Conjunctive Normal Form and SAT David Mitchell mitchell@cs.sfu.ca September 10, 2014 These notes are a preliminary draft. Please use freely, but do not re-distribute

More information

Taming Past LTL and Flat Counter Systems

Taming Past LTL and Flat Counter Systems Taming Past LTL and Flat Counter Systems Stéphane Demri 2, Amit Kumar Dhar 1, Arnaud Sangnier 1 1. LIAFA, Univ Paris Diderot, Sorbonne Paris Cité, CNRS, France 2. LSV, ENS Cachan, CNRS, INRIA, France June

More information

Convergence Testing in Term-Level Bounded Model Checking

Convergence Testing in Term-Level Bounded Model Checking Convergence Testing in Term-Level Bounded Model Checking Randal E Bryant Shuvendu K Lahiri Sanjit A Seshia June 2003 CMU-CS-03-156 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213

More information

Integrating Answer Set Programming and Satisfiability Modulo Theories

Integrating Answer Set Programming and Satisfiability Modulo Theories Integrating Answer Set Programming and Satisfiability Modulo Theories Ilkka Niemelä Helsinki University of Technology (TKK) Department of Information and Computer Science http://www.tcs.tkk.fi/ ini/ References:

More information

1 Circuit Complexity. CS 6743 Lecture 15 1 Fall Definitions

1 Circuit Complexity. CS 6743 Lecture 15 1 Fall Definitions CS 6743 Lecture 15 1 Fall 2007 1 Circuit Complexity 1.1 Definitions A Boolean circuit C on n inputs x 1,..., x n is a directed acyclic graph (DAG) with n nodes of in-degree 0 (the inputs x 1,..., x n ),

More information