Metamorphic Petrology GLY 262 Petrogenetic grids and Schreinemakers

Size: px
Start display at page:

Download "Metamorphic Petrology GLY 262 Petrogenetic grids and Schreinemakers"

Transcription

1 Metamorphic Petrology GLY 262 Petrogenetic grids and Schreinemakers

2 Petrogenetic grids P-T grids or petrogenetic grids illustrate the positions AND intersections of ALL the possible equilibria (reactions) in a given chemical system (e.g. KFMASH). The reactions can be determined experimentally in the lab or determined theoretically using thermodynamics. A more powerful tool than compatibility diagrams as there are no problems with projection or being limited to 3 or 4 components on ternary diagram

3 Simplified KASH (K 2 O-Al 2 O 3 -SiO 2 -H 2 O) grid from Spear (1999)

4 KFMASH from White et al. (2001)

5 Petrogenetic grids Can be a useful tool in geothermobarometry the science of estimating pressure and temperature via equilibrium thermodynamics

6 How?

7 Suppose we had the following mineral assemblage: Qtz Kfs sill H 2 O (V) Simplified KASH (K 2 O-Al 2 O 3 -SiO 2 -H 2 O) grid from Spear (1999)

8 Petrogenetic Grids P-T diagrams for multicomponent systems that show a set of reactions, generally for a specific rock type Petrogenetic grid for mafic rocks Simplified petrogenetic grid for metamorphosed mafic rocks showing the location of several determined univariant reactions in the CaO-MgO-Al 2 O 3 -SiO 2 -H 2 O-(Na 2 O) system ( C(N)MASH ). Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall.

9 Schreinemakers analysis Is a geometric approach used to determine the relationships of reaction curves that intersect at an invariant point in multi-component systems It can be used to constrain the topology of a petrogenetic grid if the compositions of the phases are known Essentially the way in which the various univariant equilibria are connected. The EXACT position(s) of the equilibria in P-T space is determined later using equilibrium thermodynamics

10 Schreinemaker's Analysis - method used to work out the arrangement of the reactions in the phase diagram=> theoretical petrog. grids use of the geometrical constraints which are a consequence of the Phase Rule. F = C n - P F = 0 = invariant Point in P-T space F = 1 = Univariant Reaction in P-T space F = 2 = Divariant Reaction in P-T space P (kbar) A C A B C B (C) < 180 Rules: 1) All reactions meet at invariant points. (B) T( C) (A) 2) A univariant reaction (curve) which passes through an invariant point has two parts: a stable part and a metastable part. The stable and metastable parts of a reaction are on opposite sides of any invariant point the reaction passes through. 3) The stable part of a univariant reaction occurs on the opposite side of the stability field of the corresponding phase or assemblage. 4) univariant reaction (curve) can be conveniently labelled by the name of the phase that is absent, placed in brackets. 5) No divariant assemblage can be stable within a sector that makes an angle of more than 180 measured between any two univariant lines in the same bundle.

11 The number of points (or reactions), each involving Y phases, in a system containing X phases altogether, is given by the combinatorial equation N = X! Y!( X Y )! For example, suppose we wish to know how many invariant points there will be in a P-T grid of reactions involving a total of 8 phases whose compositions can be expressed in terms of 3- components

12 From the phase rule we know that an invariant point in a 3-component system contains 5 phases Therefore F = C Φ 2 0 = N = 5!(8 8! 5)! = 56

13 Schreinemakers analysis class exercise 1. Work out the chemographic relationships i.e. where the phases plot on the appropriate diagram 2. Determine the number of univariant equilibria and invariant points in the system 3. Deduce all the univariant reactions 1.Quartz SiO 2 2.Enstatite Mg 2 Si 2 O 6 3.Pyrope Mg 3 Al 2 Si 3 O 12 4.Sapphirine Mg 4 Al 8 Si 2 O 20

14 The example contains only 1 invariant point but we still need to establish the number of univariant reactions and how many phases are involved in each. Use the phase rule F= C-Φ2 1= 3-42 Use the combinatorial equation to determine the number of reactions or in this simple case just use the chemographics as we need to determine the reactions anyway

15

16 Univariant reactions (En) Py Sill = Sa Qz (Py) En Sill = Sa Qz (Sa) En Sill = Py Qz (Sill) Py = En Sa Qz (Qz) Py = En Sa Sill

17 Choose any reaction e.g. (EN) Draw a solid line to represent the stable part of the equilibrium extending from the invariant point. Draw the metastable extension as a short dashed line. Arbitrarily label either side of the reaction with the appropriate assemblage (EN) SILL SA QZ

18 The construction rule: The metastable extension of an (X) absent reaction must lie between two X producing reactions

19 Choose a second reaction e.g. (SILL). Use the construction rule to place this correctl relative to the first one. The stable extension of (SILL) must fall somewhere on the opposite side (EN) from SILL (EN) SILL SA QZ (SILL)

20 (EN) (EN) SILL SA QZ X SILL SA QZ EN SA QZ (SILL) (SILL) EN SA QZ

21 (SA) QZ EN SILL (EN) SILL SA QZ EN SA QZ (SILL)

22 (SA) (EN) SILL SA QZ EN SA QZ (SILL) SA QZ EN SILL () QZ EN SILL

23 (EN) (SA) SILL SA QZ EN SA QZ (SILL) SA QZ EN SILL () QZ EN SILL EN SA SILL (QZ)

24 Limitations of using Schreinemakers method They yields the shape of the P-T grid but can not determine the exact slope or positions of equilibria on a P-T plane

Metamorphic Petrology GLY 262 Metamorphic reactions and isograds

Metamorphic Petrology GLY 262 Metamorphic reactions and isograds Metamorphic Petrology GLY 262 Metamorphic reactions and isograds What do we mean by reaction? Reaction: change in the nature or types of phases in a system=> formation of new mineral(s) ) which are stable

More information

Examples of Invariant Points and Bundles of Reactions. Start with the Phase Rule (P + F = C + 2) The phase rule is P + F = C + 2.

Examples of Invariant Points and Bundles of Reactions. Start with the Phase Rule (P + F = C + 2) The phase rule is P + F = C + 2. 1 Method of Schreinemaker--A Geometric Approach to Constructing Phase Diagrams Dexter Perkins, University of North Dakota & Dave Mogk, Montana State University C:\Courses\320\fall2007\in class\2000-schreinemakers

More information

Phase Diagrams and Chemographic Diagrams C:\Courses\320\fall2005\inclass, etc\57-projections.wpd; October 9, 2003 (6:09pm)

Phase Diagrams and Chemographic Diagrams C:\Courses\320\fall2005\inclass, etc\57-projections.wpd; October 9, 2003 (6:09pm) 1 Phase Diagrams and Chemographic Diagrams C:\Courses\320\fall2005\inclass, etc\57-projections.wpd; October 9, 2003 (6:09pm) Recall the phase rule: C + 2 = P + F. At a point on a phase diagram where two

More information

T-X Diagrams C:\Courses\320\fall2007\in class\5000-t-x Exercise.wpd; September 25, 2003 (11:45am)

T-X Diagrams C:\Courses\320\fall2007\in class\5000-t-x Exercise.wpd; September 25, 2003 (11:45am) 1 T-X Diagrams C:\Courses\320\fall2007\in class\5000-t-x Exercise.wpd; September 25, 2003 (11:45am) T-X diagrams are most often used for describing metamorphism of carbonate-rich rocks (marbles or marls)

More information

Metamorphic Petrology GLY 262 P-T and T-X phase diagrams

Metamorphic Petrology GLY 262 P-T and T-X phase diagrams Metamorphic Petrology GLY 262 P-T and T-X phase diagrams How do we estimate P-T conditions? Inverse modelling: (1) Look at our rock, identify the mineral assemblage and determine the compositions of the

More information

Lecture 14: A brief review

Lecture 14: A brief review Lecture 14: A brief review A few updates for the remainder of the course Report for the lab on pelite metamorphism - Lab 3 Needs to be handed in before Tuesday the 14 th of March at 17:00. My most important

More information

Metamorphic Petrology GLY 712 Geothermo-barometry

Metamorphic Petrology GLY 712 Geothermo-barometry Metamorphic Petrology GLY 712 Geothermo-barometry What is thermobarometry? Thermobarometry is concerned with estimating or inferring the temperatures and pressures at which a rock formed and/or subsequently

More information

In this practical we study the AKF and the Thompson AFM diagrams for pelites.

In this practical we study the AKF and the Thompson AFM diagrams for pelites. LIVERPOOL UNIVERSITY EARTH SCIENCE ENVS212 page 1 of 10 ENVS212 Practical 6: Triangular compatibility diagrams for pelites In this practical we study the AKF and the Thompson AFM diagrams for pelites.

More information

Metaperidotites and Marbles. Marbles and Metaperidotites; Geothermobarometry. Low Grade Reactions in. Metaperidotites

Metaperidotites and Marbles. Marbles and Metaperidotites; Geothermobarometry. Low Grade Reactions in. Metaperidotites Marbles and Metaperidotites; GEOL 13.53 Metamorphic Lecture 5 Metaperidotites and Marbles Typical Composition of Peridotites and Carbonate Rocks Peridotite Limestone Dolostone SiO 2 42.26 3.64 0.41 Al

More information

Phase Equilibria C:\a-StudioClassroom\minex20.doc; July 7, 2005

Phase Equilibria C:\a-StudioClassroom\minex20.doc; July 7, 2005 1 Phase Equilibria C:\a-StudioClassroom\minex20.doc; July 7, 2005 S/mole V/mole E/mole J/mol-K cc/mol J/mol grossular 255.5 125.3-6656700 quartz 41.46 22.688-910700 anorthite 199.3 100.79-4243040 wollastonite

More information

A. One component system (c = 1)

A. One component system (c = 1) A. One component system (c = 1) Example: SiO 2 system. Since all phases in this system have the same composition, there are no compositional variables to consider. Phase equilibria can be shown completely

More information

Metamorphic Petrology GLY 262 P-T-t paths

Metamorphic Petrology GLY 262 P-T-t paths Metamorphic Petrology GLY 262 P-T-t paths Pressure-Temperature-Time (P-T-t) Paths The complete set of T-P conditions that a rock may experience during a metamorphic cycle from burial to metamorphism (and

More information

Partial melting of mantle peridotite

Partial melting of mantle peridotite Partial melting of mantle peridotite 1100 1200 1300 1400 1500 (TºC) Depth (km) 50 100 150 Plag lherzolite (ol-opx-cpx-pl) Spinel lherzolite (Ol-opx-cpx-sp) Garnet lherzolite (Ol-opx-cpx-gar) Graphite Diamond

More information

The exploration of reaction space

The exploration of reaction space fluid-mineral Interactions: A Tribute to H. P. Eugster The Geochemical Society, Special Publication No.2, 1990 Editors: R. J. Spencer and I-Ming Chou The exploration of reaction space GEORGE W. FISHER

More information

Problem set: Constructing metamorphic phase diagrams using phase equilibria and the Clausius-Clapeyron equation

Problem set: Constructing metamorphic phase diagrams using phase equilibria and the Clausius-Clapeyron equation Problem set: Constructing metamorphic phase diagrams using phase equilibria and the Clausius-Clapeyron equation Mark Brandriss, Smith College Mineral assemblages preserved in metamorphic rocks record information

More information

GG250 Lab 8 Simultaneous Linear Equations

GG250 Lab 8 Simultaneous Linear Equations GG250 Lab 8 Simultaneous Linear Equations This lab will have you set up and solve simultaneous linear equations (and then check your answers!). The main effort is in setting up the equations rather than

More information

Geology 633 Metamorphism and Lithosphere Evolution. Thermodynamic calculation of mineral reactions I: Reactions involving pure phases

Geology 633 Metamorphism and Lithosphere Evolution. Thermodynamic calculation of mineral reactions I: Reactions involving pure phases Geology 633 Metamorphism and Lithosphere Evolution Thermodynamic calculation of mineral reactions I: Reactions involving pure phases The formulation for the free energy change of any reaction involving

More information

Metamorphic Petrology GLY 262 Metamorphic fluids

Metamorphic Petrology GLY 262 Metamorphic fluids Metamorphic Petrology GLY 262 Metamorphic fluids The metamorphic fluid is arguably the most geologically important phase Spear (1993) The great volumetric abundance of hydrate-rich and carbonate-rich minerals

More information

Phase Diagram Problem 0

Phase Diagram Problem 0 Phase Diagram Problem 0 The phase diagram below includes reactions for a system that includes 6 minerals (listed in the table). The numbers and letters on points, lines and spaces are usually not preseent

More information

Stability of Pyrope-Quartz in the System MgO-AI~03-SiO ~

Stability of Pyrope-Quartz in the System MgO-AI~03-SiO ~ Contr. Mineral. and Petrol. 30, 72 83 (1971) 9 by Springer-Verlag 1971 Stability of Pyrope-Quartz in the System MgO-AI~03-SiO ~ B.J. HE,SEN and E.J. EssEI~E * Department of Geophysics and Geochemistry,

More information

Calculating pressures and temperatures of petrologic events: geothermobarometry

Calculating pressures and temperatures of petrologic events: geothermobarometry Calculating pressures and temperatures of petrologic events: geothermobarometry Donna L. Whitney University of Minnesota Minneapolis, Minnesota 55455 The goal of this exercise is to calculate the pressure

More information

T-X Diagrams Answers C:\Courses\320\fall2007\in class\5000-t-x ExerciseAnswers.wpd; September 25, 2003 (11:45am) Problems

T-X Diagrams Answers C:\Courses\320\fall2007\in class\5000-t-x ExerciseAnswers.wpd; September 25, 2003 (11:45am) Problems 1 T-X Diagrams Answers C:\Courses\320\fall2007\in class\5000-t-x ExerciseAnswers.wpd; September 25, 2003 (11:45am) Problems Problem 1. Look at Figure 10. One reaction (that plots as a horizontal line)

More information

EPSC 445: Metamorphic Petrology Lecture 1: An introduction to metamorphism

EPSC 445: Metamorphic Petrology Lecture 1: An introduction to metamorphism EPSC 445: Metamorphic Petrology Lecture 1: An introduction to metamorphism Vincent van Hinsberg Department of Earth and Planetary Sciences, McGill University, Montréal, Québec, Canada Course practicalities

More information

Name Petrology Spring Metamorphic rocks lab Part III Metamorphic mineral assemblages and reactions Due Tuesday 4/13

Name Petrology Spring Metamorphic rocks lab Part III Metamorphic mineral assemblages and reactions Due Tuesday 4/13 Metamorphic rocks lab Part III Metamorphic mineral assemblages and reactions Due Tuesday 4/13 Problem 24-1: Given the following mineral compositions (Fe is Fe +2 unless indicated): Staurolite (St) (Fe,Mg)

More information

Introductory Statement:

Introductory Statement: The use of visualization and sketches of thin sections to encourage a better understanding of phase diagrams: Binary and ternary phase diagram exercises Jennifer M. Wenner Drew S. Coleman Introductory

More information

ERSC 3P21. Metamorphic Petrology

ERSC 3P21. Metamorphic Petrology ERSC 3P21 Metamorphic Petrology, and adjustments in solid rocks in response to and conditions which have been imposed due to changes in (_) and (_) The conditions of metamorphism differ from the conditions

More information

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER

DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Geol 2312 Igneous and Metamorphic Petrology Spring 2009 Name DIFFERENTIATION OF MAGMAS BY FRACTIONAL CRYSTALLIZATION THE M&M MAGMA CHAMBER Objective: This exercise is intended to improve understanding

More information

Ultrahigh-temperature Metamorphism (1150 C, 12 kbar) and Multistage Evolution of Mg-, Al-rich Granulites from the Central Highland Complex, Sri Lanka

Ultrahigh-temperature Metamorphism (1150 C, 12 kbar) and Multistage Evolution of Mg-, Al-rich Granulites from the Central Highland Complex, Sri Lanka JOURNAL OF PETROLOGY VOLUME 45 NUMBER 9 PAGES 1821 1844 2004 DOI: 10.1093/petrology/egh035 Ultrahigh-temperature Metamorphism (1150 C, 12 kbar) and Multistage Evolution of Mg-, Al-rich Granulites from

More information

Petrogenetic grids for metacarbonate rocks: pressure-temperature phase-diagram projection for mixed-volatile systems

Petrogenetic grids for metacarbonate rocks: pressure-temperature phase-diagram projection for mixed-volatile systems Contrib Mineral Petrol (1991) 108:93 105 Contributions to Mineralogy and Petrology 9 Springer-Verlag 1991 Petrogenetic grids for metacarbonate rocks: pressure-temperature phase-diagram projection for mixed-volatile

More information

Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II)

Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II) Metamorphic Petrology GLY 262 Lecture 3: An introduction to metamorphism (II) Metamorphic processes Metamorphism is very complex and involves a large number of chemical and physical processes occurring

More information

Metasomatism Model. Metasomatism. Fluid Buffers. Volatile Species. C-O-H-S System. Speciation in C-O-H-S fluids

Metasomatism Model. Metasomatism. Fluid Buffers. Volatile Species. C-O-H-S System. Speciation in C-O-H-S fluids Metasomatism Model Metasomatism Reading: Winter, Chapter 30 Obvious in rocks with contrasting mineral layers Related to unequal partitioning of elements between solid phases and fluids Model uses ion-exchange

More information

The microstructural and metamorphic history. preserved within garnet porphyroblasts

The microstructural and metamorphic history. preserved within garnet porphyroblasts The microstructural and metamorphic history preserved within garnet porphyroblasts from southern Vermont and northwestern Massachusetts VOLUME II Thesis submitted by Bronwyn Patricia GAVIN BSc (Hons) Canterbury,

More information

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams

TWO COMPONENT (BINARY) PHASE DIAGRAMS. Experimental Determination of 2-Component Phase Diagrams Page 1 of 12 EENS 211 Earth Materials Tulane University Prof. Stephen A. Nelson TWO COMPONENT (BINARY) PHASE DIAGRAMS This document last updated on 08-Oct-2003 Experimental Determination of 2-Component

More information

Mineral Stability and Phase Diagrams Introduction

Mineral Stability and Phase Diagrams Introduction 1 of 10 10/10/2002 2:50 PM Prof. Stephen A. Nelson Geology 211 Tulane University Mineralogy and Phase Diagrams Introduction This document last updated on 10-Oct-2002 As we discussed previously, there are

More information

Melting Relationships in the System CaO-MgO-CO 2 -H 2 O, with Petrological Applications 1

Melting Relationships in the System CaO-MgO-CO 2 -H 2 O, with Petrological Applications 1 Melting Relationships in the System CaO-MgO-CO 2 -H 2 O, with Petrological Applications 1 by PETER J. WYLLIE Department of Geochemistry and Mineralogy, The Pennsylvania State University, University Park,

More information

2-C Eutectic Systems

2-C Eutectic Systems Phase Equilibrium 2-C Eutectic Systems Example: Diopside - Anorthite No solid solution * For system at this T, X, phase(s) plot where? Fig. 6.11. Isobaric T-X phase diagram at atmospheric pressure. After

More information

GEOLOGY 285: INTRO. PETROLOGY

GEOLOGY 285: INTRO. PETROLOGY Dr. Helen Lang Dept. of Geology & Geography West Virginia University SPRING 2016 GEOLOGY 285: INTRO. PETROLOGY Metamorphic Mineralogy depends on Temperature, Pressure and Rock Composition but Metamorphic

More information

Geos 306, Mineralogy Final Exam, Dec 12, pts

Geos 306, Mineralogy Final Exam, Dec 12, pts Name: Geos 306, Mineralogy Final Exam, Dec 12, 2014 200 pts 1. (9 pts) What are the 4 most abundant elements found in the Earth and what are their atomic abundances? Create a reasonable hypothetical charge-balanced

More information

This file is part of the following reference: Access to this file is available from:

This file is part of the following reference: Access to this file is available from: ResearchOnline@JCU This file is part of the following reference: Quentin de Gromard, R. (2011) The Paleozoic tectonometamorphic evolution of the Charters Towers Province, North Queensland, Australia. PhD

More information

A Projection for Analysis of Mineral Assemblages in Calc-Pelitic Metamorphic Rocks

A Projection for Analysis of Mineral Assemblages in Calc-Pelitic Metamorphic Rocks NOTES- NOTISER A Projection for Analysis of Mineral Assemblages in Calc-Pelitic Metamorphic Rocks WILLIAM L. GRIFFIN & MICHAEL T. STYLES Griffin, W. L. & Styles, M. T.: A projection for analysis of mineral

More information

Thermodynamics and Phase Transitions in Minerals

Thermodynamics and Phase Transitions in Minerals Studiengang Geowissenschaften M.Sc. Wintersemester 2004/05 Thermodynamics and Phase Transitions in Minerals Victor Vinograd & Andrew Putnis Basic thermodynamic concepts One of the central themes in Mineralogy

More information

Real-time AFM diagrams on your Macintosh

Real-time AFM diagrams on your Macintosh Spear Geological Materials Research v.1, n.3, p.1 Real-time AFM diagrams on your Macintosh Frank S. Spear Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute Troy, NY 12180

More information

Activity-composition relationships

Activity-composition relationships Activity-composition relationships back In the application of equilibrium thermodynamics, the starting point is the equilibrium relationship : the relationship for a balanced chemical reaction between

More information

Calculated Phase Relations in High-Pressure Metapelites in the System NKFMASH Na 2 O---K 2 O---FeO---MgO---Al 2 O 3 ---SiO 2 ---H 2 O

Calculated Phase Relations in High-Pressure Metapelites in the System NKFMASH Na 2 O---K 2 O---FeO---MgO---Al 2 O 3 ---SiO 2 ---H 2 O JOURNAL OF PETROLOGY VOLUME 45 NUMBER 1 PAGES 183±202 2004 DOI: 10.1093/petrology/egg085 Calculated Phase Relations in High-Pressure Metapelites in the System NKFMASH Na 2 O---K 2 O---FeO---MgO---Al 2

More information

GEOCHEMICAL PHASE DIAGRAMS AND GALE DIAGRAMS

GEOCHEMICAL PHASE DIAGRAMS AND GALE DIAGRAMS GEOCHEMICAL PHASE DIAGRAMS AND GALE DIAGRAMS P.H. EDELMAN, S.W. PETERSON, V. REINER, AND J.H. STOUT Abstract. The problem of predicting the possible topologies of a geochemical phase diagram, based on

More information

Teaching With Projections in the Geosciences David W. Mogk Dept. of Earth Sciences Montana State University

Teaching With Projections in the Geosciences David W. Mogk Dept. of Earth Sciences Montana State University Teaching With Projections in the Geosciences David W. Mogk Dept. of Earth Sciences Montana State University Geoscientists are trained to represent multi-component datasets by projecting onto relatively

More information

CHAPTER 9: INTRODUCTION TO THERMODYNAMICS. Sarah Lambart

CHAPTER 9: INTRODUCTION TO THERMODYNAMICS. Sarah Lambart CHAPTER 9: INTRODUCTION TO THERMODYNAMICS Sarah Lambart RECAP CHAP. 8: SILICATE MINERALOGY Orthosilicate: islands olivine: solid solution, ie physical properties vary between 2 endmembers: Forsterite (Mg

More information

C = 3: Ternary Systems: Example 1: Ternary Eutectic

C = 3: Ternary Systems: Example 1: Ternary Eutectic Phase Equilibrium C = 3: Ternary Systems: Example 1: Ternary Eutectic Adding components, becomes increasingly difficult to depict 1-C: P - T diagrams easy 2-C: isobaric T-X, isothermal P-X 3-C:?? Still

More information

Exam I. 1. (10 points) Give the following optical properties for the minerals listed below.

Exam I. 1. (10 points) Give the following optical properties for the minerals listed below. GLY306 Petrology Exam I 1. (10 points) Give the following optical properties for the minerals listed below. Color/pleochroism Extinction angle Cleavage angle Twining Refractive index Hornblende Plagioclase

More information

Amphibolites with staurolite and other aluminous minerals: calculated mineral equilibria in NCFMASH

Amphibolites with staurolite and other aluminous minerals: calculated mineral equilibria in NCFMASH J. metamorphic Geol., 000, 18, 3 40 Amphibolites with staurolite and other aluminous minerals: calculated mineral equilibria in NCFMASH J. ARNOLD,1 R. POWELL AND M. SANDIFORD3 1Department of Earth Sciences,

More information

MET LABS 3 and 4: METABASITES

MET LABS 3 and 4: METABASITES GEOLOGY 13.53: Igneous and Metamorphic Petrology MET LABS 3 and 4: METABASITES Learning Objectives: Students will improve their ability to describe a metamorphic rock Students will be able to assign metamorphic

More information

Environments of Mineral Formation. Stability Diagrams

Environments of Mineral Formation. Stability Diagrams Environments of Mineral Formation Unary, Binary, and Ternary Mineral Stability Diagrams Minerals of differing composition (or polymorphs of the same mineral) that coexist at a set of pressure (P) temperature

More information

Metamorphic Petrology

Metamorphic Petrology Metamorphic Petrology Session 4: PT-t Paths and Regional Metamorphism MP-SKM, slide 1 Review: Clapeyron slopes of dehydration reactions Solid-Solid Reactions ~small entropy change Dehydration Reactions

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION GSA Data Repository 080 Schorn et al., 08, Thermal buffering in the orogenic crust: Geology, https://doi.org/0.30/g4046.. SUPPLEMENTARY INFORMATION 3 PHASE DIAGRAM MODELING 4 5 6 7 8 9 0 3 4 Phase diagrams

More information

Reactions take place in a direction that lowers Gibbs free energy

Reactions take place in a direction that lowers Gibbs free energy Metamorphic Rocks Reminder notes: Metamorphism Metasomatism Regional metamorphism Contact metamorphism Protolith Prograde Retrograde Fluids dewatering and decarbonation volatile flux Chemical change vs

More information

Chapter IV MINERAL CHEMISTRY

Chapter IV MINERAL CHEMISTRY Chapter IV MINERAL CHEMISTRY Chapter-IV MINERAL CHEMISTRY 4.1 INTRODUCTION In this chapter, chemical analyses of different minerals present in various rocks of Mashhad granitoid plutons have been presented.

More information

Chapter 18: Granitoid Rocks. Chapter 18: Granitoid Rocks. Melting of crustal materials at high pressure

Chapter 18: Granitoid Rocks. Chapter 18: Granitoid Rocks. Melting of crustal materials at high pressure Melting of crustal materials at high pressure Melting in the crust: the traditional low pressure view to be applied to HP CaO P 2 O 5 Zircon from a HP granite HP-HT garnets from Massif Central (Vielzeuf

More information

3.012 PS 6 THERMODYANMICS SOLUTIONS Issued: Fall 2005 Due:

3.012 PS 6 THERMODYANMICS SOLUTIONS Issued: Fall 2005 Due: 3.012 PS 6 THERMODYANMICS SOLUTIONS 3.012 Issued: 11.28.05 Fall 2005 Due: THERMODYNAMICS 1. Building a binary phase diagram. Given below are data for a binary system of two materials A and B. The two components

More information

Triangular Diagrams. 1. On the diagram above, plot the following (mostly mineral) compositions: silicon quartz corundum kyanite

Triangular Diagrams. 1. On the diagram above, plot the following (mostly mineral) compositions: silicon quartz corundum kyanite Triangular Diagrams Note: For this exercise, everything is plotted using mole%. Sometimes it is done with wt% but that just adds unnecessary complications. 1. On the diagram above, plot the following (mostly

More information

Shortcuts to mineral formulae

Shortcuts to mineral formulae Silicates JD Price Silicate Structure Silicate Structure (SiO2) Shortcuts to mineral formulae W cations with 8- (Ca 2+, Fe 2+, Mn 2+, Na + ) to 12-fold coordination (K +, Ba 2+ ) X divalent cations in

More information

Earth Science 232 Petrography

Earth Science 232 Petrography Earth Science 232 Petrography Course notes by Shaun Frape and Alec Blyth Winter 2002 1 Petrology - Introduction Some Definitions Petra Greek for rock Logos Greek for disclosure or explanation Petrology

More information

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10

GEOL 2312 Igneous and Metamorphic Petrology Spring 2016 Score / 58. Midterm 1 Chapters 1-10 GEOL 2312 Igneous and Metamorphic Petrology Name KEY Spring 2016 Score / 58 Midterm 1 Chapters 1-10 1) Name two things that petrologists want to know about magmas (1 pt) Formation, source, composition,

More information

Continental Alkaline Magmatism. The East African Rift

Continental Alkaline Magmatism. The East African Rift Announcements No lecture on Friday Lab final begins at 1 PM Today s agenda: Lecture/Demo Go through field trip pics Call for pizza Lab review Lecture Review Make poster Continental Alkaline Magmatism.

More information

Net-transfer reactions may be terminal reactions or tie-line flip reactions (discussed below).

Net-transfer reactions may be terminal reactions or tie-line flip reactions (discussed below). 1 Reaction Types & Curves Handout Dexter Perkins, Dept. of Geology, University of North Dakota.. (Based heavily on material provided by Dave Hirsch, Western Washington University) Reactions among solid

More information

Geothermobarometry of metapelites of southwest Mahneshan, using multiple equilibria curves and THERMOCALC program

Geothermobarometry of metapelites of southwest Mahneshan, using multiple equilibria curves and THERMOCALC program Vol. 12, No. 2, 1383/2004 Fall & Winter Geothermobarometry of metapelites of southwest Mahneshan, using multiple equilibria curves and THERMOCALC program A. Saki, M. Moazzen, M. Moayyed Department of Geology,

More information

Geology 212 Petrology Prof. Stephen A. Nelson. Thermodynamics and Metamorphism. Equilibrium and Thermodynamics

Geology 212 Petrology Prof. Stephen A. Nelson. Thermodynamics and Metamorphism. Equilibrium and Thermodynamics Geology 212 Petrology Prof. Stephen A. Nelson This document last updated on 02-Apr-2002 Thermodynamics and Metamorphism Equilibrium and Thermodynamics Although the stability relationships between various

More information

Hirsch - Binary phase diagrams problems KEY

Hirsch - Binary phase diagrams problems KEY Hirsch - Binary phase diagrams problems KEY Name Question 1. 1A. Using the phase rule, determine the degrees of freedom: a. at point e F = 2-3 + 1 = 0 b. within the field A + B F = 2-2 + 1 = 1 c. within

More information

Chapter 6: The Phase Rule and One and Two-Component Systems aka Phase Equilibria

Chapter 6: The Phase Rule and One and Two-Component Systems aka Phase Equilibria Chapter 6: The Phase Rule and One and Two-Component Systems aka Phase Equilibria Makaopuhi Lava Lake Magma samples recovered from various depths beneath solid crust From Wright and Okamura, (1977) USGS

More information

Interpreting Phase Diagrams

Interpreting Phase Diagrams Interpreting Phase Diagrams Understanding chemical reactions requires that we know something about how materials behave as the temperature and pressure change. For a single component (like quartz or ice)

More information

GEOSCIENCE FRONTIERS 3(5) (2012) 603e611. available at China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS

GEOSCIENCE FRONTIERS 3(5) (2012) 603e611. available at   China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS GEOSCIENCE FRONTIERS 3(5) (2012) 603e611 available at www.sciencedirect.com China University of Geosciences (Beijing) GEOSCIENCE FRONTIERS journal homepage: www.elsevier.com/locate/gsf RESEARCH PAPER Spinel

More information

Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration

Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration Chapter 5 Mechanisms of metamorphism and metasomatism on the local mineral scale : The role of dissolution-reprecipitation during mineral re-equilibration Andrew Putnis & Håkon Austrheim Equilibration

More information

Four fundamental. questions. why is the Earth hot? how long does it take tocookarock? why are rocks made of minerals?

Four fundamental. questions. why is the Earth hot? how long does it take tocookarock? why are rocks made of minerals? Four fundamental questions why is the Earth hot? how long does it take tocookarock? why are rocks made of minerals? why are individual rocks made of so few minerals? If you can answer these four questions

More information

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS

LAB 6: COMMON MINERALS IN IGNEOUS ROCKS GEOLOGY 17.01: Mineralogy LAB 6: COMMON MINERALS IN IGNEOUS ROCKS Part 2: Minerals in Gabbroic Rocks Learning Objectives: Students will be able to identify the most common silicate minerals in gabbroic

More information

GSA Data Repository

GSA Data Repository GSA Data Repository 2019057 1 METHODS Grain Boundary Imaging and Orientation Analysis Backscatter electron (BSE) maps of thin sections were acquired using the FEI Verios XHR scanning electron microscope

More information

Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data)

Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data) Petrology and Geochronology of Iran Tepe volcano, Eastern Rhodopes, Bulgaria: Age relationship with the Ada Tepe gold deposit. (preliminary data) Peter Kibarov, Peter Marchev, Maria Ovtcharova, Raya Raycheva,

More information

Computer Programs for P-T History of Metamorphic Rocks using Pseudosection Approach

Computer Programs for P-T History of Metamorphic Rocks using Pseudosection Approach Computer Programs for P-T History of Metamorphic Rocks using Pseudosection Approach T. N. Jowhar Wadia Institute of Himalyan Geology, Dehradun 248001, India ABSTRACT In this paper computer program THERMOCALC,

More information

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg

12 Chemistry (Mg,Fe) 2 SiO 4 Olivine is forms what is called an isomorphous solid solution series that ranges between two end members: Forsterite Mg 11 Olivine Structure Olivine is a common green or brown rock forming minerals which consists of a solid-solution series between Forsterite (Fo) and Fayalite (Fa). It is an orthorhombic orthosilicate with

More information

Metamorphic Facies. Fig Temperaturepressure

Metamorphic Facies. Fig Temperaturepressure Metamorphic Facies Fig. 25.2. Temperaturepressure diagram showing the generally accepted limits of the various facies used in this text. Boundaries are approximate and gradational. The typical or average

More information

What P-T conditions do rocks experience inside a subduction zone?

What P-T conditions do rocks experience inside a subduction zone? What P-T conditions do rocks experience inside a subduction zone? This exercise allows students to examine the pressure-temperature conditions predicted by thermal modeling in a scientific study funded

More information

Mineral Equilibria and P T Diagram for Fe Al Metapelites in the KFMASH System (K 2 O FeO MgO Al 2 O 3 SiO 2 H 2 O)

Mineral Equilibria and P T Diagram for Fe Al Metapelites in the KFMASH System (K 2 O FeO MgO Al 2 O 3 SiO 2 H 2 O) Petrology, Vol. 13, No. 1, 2005, pp. 73 83. Translated from Petrologiya, Vol. 13, No. 1, 2005, pp. 81 92. Original Russian Text Copyright 2005 by Likhanov, Reverdatto, Selyatitskii. English Translation

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL GSA DATA REPOSITORY 2014105 Earth s youngest-known ultrahigh-temperature granulites discovered on Seram, eastern Indonesia Jonathan M. Pownall 1, Robert Hall 1, Richard A. Armstrong 2, and Marnie A. Forster

More information

Differentiation of Magmas By Fractional Crystallization

Differentiation of Magmas By Fractional Crystallization Wirth Magmatic Differentiation Using M&M s 1 HANDOUT Differentiation of Magmas By Fractional Crystallization Objective The objective of this exercise is to gain first-hand knowledge of the process of magmatic

More information

Geothermometry: Analysis of Black Hills Schist

Geothermometry: Analysis of Black Hills Schist Geothermometry: Analysis of Black Hills Schist Presented By: Andy Gorz and Chad Cro;y Department of Geosciences North Dakota State University h"p://www.sdrcd.org/portals/sdrcd/black%20hills/images/pic.sylvanlake.jpg

More information

Calculated Phase Relations in the System Na 2 O CaO K 2 O FeO MgO Al 2 O 3 SiO 2 H 2 O with Applications to UHP Eclogites and Whiteschists

Calculated Phase Relations in the System Na 2 O CaO K 2 O FeO MgO Al 2 O 3 SiO 2 H 2 O with Applications to UHP Eclogites and Whiteschists JOURNAL OF PETROLOGY PAGE 1 of 25 doi:10.1093/petrology/egl036 Journal of Petrology Advance Access published July 19, 2006 Calculated Phase Relations in the System Na 2 O CaO K 2 O FeO MgO Al 2 O 3 SiO

More information

N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0

N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0 N = N 0 e -λt D* = N 0 -N D* = N 0 (1-e -λt ) or N(e λt -1) where N is number of parent atoms at time t, N 0 is initial number of parents, D* is number of radiogenic daughter atoms, and λ is the decay

More information

drawpd basic operation

drawpd basic operation drawpd basic operation drawpd basic operation connect interpolation in Tx and Px (see below) scripts changing starting guessses printxyz and xyzguess (was readxyz) see in context in a minute scripts changing

More information

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap)

APPENDIX TABLES. Table A2. XRF analytical results for samples from drill hole AP5 (Areachap) APPENDIX TABLES Table A2. XRF analytical results for samples from drill hole AP5 (Areachap) Sample No. AP5/19 AP5/20 AP5/21 AP5/22 AP5/23 AP5/24 AP5/25AP5/26AP5/27AP5/28AP5/29AP5/30AP5/31AP5/32 AP5/33

More information

Supplementary Table 1.

Supplementary Table 1. Supplementary Table 1. Compositional groups, typical sample numbers and location with their bulk compositional, mineralogical and petrographic characteristics at different metamorphic grades. Metamorphic

More information

1 - C Systems. The system H 2 O. Heat an ice at 1 atm from-5 to 120 o C. Heat vs. Temperature

1 - C Systems. The system H 2 O. Heat an ice at 1 atm from-5 to 120 o C. Heat vs. Temperature 1 - C Systems The system H 2 O Heat an ice at 1 atm from-5 to 120 o C Heat vs. Temperature Fig. 6.7. After Bridgman (1911) Proc. Amer. Acad. Arts and Sci., 5, 441-513; (1936) J. Chem. Phys., 3, 597-605;

More information

CHLORITE-CHLORITOID-GARNET EQUILIBRIA AND GEOTHERMOMETRY IN THE SANANDAJ-SIRJAN METAMORPHIC BELT, SOUTHERN IRAN * M. MOAZZEN

CHLORITE-CHLORITOID-GARNET EQUILIBRIA AND GEOTHERMOMETRY IN THE SANANDAJ-SIRJAN METAMORPHIC BELT, SOUTHERN IRAN * M. MOAZZEN Iranian Journal of Science & Technology, Transaction A, Vol. 28, No. A1 Printed in Islamic Republic of Iran, 2004 Shiraz University CHLORITE-CHLORITOID-GARNET EQUILIBRIA AND GEOTHERMOMETRY IN THE SANANDAJ-SIRJAN

More information

Chapter 21: Metamorphism. Fresh basalt and weathered basalt

Chapter 21: Metamorphism. Fresh basalt and weathered basalt Chapter 21: Metamorphism Fresh basalt and weathered basalt Chapter 21: Metamorphism The IUGS-SCMR proposed this definition: Metamorphism is a subsolidus process leading to changes in mineralogy and/or

More information

P-T-X Relationships Deduced from Corona Textures in Sapphirine-Spinel-Quartz Assemblages from Paderu, Southern India

P-T-X Relationships Deduced from Corona Textures in Sapphirine-Spinel-Quartz Assemblages from Paderu, Southern India P-T-X Relationships Deduced from Corona Textures in Sapphirine-Spinel-Quartz Assemblages from Paderu, Southern India by R. K. LAL\ D. ACKERMAND 2 AND H. UPADHYAY 1 1 Department of Geology, Banaras Hindu

More information

Types of Metamorphism!

Types of Metamorphism! Types of Metamorphism! The Types of Metamorphism 2 different approaches to classification 1. Based on principal process or agent Dynamic Metamorphism Thermal Metamorphism Dynamo-thermal Metamorphism The

More information

Metamorphism. Metamorphic Rocks. Sources of Heat for Metamorphism. Sources of Heat for Metamorphism. in mineral assemblages of a rock, and/or

Metamorphism. Metamorphic Rocks. Sources of Heat for Metamorphism. Sources of Heat for Metamorphism. in mineral assemblages of a rock, and/or Metamorphic Rocks Sources of Heat for Metamorphism Heat from Earth s interior Geothermal gradient is the increase in temperature with depth Typical continental geothermal gradient is 25-30 C/km Volcanically

More information

Common non-silicate planetary minerals

Common non-silicate planetary minerals Common non-silicate planetary minerals Many of the non-silicate minerals are simple oxides. Corundum Al2O3 Al2+3 O3-2 Rutile Ti2O3 Ti2+3 O3-2 Ilmenite FeTiO3 Fe+3Ti+3O3-2 Hematite Fe2O3 Fe2+3 O3-2 Families

More information

Origin of Grandite Garnet in Calc-Silicate Granulites: Mineral Fluid Equilibria and Petrogenetic Grids

Origin of Grandite Garnet in Calc-Silicate Granulites: Mineral Fluid Equilibria and Petrogenetic Grids JOURNAL OF PETROLOGY VOLUME 46 NUMBER 5 PAGES 1045 1076 2005 doi:10.1093/petrology/egi010 Origin of Grandite Garnet in Calc-Silicate Granulites: Mineral Fluid Equilibria and Petrogenetic Grids SOMNATH

More information

Metamorphic CO 2 production from calc-silicate rocks via garnetforming reactions in the CFAS H 2 O CO 2 system

Metamorphic CO 2 production from calc-silicate rocks via garnetforming reactions in the CFAS H 2 O CO 2 system Contrib Mineral Petrol (2013) 166:1655 1675 DOI 10.1007/s00410-013-0947-5 ORIGINAL PAPER Metamorphic CO 2 production from calc-silicate rocks via garnetforming reactions in the CFAS H 2 O CO 2 system Chiara

More information

Metamorphic history of Nuvvuagittuq greenstone belt, Northeastern Superior Province, Northern Quebec, Canada

Metamorphic history of Nuvvuagittuq greenstone belt, Northeastern Superior Province, Northern Quebec, Canada Metamorphic history of Nuvvuagittuq greenstone belt, Northeastern Superior Province, Northern Quebec, Canada By: Majnoon, M., Supervisor: Minarik, W.G., Committee members: Hynes, A., Trzcienski, W.E. 1.

More information

Bulyanhulu: Anomalous gold mineralisation in the Archaean of Tanzania. Claire Chamberlain, Jamie Wilkinson, Richard Herrington, Ettienne du Plessis

Bulyanhulu: Anomalous gold mineralisation in the Archaean of Tanzania. Claire Chamberlain, Jamie Wilkinson, Richard Herrington, Ettienne du Plessis Bulyanhulu: Anomalous gold mineralisation in the Archaean of Tanzania Claire Chamberlain, Jamie Wilkinson, Richard Herrington, Ettienne du Plessis Atypical Archaean gold deposits Groves et al., 2003 Regional

More information

GEOS 320 PETROLOGY Spring, 2014

GEOS 320 PETROLOGY Spring, 2014 GEOS 320 PETROLOGY Instructor: Prof. Jim Mills E-mail: jmills@depauw.edu Office: JSC 214 Phone: 658-4669 or 658-4654 Office Hours: 10:20-11:30 MWF or by appointment Required Texts: Essentials of Igneous

More information