fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES fiziks

Size: px
Start display at page:

Download "fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES fiziks"

Transcription

1 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES iziks Foum o CSIR-UGC JRF/NET, GATE, IIT-JAM/IIS, JEST, TIFR GRE i PHYSICAL SCIENCES Bsi Mthemtis Fomul Sheet o Physil Siees He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om

2 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES Bsi Mthemtis Fomul Sheet o Physil Siees. Tigoomety (-9). Tigoometil Rtios Ietities... (-7). Ivese Ciul Futios.... (8-9). Dieetil itegl Clulus. (0-0). Dieetitio (0-). Limits.. (-4). Tgets Noml...(5-6).4 Mim Miim..(6).5 Itegtio...(7-9).5. Gmm itegl..(9). Dieetil Equtios....(0-) 4. Vetos....(-5) 5. Alge....(6-) 5. Theoy o Quti equtios...(6) 5. Logithms..(7) 5. Pemuttios Comitios...(8-9) 5.4 Biomil Theoem...(0) 5.5 Detemits...(-) 6. Coi Setio....() 7. Poility....(4-5) He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om

3 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES. Tigoometil Rtios Ietities. Tigoomety. si os. se t. ose ot si t os os ot 6. si si ose os 8. t se ot Aitio Suttio Fomule Fo y two gles A B. SiA B si Aos B os Asi B. SiA B si Aos B os Asi B. osa B os Aos B si Asi B 4. osa B os Aos B si Asi B t A t B t A.t B 5. ta B 6. ta B Doule Agle Fomule t A t B t A.t B. si si os,. os os si si os. t t t Tiple gle Fomule. si si 4si. os 4os os. t t t t Tigoometi Rtios o θ/. si si os,.. t t t os os si os si He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om

4 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES Fomule o siθ & osθ i tems o tθ. si t. t os t t Fomule o siθ & osθ i tems o tθ/ t. si. t t os t Tsomtio o sum/ieees ito Pouts C D C D. si C si D si os C D C D. si C si D os si C D C D. osc os D os os C D C D C D D C 4. osc os D si si si si Tsomtios o Pouts ito sum/ieee. SiAos B Si( A B) Si( A B). os Asi B Si( A B) Si( A B). os Aos B os( A B) os( A B) 4. si Asi B os( A B) os( A B) Tigoometi Rtios o (-θ). si si. os os. t t 4. ot 5. se ot 6. ose ose He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 4

5 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES Tigoometi Rtio o : (All Positive). os si. si os. t ot 4. ot t 5. ose se 6. se ose Tigoometi Rtio o :( Oly si os e is Positive). os si. si os. t ot 4. ot t 5. ose se 6. se ose Tigoometi Rtios o :( Olysi os e is Positive). os os. si si. t t 4. ot ot 5. ose ose 6. se se Tigoometi Rtios o :( Oly t ot is Positive). os os. si si. t t 4. ot ot 5. ose ose 6. se se He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 5

6 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES Tigoometi Rtio o :( Oly t ot is Positive). os si. si os. t ot 4. ot t 5. ose se 6. se ose Tigoometi Rtio o :( Oly os se is Positive). os si. si os. t ot 4. ot t 5. ose se 6. se ose Tigoometi Rtios o :( Oly os se is Positive). os os. si si. t t 4. ot ot 5. ose ose 6. se se Tigoometi Rtios o : (All Positive). os os. si si. t t 4. ot ot 5. ose ose 6. se se He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 6

7 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES Shot-ut metho to ememe the Tigoometi tios. si si. os os. t t 5. os si 6. t ot whe is eve itege 4. si os whe is o itege θ 0 o 0 o 45 o 60 o 90 o 0 o 5 o 50 o 80 o 70 o 60 o si θ 0 os θ t θ 0 ot θ se θ ose θ He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 7

8 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES. Ivese Ciul Futios. si si. os os. t t 4. ot ot 5. se se 6. ose os e 7. si si 8. os os 9. se se 0. os eos e. si ose. os se. t ot 4. ot t 5. se os 6. ose si 7. si si 8. os os 9. si 9. t t 0. t ot. se os ose. si os. os si 4. t se 5. ot ose 6. se t 7. ose ot 8. si si 9. si 4 si. t t 0. os 4 os. t t y. t t t y y y 4. t t t y y He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 8

9 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES 5 Some Impott Epsios:. si...! 5! 5 4. sih.... os...! 5!! 4! osh t...! 4! 5 6. e e...!!!! Some useul sustitutios:- Epessios Sustitutio Fomul Result 4 si si 4si Siθ 4 os 4os os osθ = t θ = t θ = t θ = t θ t t t t t t t t t = si θ si tθ siθ osθ tθ osθ = os θ os osθ = si θ si os θ = os θ os si θ = se θ se t θ = ose θ ose ot θ = t θ t se θ = ot θ ot ose θ He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 9

10 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES. Dieetitio.. y. Dieetil itegl Clulus h lim. ' h0 y lim 0 h lim 4. k h0 h h ; k is ostt utio 8. ; N 0. si os. os si. t se. se se.t 4. os e os e.ot 5. log ; 0, e e log 8. si ; 9. os ; ot. ; R. os e ; y t 0. ; R. se : He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 0

11 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES Rules o Dieetitios. Aitio Rule: I y = (u + v) the. Susttios Rule: I y = (u - v) the. Pout Rule: I y = uv the 4. Quotiet Rule: I 5. I y = (u) is u = g() the y y y v u u v u y y the v v y u u y. y u. u y 6. I u = (y), the y y 7.. y o y whee 0 y y y u u u v u v v v Deivtives o omposite utios si os. 5. os si. 6. t se. 7. ot os e. 8. se se t. 9. os e os e ot. log.. 0. log. He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om

12 . iziks Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES e e. g g g g Deivtives o omposite utios. si. os. t. 4. ot. 5. se 6. ose Impliit utios:-.... Tke the eivtives o these utios ietly i y/ Pmeti utios:- I t y gt & the y y / whee 0 / t t Logithemi Dieetitio:- I the utio is i the om o The tkig Logithm o oth sies 5 & the i y/ Highe oe Deivtives o omposite utios:- y y " II oe, y "' I Geel; y y th oe g y III oe He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om

13 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES. Limits Limits o utio I o evey 0 thee eist δ > 0 suh tht i l the we sy lim o () s is l Theoem o limits i.e. lim l I () g() e two utios the. lim g lim lim g. lim g lim lim g. lim. g lim 4. lim g lim lim g. lim g 5. k k lim lim whee k is ostt 6. lim lim p / q 7. lim lim p / q : whee p & q e iteges Some Impott st limits. lim. lim : whee is ostt wheeve 0 R. lim ; R 4. lim ; N, 0 si 5. lim 0 t 7. lim 0 si k 9. lim k 0 6. lim 0 si 8. lim 0 t t k 0. lim k 0 He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om

14 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES os. lim 0 0 si si m. lim ;lim si 5. limos ; lim os 0 0 / 0 0. lim 0 os m osk k 4. lim 0 6. limsi 0; lim si / 0 e 7. lim log whee > 0 8. lim log 9. lim log ; lim log e 0 / / / 0. k lim 0 log k. lim 0 e; k lim k 0 e os os. lim 0 os os. os os lim 0 4. lim 0 / e / 5. lim e 6. lim 0; lim lim 0; lim 0 8. lim 0 whee k >0 k 9. lim k k; lim k k whee k is ostt 0. limsi si. limos os. lim.... lim log ;, lim se os e ;lim lim e ;lim e 6. lim h h h e He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 4

15 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES. Tgets Noml Tget t y y Let, to y e give uve y P, Q, y y e two eighouig poits o it. Equtio o the lie PQ is Y y y y y X y o Y y X This lie will e tget to the give uve t P i Q P whih i te mes tht, y y P, y Q 0 we kow tht lim 0 y y y Theeoe the equtio o the tget is Y y X Noml t, y The oml t, y eig pepeiul to tget will hve its slope s hee its equtio is Y y y X y Geometil meig o y y epesets the slope o the tget to the give uve He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / y t y t y poit, y whee is the gle whih the tget to the uve mkes with +ve ietio o -is. y I se we e to i the tget t y poit, y the Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 5, y y i.e. the vlue o t, y will epeset the slope o the tget hee its equtio i this se will e

16 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES Noml y y y y y, y y, y Coitio o tget to e pllel o pepeiul to -is I tget is pllel to -is o oml is pepeiul to -is the I tget is pepeiul to -is o oml is pllel to -is the.4 Mim Miim Fo the utio y y 0 o 0. y y t the mimum s well s miimum poit the tget is pllel to -is so tht its slope is zeo. y y Clulte 0 solve o. Suppose oe oot o 0 is t =. I y ve o =, the mimum t =. I y ve o =, the miimum t =. y y I 0 t =, the i. y I 0 t =, eithe mimum o miimum t =. y I 0 t =, the i 4 4 y. 4 4 y y I 0 i.e +ve t =, the y is miimum t = i is mimum t = so o. i.e -ve t =, the y He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 6

17 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES.5 Itegtio Ieiite Itegtio I F, the we sy tht tieivtive o Some st Itegls we wite F F is ieiite itegl o log 5. e e 6. log 7. os si 8. si os 9.se t 0. os e ot.se t se. os eot ose. si 5. se 4. t 6. osh sih 7. sih osh 8. se h th 9. os eh oth 0. se h th se h. ehoth oseh os. t logse. ot logsi 4. se logse t 5. os e log t 6. t He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 7

18 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES 7. log ; i 8. log ; i si log o sih log o osh. log. log 4. si 5. se ose m 6. si si m L L 0 Rules o Itegtio 0,, He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / m m.. k k, whee k is ostt. k k k k, whee k k e ostts Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 8

19 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES Rule o itegtio y sustitutio t. I t, t t ' t t.. ' 4. ' g log : Rules o itegtio y ptil tio This metho e use to evlute itegl o the type whee (i) P() & Q() e Polyomils i (ii) Degee o P() < egee o Q() (iii) Q() otis two/moe istit lie/quti tos i.e. P Q A B C uv u v v u P Q.5. Gmm itegl (i) Gmm itegl is give y e ( ) = ( ). 0 (ii) B e 0 B He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 9

20 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES. Dieetil Equtios Oe egee o ieetil equtio The oe o ieetil equtio is the oe o the highest ieetil o-eiiet peset i the equtio. y y Emple: y 0 is seo oe ieetil equtio. The egee o ieetil equtio is the egee o the highest eivtive te emovig the il sig tio. y y Emple: 0 y hs egee o. D.E. o the ist oe ist egee. Septio o the viles:. Homogeeous Equtio y y y, y, y i eh tem o (,y), y. Equtios euile to homogeeous om y y, A By C X h let y Y k y h k 0 Choose h, k so tht Ah Bk C 0 y y Y X is o the sme egee. X Y h k AX BY Ah Bk X Y AX BY y Cse o ilue: A B m m y C 4. Lie Dieetil Equtios y Py Q whee P Q e utio o (ut ot y) o ostt. I F. e P. y I. F. Q I. F. He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 0

21 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES 5. Equtios euile to the lie om y Py Qy ivie y y put z y y y y P Q z Pz Q 6. Et ieetil Equtio yostt M + Ny = 0 i M M y N y y tems o N ot otiig y C 7. Equtios euile to the et om ) I M N y N ieet equtio. ) I M N y N z is utio o loe, sy () the is utio o y loe, sy (y) the ) I M = y (y) N = (y), the. F. M Ny. F. e multiply with yy. F. e. He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om

22 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES Lie D.E. o seo oe with ostt oeiiets y y P Qy R whee P, Q R e utio o o ostt. C.F. y = C.F. + P.I. ) oots, el ieet m m y Ce Ce y C C e m ) oots, el equl ) oots imgiy y C e Ce e Aos B si P.I. e ) D e i 0 the e D e ) D D ) si D si os D si I (- ) = 0 the D ) D D e e e) e e si Im e D ) D D si os He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om

23 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES 4. Vetos Ctesi ooite system Iiitesiml isplemet l ˆ y yˆ z zˆ Volume elemet yz Giet: ˆ yˆ zˆ y z A A y Az Divegee:. A y z A A z y A A Az y A Cul: A ˆ yˆ zˆ y z z y Lpli: y z Spheil Pol Cooite System(,, ) si os, y si si, z os z y y z, os, t Iiitesiml isplemet l ˆ ˆ siˆ Volume elemet si ge om 0 to, om 0 to, om 0 to. Giet: ˆ ˆ ˆ si A si si Divegee:. A A si A ˆ ˆ siˆ Cul: A si A A si A He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om

24 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES Lpli: si si si Cyliil Cooite System (,, z ) os, y si, z z y, t Iiitesiml isplemet l ˆ ˆ z zˆ Volume elemet z ge om 0 to, om 0 to, z om to. Giet: ˆ ˆ zˆ z A Az. z Divegee: A A y Cul: Lpli: ˆ ˆ zˆ A z A A A z z He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 4

25 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES VECTOR IDENTITIES Tiple Pout () A.( B C) B.( C A) C.( A B) () A( B C) B( AC. ) C( A. B) Pout Rules () ( g) ( g) g( ) A. B A ( B) B ( A) A. B ( B. ) A (4) (5).( A) (. A) A.( ) (6).( A B) B.( A) A.( B) (7) ( A) ( A) A ( ) A B B A A B A B B A (8) (. ) (. ) (. ) (. ) Seo Deivtive (9).( A) 0 i.e. ivegee o ul is lwys zeo. (0) ( ) 0 i.e. ul o giet is lwys zeo. () ( A). A A FUNDAMENTAL THEOREMS Giet Theoem:. l Divegee Theoem:. A A. Cul Theoem: A. A. l He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 5

26 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES. Roots o the equtio 5. Alge 5. Theoy o Quti equtios 0 e Sum Pout o the oots I e the oots, the 4.. To i the equtio whose oots e. The equie equtio will e 0 o. 0 o S P 0 whee S is the sum P is the pout o the oot.. Ntue o the oots. Roots o the equtio 0 e The epessio 4 is lle isimit. () I 4 0, oots e el. (i) I 4 0, the oots e el uequl. 4. (ii) I 4 0, the oots e el equl. () I 4 0, the 4 is imgiy. Theeoe oots e imgiy uequl. He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 6

27 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES 5. Logithms Popeties o Logithms ( 0,, m 0, 0 ). y the log y. log. log 0 4. log o log.log log 5. Bse hgig omul log log.log log log 6. log m log m log, log log m log m 7. log m log m O i ptiul log q p 8. log log O i ptiul q q log q q p q log 9. Rules o iies. m m. m m m m. m m 4. m m m 5. m m 6. m 7. 0 He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 7

28 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES Pemuttio 5. Pemuttios Comitios Eh o the ieet gemets whih e me y tkig some o ll o ume o thigs is lle pemuttio. Comitio Eh o the ieet goups o seletios whih e me y tkig some o ll o ume o thigs (iespetive o the oe) is lle omitio. Fumetl Theoem I thee e m wys o oig thig o eh o the m wys thee e ssoite wys o oig seo thig the the totl ume o wys o oig the two thigs will e m. Impott Results () Nume o pemuttios o issimil thigs tke t time. P!! whee! Note tht!.!..! () Nume o pemuttios o issimil thigs tke ll t time. P!!......! () Nume o omitios o issimil thigs tke t time. C! P!!! () Nume o omitios o issimil thigs tke ll t time. C!!! 0! 0! He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 8

29 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES (e) I out o thigs p e etly like o oe ki, q etly like o seo ki etly like o thi ki the est ll ieet, the the ume o pemuttios o thigs tke ll t time! p!. q!.! () I some o ll o thigs e tke t time the the ume o omitios will e C C... C (g) C C (h) C C o. (i) C C C He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 9

30 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES 5.4 Biomil Theoem () Sttemet o iomil theoem o positive egtive itegl ie C C... C C C... C C... C... () Nume o tems mile tem The ume o tems i the epsio o is. I is eve thee will e oly oe mile tem i.e. th. I is o thee will e two mile tems i.e. th Epsio th Ftoiztio Stelig s omul Usig summtio ottio, iomil epsio e witte s y y k 0 k k k Stelig s ppoimtio (o Stelig s omul) is ppoimtio o lge toils. l l whee is vey lge He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 0

31 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES 5.5 Detemits I lie lge the etemit is vlue ssoite with sque mti. The etemit o mti A is eote yet( A ), o A. Fo iste, the etemit o the mti I A I the A e the et( A ) = g h i Popeties e e e h i g i g h g h i () The vlues o etemit is ot ltee y hgig ows ito olums olums ito ows. e.g. y z = y z y z z z () I y two jet ows o two jet olums o etemit e itehge the etemit etis its solute vlue ut hges its sig. e.g. y z = y z y z y z () I y two ows o two olums o etemit e ietil the the etemit vishes. Thus He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om

32 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES () I eh ostituet i y ow o i y olum e multiplie y the sme to the the etemit is multiplie y tht to p p p p q q q q (e) I eh ostituet i y ow o i y olum osists o tems the the etemit e epesse s the sum o etemits. Thus () I oe ow o olum is k times the othe ow o olums espetively the etemit o mti will e 0. e.g. k. k. 0 k. k. k. 0 g k. g i g h i Some si popeties o etemits e:. et( I) I whee I is the T. et( A ) et( A) whee ietity mti. T A is tspose o A.. et( A ) whee A is ivese o A. et( A) 4. Fo sque mties A B o equl size, et( AB) et( A)et( B) 5. et( A) et( A) o mti He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om

33 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES 6. Coi Setio I the Ctesi ooite system the gph o quti equtio o two viles epeset oi setio whih is give y A By Cy D Ey F 0. The oi setios esie y this equtio e lssiie with the isimit D B 4AC i D 0, the equtio epesets ellipse i D 0, A C B 0 speil se o ellipse; i D 0, the equtio epesets pol i D 0 the equtio epesets hypeol, the equtio epesets ile whih is i we lso hve D 0, A C 0, the equtio epesets etgul hypeol Note tht A B e polyomil oeiiets, ot the legths o semi-mjo/mio is s eie i some soues. Coi Equtio Eetiity Semi-ltus Pol equtio Pmeti om setio etum Cile y 0 os, y si Ellipse y e l l eos 0 e os, y si Pol y 4 e l os t, y t Hypeol y e l l eos e t, y se He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om

34 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES 7. Poility Poility The poility p o ouee o evet i system is eie with espet to sttistil esemle o N suh systems. I the Poility esity p N N N systems i the esemle ehiit the evet The poility esity ( u) is eie y the popety tht ( u) u yiels the poility o iig the otiuous vile u i the ge etwee u u u. Me vlue The me vlue o u is eote y u s eie s u pu whee the sum is ove ll possile vlue vluesu o the vile u p is eotes the poility o ouee o the ptiul vlueu.aove eiitio is o isete vile. Fo otiuous vile u, u = u( u) u Dispesios o vie The ispesio o u is eie s to ( u) ( u u ) ( u) p ( u u) whih is equivlet He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 4

35 Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES Joit poility I oth evets A B ou o sigle peome o epeimet, this is lle the itesetio o joit poility o A B, eote s p( A B). Iepeet poility I two evets, A B e iepeet the the joit poility is Mutully elusive p( A B) p( A). P( B) I eithe evet A o evet B o oth evets ou o sigle peome o epeimet this is lle the uio o the evets A B eote s p( A B). I two evets e mutully elusive the the poility o eithe ouig is p( A B) p( A) P( B) Not mutully elusive I the evets e ot mutully elusive the p( A B) p( A) P( B) p( A B) Coitiol poility Coitiol poility is the poility o some evet A, give the ouee o some othe evet B. Coitiol poility is witte p( A / B ), is e "the poility o A, give B". It is eie y p( A B) p( A/ B) p( B) He oie iziks, H.No., G.F, Ji Si, Ne IIT, Huz Khs, New Delhi-6 Phoe: / Bh oie A Istitute o Mthemtis, 8-B/6, Ji Si, Ne IIT Huz Khs, New Delhi-6 Emil: iziks.physis@gmil.om 5

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes.

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes. Bltimoe Couty ARML Tem Fomul Seet, v. (08 Ap 008) By Rymo Ceog POLYNOMIALS Ftoig Diffeee of sques Diffeee of ues Sum of ues Ay itege O iteges ( )( ) 3 3 ( )( ) 3 3 ( )( ) ( )(... ) ( )(... ) Biomil expsio

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAMthsTuto.com . M 6 0 7 0 Leve lk 6 () Show tht 7 is eigevlue of the mti M fi the othe two eigevlues of M. (5) () Fi eigevecto coespoig to the eigevlue 7. *M545A068* (4) Questio cotiue Leve lk *M545A078*

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhsicsAMthsTuto.com 6. The hpeol H hs equtio, whee e costts. The lie L hs equtio m c, whee m c e costts. Leve lk () Give tht L H meet, show tht the -cooites of the poits of itesectio e the oots of the

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , R Pen Towe Rod No Conttos Ae Bistupu Jmshedpu 8 Tel (67)89 www.penlsses.om IIT JEE themtis Ppe II PART III ATHEATICS SECTION I (Totl ks : ) (Single Coet Answe Type) This setion ontins 8 multiple hoie questions.

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y

ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y ALGEBRA Popeties of Asoute Vue Fo e umes : 0, 0 + + Tige Iequity Popeties of Itege Epoets Ris Assume tt m e positive iteges, tt e oegtive, tt eomitos e ozeo. See Appeies B D fo gps fute isussio. + ( )

More information

CHAPTERS 5-7 BOOKLET-2

CHAPTERS 5-7 BOOKLET-2 MATHEMATIS XI HAPTERS -7 BOOKLET- otets: Pge No hpte Bioil Theoe 7-8 hpte Stight Lies 8- hpte 7 Sequees Seies - Bioil Epessio A lgei epessio osistig of two tes with ve o ve sig etwee the is lle ioil epessio

More information

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d.

ENGINEERING MATHEMATICS I QUESTION BANK. Module Using the Leibnitz theorem find the nth derivative of the following : log. e x log d. ENGINEERING MATHEMATICS I QUESTION BANK Modle Usig the Leibit theoem id the th deivtive o the ollowig : b si c e d e Show tht d d! Usig the Leibit theoem pove the ollowig : I si b the pove tht b I si show

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

GEOMETRY. Rectangle Circle Triangle Parallelogram Trapezoid. 1 A = lh A= h b+ Rectangular Prism Sphere Rectangular Pyramid.

GEOMETRY. Rectangle Circle Triangle Parallelogram Trapezoid. 1 A = lh A= h b+ Rectangular Prism Sphere Rectangular Pyramid. ALGEBA Popeties of Asote Ve Fo e mes :, + + Tige Ieqit Popeties of Itege Epoets is Assme tt m e positive iteges, tt e oegtive, tt eomitos e ozeo. See Appeies B D fo gps fte isssio. + ( ) m m m m m m m

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP EXERISE - 0 HEK YOUR GRASP 3. ( + Fo sum of coefficiets put ( + 4 ( + Fo sum of coefficiets put ; ( + ( 4. Give epessio c e ewitte s 7 4 7 7 3 7 7 ( 4 3( 4... 7( 4 7 7 7 3 ( 4... 7( 4 Lst tem ecomes (4

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com PhysicsAdMthsTuto.com Jue 009 7. () Sketch the gph of y, whee >, showig the coodites of the poits whee the gph meets the es. () Leve lk () Solve, >. (c) Fid the set of vlues of fo

More information

Project 3: Using Identities to Rewrite Expressions

Project 3: Using Identities to Rewrite Expressions MAT 5 Projet 3: Usig Idetities to Rewrite Expressios Wldis I lger, equtios tht desrie properties or ptters re ofte lled idetities. Idetities desrie expressio e repled with equl or equivlet expressio tht

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

2002 Quarter 1 Math 172 Final Exam. Review

2002 Quarter 1 Math 172 Final Exam. Review 00 Qute Mth 7 Fil Exm. Review Sectio.. Sets Repesettio of Sets:. Listig the elemets. Set-uilde Nottio Checkig fo Memeship (, ) Compiso of Sets: Equlity (=, ), Susets (, ) Uio ( ) d Itesectio ( ) of Sets

More information

STUDY PACKAGE. Subject : Mathematics Topic : DETERMINANTS & MATRICES Available Online :

STUDY PACKAGE. Subject : Mathematics Topic : DETERMINANTS & MATRICES Available Online : o/u opkj Hkh# tu] ugh vkjehks dke] oi s[k NksM+s qj e/;e eu dj ';kea iq#"k lg ldyi dj] lgs oi vusd] ^uk^ u NksM+s /;s; dks] j?kqj jk[ks VsdAA jp% ekuo /kez iz.ksk l~q# Jh j.knksm+klth egkjkt STUDY PAKAGE

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge og to the ut whh the e fst toue. Thus te sttg ut m e eque to use the fomule tht wee toue peeg ut e.g. tes sttg C mght e epete to use fomule

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Powe Seies Solutios Foeius Metho Septee 6, 7 Powe Seies Solutios Foeius etho L Cetto Mehil Egieeig 5AB Sei i Egieeig Alsis Otoe 6, 7 Outlie Review lst wee Powe seies solutios Geel ppoh Applitio Foeius

More information

5 - Determinants. r r. r r. r r. r s r = + det det det

5 - Determinants. r r. r r. r r. r s r = + det det det 5 - Detemts Assote wth y sque mtx A thee s ume lle the etemt of A eote A o et A. Oe wy to efe the etemt, ths futo fom the set of ll mtes to the set of el umes, s y the followg thee popetes. All mtes elow

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits shoul e emile to the istructor t jmes@richl.eu. Type your me t the top

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e. olutios to RPL/. < F < F< Applig C C + C, we get F < 5 F < F< F, $. f() *, < f( h) f( ) h Lf () lim lim lim h h " h h " h h " f( + h) f( ) h Rf () lim lim lim h h " h h " h h " Lf () Rf (). Hee, differetile

More information

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule).

Time: 2 hours IIT-JEE 2006-MA-1. Section A (Single Option Correct) + is (A) 0 (B) 1 (C) 1 (D) 2. lim (sin x) + x 0. = 1 (using L Hospital s rule). IIT-JEE 6-MA- FIITJEE Solutios to IITJEE 6 Mthemtics Time: hours Note: Questio umber to crries (, -) mrks ech, to crries (5, -) mrks ech, to crries (5, -) mrks ech d to crries (6, ) mrks ech.. For >, lim

More information

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip Pmeti Methods Autoegessive AR) Movig Avege MA) Autoegessive - Movig Avege ARMA) LO-.5, P-3.3 to 3.4 si 3.4.3 3.4.5) / Time Seies Modes Time Seies DT Rdom Sig / Motivtio fo Time Seies Modes Re the esut

More information

Semiconductors materials

Semiconductors materials Semicoductos mteils Elemetl: Goup IV, Si, Ge Biy compouds: III-V (GAs,GSb, ISb, IP,...) IV-VI (PbS, PbSe, PbTe,...) II-VI (CdSe, CdTe,...) Tey d Qutey compouds: G x Al -x As, G x Al -x As y P -y III IV

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com PhysicsAdMthsTuto.com Jue 009 3. Fid the geel solutio of the diffeetil equtio blk d si y ycos si si, d givig you swe i the fom y = f(). (8) 6 *M3544A068* PhysicsAdMthsTuto.com Jue

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com 5. () Show tht d y d PhysicsAdMthsTuto.com Jue 009 4 y = sec = 6sec 4sec. (b) Fid Tylo seies epsio of sec π i scedig powes of 4, up to d 3 π icludig the tem i 4. (6) (4) blk *M3544A08*

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold.

[ 20 ] 1. Inequality exists only between two real numbers (not complex numbers). 2. If a be any real number then one and only one of there hold. [ 0 ]. Iequlity eists oly betwee two rel umbers (ot comple umbers).. If be y rel umber the oe d oly oe of there hold.. If, b 0 the b 0, b 0.. (i) b if b 0 (ii) (iii) (iv) b if b b if either b or b b if

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know P Clls BC Formls, Deiitios, Coepts & Theorems to Kow Deiitio o e : solte Vle: i 0 i 0 e lim Deiitio o Derivtive: h lim h0 h ltertive orm o De o Derivtive: lim Deiitio o Cotiity: is otios t i oly i lim

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

10.3 The Quadratic Formula

10.3 The Quadratic Formula . Te Qudti Fomul We mentioned in te lst setion tt ompleting te sque n e used to solve ny qudti eqution. So we n use it to solve 0. We poeed s follows 0 0 Te lst line of tis we ll te qudti fomul. Te Qudti

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by

AIEEE CBSE ENG A function f from the set of natural numbers to integers defined by AIEEE CBSE ENG. A futio f from the set of turl umers to itegers defied y, whe is odd f (), whe is eve is (A) oe oe ut ot oto (B) oto ut ot oe oe (C) oe oe d oto oth (D) either oe oe or oto. Let z d z e

More information

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best Tylor Polyomils Let f () = e d let p() = 1 + + 1 + 1 6 3 Without usig clcultor, evlute f (1) d p(1) Ok, I m still witig With little effort it is possible to evlute p(1) = 1 + 1 + 1 (144) + 6 1 (178) =

More information

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits Clulus Chet Sheet Limits Deiitios Preise Deiitio : We sy lim L i or every ε > 0 there is δ > 0 suh tht wheever 0 δ L < ε. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig suiietly

More information

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is

SPH3UW Unit 7.5 Snell s Law Page 1 of Total Internal Reflection occurs when the incoming refraction angle is SPH3UW Uit 7.5 Sell s Lw Pge 1 of 7 Notes Physis Tool ox Refrtio is the hge i diretio of wve due to hge i its speed. This is most ommoly see whe wve psses from oe medium to other. Idex of refrtio lso lled

More information

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1. GRAPHING LINEAR EQUATIONS Qudrt II Qudrt I ORDERED PAIR: The first umer i the ordered pir is the -coordite d the secod umer i the ordered pir is the y-coordite. (, ) Origi ( 0, 0 ) _-is Lier Equtios Qudrt

More information

Properties and Formulas

Properties and Formulas Popeties nd Fomuls Cpte 1 Ode of Opetions 1. Pefom ny opetion(s) inside gouping symols. 2. Simplify powes. 3. Multiply nd divide in ode fom left to igt. 4. Add nd sutt in ode fom left to igt. Identity

More information

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1 Numeril Methods Leture 5. Numeril itegrtio dr h. iż. Ktrzy Zkrzewsk, pro. AGH Numeril Methods leture 5 Outlie Trpezoidl rule Multi-segmet trpezoidl rule Rihrdso etrpoltio Romerg's method Simpso's rule

More information

42. (20 pts) Use Fermat s Principle to prove the law of reflection. 0 x c

42. (20 pts) Use Fermat s Principle to prove the law of reflection. 0 x c 4. (0 ts) Use Femt s Piile t ve the lw eleti. A i b 0 x While the light uld tke y th t get m A t B, Femt s Piile sys it will tke the th lest time. We theee lulte the time th s uti the eleti it, d the tke

More information

Calculus Summary Sheet

Calculus Summary Sheet Clculus Summry Sheet Limits Trigoometric Limits: siθ lim θ 0 θ = 1, lim 1 cosθ = 0 θ 0 θ Squeeze Theorem: If f(x) g(x) h(x) if lim f(x) = lim h(x) = L, the lim g(x) = L x x x Ietermite Forms: 0 0,,, 0,

More information

In the case of a third degree polynomial we took the third difference and found them to be constants thus the polynomial difference holds.

In the case of a third degree polynomial we took the third difference and found them to be constants thus the polynomial difference holds. Jso Mille 8 Udestd the piciples, popeties, d techiques elted to sequece, seies, summtio, d coutig sttegies d thei pplictios to polem solvig. Polomil Diffeece Theoem: f is polomil fuctio of degee iff fo

More information

MATHEMATICIA GENERALLI

MATHEMATICIA GENERALLI MATHEMATICIA GENERALLI (y Mhmmed Abbs) Lgithmi Reltis lgb ) lg lg ) b b) lg lg lg m lg m d) lg m. lg m lg m e) lg lg m lg g) lg lg h) f) lg lg f ( ) f ( ). Eetil Reltis ). lge. lge.... lge...!! b) e......

More information

Topic 4 Fourier Series. Today

Topic 4 Fourier Series. Today Topic 4 Fourier Series Toy Wves with repetig uctios Sigl geertor Clssicl guitr Pio Ech istrumet is plyig sigle ote mile C 6Hz) st hrmoic hrmoic 3 r hrmoic 4 th hrmoic 6Hz 5Hz 783Hz 44Hz A sigle ote will

More information

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by

Class Summary. be functions and f( D) , we define the composition of f with g, denoted g f by Clss Summy.5 Eponentil Functions.6 Invese Functions nd Logithms A function f is ule tht ssigns to ech element D ectly one element, clled f( ), in. Fo emple : function not function Given functions f, g:

More information

Generalized Functions in Minkowski Space

Generalized Functions in Minkowski Space Geelize Ftio i Miowi Spe Chiw Ch Agt t, Mthemti Deptmet, The Uiveit of Aizo Cl DeVito Mthemti Deptmet, The Uiveit of Aizo PDF ete with FiePit pffto til veio http://www.fiepit.om . Itoio Peioi ftio e i

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1

Addendum. Addendum. Vector Review. Department of Computer Science and Engineering 1-1 Addedum Addedum Vetor Review Deprtmet of Computer Siee d Egieerig - Coordite Systems Right hded oordite system Addedum y z Deprtmet of Computer Siee d Egieerig - -3 Deprtmet of Computer Siee d Egieerig

More information

Numerical integration

Numerical integration Numeicl itegtio Alyticl itegtio = ( ( t)) ( t) Dt : Result ( s) s [0, t] : ( t) st ode odiy diffeetil equtio Alyticl solutio ot lwys vilble d( ) q( ) = σ = ( d ) : t 0 t = Numeicl itegtio 0 t t 2. t. t

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x

( ) D x ( s) if r s (3) ( ) (6) ( r) = d dr D x SIO 22B, Rudnick dpted fom Dvis III. Single vile sttistics The next few lectues e intended s eview of fundmentl sttistics. The gol is to hve us ll speking the sme lnguge s we move to moe dvnced topics.

More information

BITSAT MATHEMATICS PAPER. If log 0.0( ) log 0.( ) the elogs to the itervl (, ] () (, ] [,+ ). The poit of itersectio of the lie joiig the poits i j k d i+ j+ k with the ple through the poits i+ j k, i

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

Rahul Chacko. IB Mathematics HL Revision Step One

Rahul Chacko. IB Mathematics HL Revision Step One IB Mthemtics HL Revisio Step Oe Rhul Chcko Chpte. Aithmetic sequeces d seies; sum of fiite ithmetic seies; geometic sequeces d seies; sum of fiite d ifiite geometic seies. Sigm ottio. Aithmetic Sequeces

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x): Eigefuctio Epsio: For give fuctio o the iterl the eigefuctio epsio of f(): f ( ) cmm( ) m 1 Eigefuctio Epsio (Geerlized Fourier Series) To determie c s we multiply oth sides y Φ ()r() d itegrte: f ( )

More information

a f(x)dx is divergent.

a f(x)dx is divergent. Mth 250 Exm 2 review. Thursdy Mrh 5. Brig TI 30 lultor but NO NOTES. Emphsis o setios 5.5, 6., 6.2, 6.3, 3.7, 6.6, 8., 8.2, 8.3, prt of 8.4; HW- 2; Q-. Kow for trig futios tht 0.707 2/2 d 0.866 3/2. From

More information

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x

Section 11.5 Notes Page Partial Fraction Decomposition. . You will get: +. Therefore we come to the following: x x Setio Notes Pge Prtil Frtio Deompositio Suppose we were sked to write the followig s sigle frtio: We would eed to get ommo deomitors: You will get: Distributig o top will give you: 8 This simplifies to:

More information

2.Decision Theory of Dependence

2.Decision Theory of Dependence .Deciio Theoy of Depedece Theoy :I et of vecto if thee i uet which i liely depedet the whole et i liely depedet too. Coolly :If the et i liely idepedet y oepty uet of it i liely idepedet. Theoy : Give

More information

EXERCISE a a a 5. + a 15 NEETIIT.COM

EXERCISE a a a 5. + a 15 NEETIIT.COM - Dowlod our droid App. Sigle choice Type Questios EXERCISE -. The first term of A.P. of cosecutive iteger is p +. The sum of (p + ) terms of this series c be expressed s () (p + ) () (p + ) (p + ) ()

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan.

SULIT 3472/2. Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan. SULT 347/ Rumus-umus eikut oleh memtu d mejw sol. Simol-simol yg diei dlh yg is diguk. LGER. 4c x 5. log m log m log 9. T d. m m m 6. log = log m log 0. S d m m 3. 7. log m log m. S, m m logc 4. 8. log.

More information

LEVEL I. ,... if it is known that a 1

LEVEL I. ,... if it is known that a 1 LEVEL I Fid the sum of first terms of the AP, if it is kow tht + 5 + 0 + 5 + 0 + = 5 The iterior gles of polygo re i rithmetic progressio The smllest gle is 0 d the commo differece is 5 Fid the umber of

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg ymmetricl Compoets equece impedces Although the followig focuses o lods, the results pply eqully well to lies, or lies d lods. Red these otes together with sectios.6 d.9 of text. Cosider the -coected lced

More information

except we make f ( x ) arbitrarily large and Relationship between the limit and one-sided limits Properties both exist and c is any number then, Î Î

except we make f ( x ) arbitrarily large and Relationship between the limit and one-sided limits Properties both exist and c is any number then, Î Î Limits Deiitios Preise Deiitio : We sy lim L i Æ or every e > 0 there is > 0 suh tht wheever 0 L < e. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig suiietly lose to (o either

More information

Induction. Induction and Recursion. Induction is a very useful proof technique

Induction. Induction and Recursion. Induction is a very useful proof technique Iductio Iductio is vey useul poo techique Iductio d Recusio CSC-59 Discete Stuctues I compute sciece, iductio is used to pove popeties o lgoithms Iductio d ecusio e closely elted Recusio is desciptio method

More information

Add Maths Formulae List: Form 4 (Update 18/9/08)

Add Maths Formulae List: Form 4 (Update 18/9/08) Add Mths Formule List: Form 4 (Updte 8/9/08) 0 Fuctios Asolute Vlue Fuctio f ( ) f( ), if f( ) 0 f( ), if f( ) < 0 Iverse Fuctio If y f( ), the Rememer: Oject the vlue of Imge the vlue of y or f() f()

More information

Generating Function for

Generating Function for Itetiol Joul of Ltest Tehology i Egieeig, Mgemet & Applied Siee (IJLTEMAS) Volume VI, Issue VIIIS, August 207 ISSN 2278-2540 Geetig Futio fo G spt D. K. Humeddy #, K. Jkmm * # Deptmet of Memtis, Hidu College,

More information

Physics 235 Final Examination December 4, 2006 Solutions

Physics 235 Final Examination December 4, 2006 Solutions Physics 35 Fi Emitio Decembe, 6 Soutios.. Fist coside the two u quks. They e idetic spi ½ ptices, so the tot spi c be eithe o. The Pui Picipe equies tht the ove wvefuctio be echge tisymmetic. Sice the

More information

2a a a 2a 4a. 3a/2 f(x) dx a/2 = 6i) Equation of plane OAB is r = λa + µb. Since C lies on the plane OAB, c can be expressed as c = λa +

2a a a 2a 4a. 3a/2 f(x) dx a/2 = 6i) Equation of plane OAB is r = λa + µb. Since C lies on the plane OAB, c can be expressed as c = λa + -6-5 - - - - 5 6 - - - - - - / GCE A Level H Mths Nov Pper i) z + z 6 5 + z 9 From GC, poit of itersectio ( 8, 9 6, 5 ). z + z 6 5 9 From GC, there is o solutio. So p, q, r hve o commo poits of itersectio.

More information

Generalization of Fibonacci Sequence. in Case of Four Sequences

Generalization of Fibonacci Sequence. in Case of Four Sequences It. J. Cotem. Mth. iees Vol. 8 03 o. 9 4-46 HIKARI Lt www.m-hikri.om Geerliztio of Fioi euee i Cse of Four euees jy Hre Govermet College Meleswr M. P. Ii Bijer igh hool of tuies i Mthemtis Vikrm Uiversity

More information

Multiplicative Versions of Infinitesimal Calculus

Multiplicative Versions of Infinitesimal Calculus Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information

ROUTH-HURWITZ CRITERION

ROUTH-HURWITZ CRITERION Automti Cotrol Sytem, Deprtmet of Mehtroi Egieerig, Germ Jordi Uiverity Routh-Hurwitz Criterio ite.google.om/ite/ziydmoud 7 ROUTH-HURWITZ CRITERION The Routh-Hurwitz riterio i lytil proedure for determiig

More information

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017 Fist Issued Septembe 07 Fo the ew specifictios fo fist techig fom Septembe 07 SPECIMEN MATERIAL Fomule d Sttisticl Tbles fo A-level Mthemtics AS MATHEMATICS (7356) A-LEVEL MATHEMATICS (7357) AS FURTHER

More information

THEORY OF EQUATIONS OBJECTIVE PROBLEMS. If the eqution x 6x 0 0 ) - ) 4) -. If the sum of two oots of the eqution k is -48 ) 6 ) 48 4) 4. If the poduct of two oots of 4 ) -4 ) 4) - 4. If one oot of is

More information

1.3 Continuous Functions and Riemann Sums

1.3 Continuous Functions and Riemann Sums mth riem sums, prt 0 Cotiuous Fuctios d Riem Sums I Exmple we sw tht lim Lower() = lim Upper() for the fuctio!! f (x) = + x o [0, ] This is o ccidet It is exmple of the followig theorem THEOREM Let f be

More information

Properties of Addition and Multiplication. For Addition Name of Property For Multiplication

Properties of Addition and Multiplication. For Addition Name of Property For Multiplication Nottio d Sols Tpes of Nues Ntul Nues (Coutig Nues): N = {,, 3, 4, 5, 6,...} Wole Nues: W = { 0,,, 3, 4, 5, 6,...} Iteges: Z = {..., 4, 3,,, 0,,, 3, 4,...} Rtiol Nues: tiol ue is ue tt e witte i te fo of

More information

Lecture 10. Solution of Nonlinear Equations - II

Lecture 10. Solution of Nonlinear Equations - II Fied point Poblems Lectue Solution o Nonline Equtions - II Given unction g : R R, vlue such tht gis clled ied point o the unction g, since is unchnged when g is pplied to it. Whees with nonline eqution

More information

Hypergeometric Functions and Lucas Numbers

Hypergeometric Functions and Lucas Numbers IOSR Jourl of Mthetis (IOSR-JM) ISSN: 78-78. Volue Issue (Sep-Ot. ) PP - Hypergeoetri utios d us Nuers P. Rjhow At Kur Bor Deprtet of Mthetis Guhti Uiversity Guwhti-78Idi Astrt: The i purpose of this pper

More information

MA123, Chapter 9: Computing some integrals (pp )

MA123, Chapter 9: Computing some integrals (pp ) MA13, Chpter 9: Computig some itegrls (pp. 189-05) Dte: Chpter Gols: Uderstd how to use bsic summtio formuls to evlute more complex sums. Uderstd how to compute its of rtiol fuctios t ifiity. Uderstd how

More information

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4

Data Compression Techniques (Spring 2012) Model Solutions for Exercise 4 58487 Dt Compressio Tehiques (Sprig 0) Moel Solutios for Exerise 4 If you hve y fee or orretios, plese ott jro.lo t s.helsii.fi.. Prolem: Let T = Σ = {,,, }. Eoe T usig ptive Huffm oig. Solutio: R 4 U

More information

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits

Calculus Cheat Sheet. except we make f ( x ) arbitrarily large and. Relationship between the limit and one-sided limits Clulus Chet Sheet Limits Deiitios Preise Deiitio : We sy lim ( ) L i Æ or every e > 0 there is > 0 suh tht wheever 0 L < e. < < the Workig Deiitio : We sy lim L i we mke ( ) s lose to L s we wt y tkig

More information

For this purpose, we need the following result:

For this purpose, we need the following result: 9 Lectue Sigulities of omplex Fuctio A poit is clled sigulity of fuctio f ( z ) if f ( z ) is ot lytic t the poit. A sigulity is clled isolted sigulity of f ( z ), if f ( z ) is lytic i some puctued disk

More information

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a

is continuous at x 2 and g(x) 2. Oil spilled from a ruptured tanker spreads in a circle whose area increases at a . Cosider two fuctios f () d g () defied o itervl I cotiig. f () is cotiuous t d g() is discotiuous t. Which of the followig is true bout fuctios f g d f g, the sum d the product of f d g, respectively?

More information