ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y

Size: px
Start display at page:

Download "ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y"

Transcription

1 ALGEBRA Popeties of Asoute Vue Fo e umes : 0, Tige Iequity Popeties of Itege Epoets Ris Assume tt m e positive iteges, tt e oegtive, tt eomitos e ozeo. See Appeies B D fo gps fute isussio. + ( ) m m m m m m m m m m m Spei Pout Fomus ( A B) ( A+ B) A B + + A+ B A AB B + A B A AB B ( A+ B) A + AB+ AB + B A B A A B AB B + Ftoig Spei Biomis A B A B A B ( + ) A B A B A AB B A + B A+ B A AB B Quti Fomu Te soutios of te equtio e: ± 4 Diste Fomu Te iste etwee two poits, y Mipoit Fomu + y + y, Sope of Lie y y m ( ) (, y) is: ( ) + ( ) y y Hoizot ies y ve sope 0. Veti ies ve uefie sope. Pe Pepeiu Lies Give ie wit sope m: sope of pe ie m sope of pepeiu ie m Foms of Equtios of Lie St Fom: + y Sope-Iteept Fom: y m +, wee m is te sope is te y-iteept ( ) is poit o te ie Poit-Sope Fom: y y m sope, y, wee m is te Popeties of Logitms Let,,, y e positive e umes wit, et e y e ume. See Appei B fo gps fute isussio. og y og 0 og og og ( ) og ( y) og + og y og og og y og ( ) og og og og y e equivet y Cge of se fomu

2 GEOMETRY A e, C iumfeee, SA sufe e o te e, V voume Retge Cie Tige A w A p C p A w Peogm Tpezoi A A + Heo, s Fomu: ( )( ) A s s s s wee s + + Retgu Pism Spee Retgu Pymi V w SA + w + w V 4 π SA 4p V w w w V Rigt Cyie Rigt Ciu Cyie Coe Ae of Bse V p SA p + p V π SA π + π + Tigoometi Hypeoi Futios: Defiitios, Gps, Ietities See Appei C.

3 Eipse CONIC SECTIONS Po Hypeo Defiitio of Limit Let f e futio efie o ope itev otiig, eept possiy t itsef. We sy tt te imit of f s ppoes is L, wite im f L, if fo evey ume e > 0 tee is ume > 0 su tt f L < ε weeve stisfies 0 < < δ. Bsi Limit Lws Sum Lw: + + im f g im f im g Diffeee Lw: im f g im f im g Costt Mutipe Lw: im kf kim f Pout Lw: ( k, ) im f g im f im g Quotiet Lw: f im f im, im g g povie 0 im g Let, > 0 wit. Cete: ( k, ) Mjo is egt: Mio is egt: St fom of equtio:. ( ) y k + mjo is is oizot ( ) y k. + mjo is is veti Foi: o mjo is, uits wy fom te ete, wee - Dieti ( k, ) Let p 0. Vete: ( k, ) St fom of equtio: ( ). 4 p y k vetiy oiete : k, + p Dieti: y k p ( ). y k 4 p oizoty oiete : + p, k Dieti: p LIMITS Te Squeeze Teoem If g f otiig, eept possiy t itsef, if img im L, te im f L s we. fo i some ope itev Cotiuity t Poit Give futio f efie o ope itev otiig, we sy f is otiuous t if im f f. L Hôpit s Rue Suppose f g e iffeetie t poits of ope itev I otiig, tt g 0 fo I eept possiy t. Suppose fute tt eite im f 0 im g 0 o Te Vete ± ± im f im g. ( k, ) f f im im, g g Vete Let, > 0. Cete: ( k, ) St fom of equtio: ( ) ( y k). foi e ige oizoty Asymptotes: y k ± ( ) ( y k) ( ). foi e ige vetiy Asymptotes: y k ± ( ) Foi: uits wy fom te ete, wee + Veties: uits wy fom te ete ssumig te imit o te igt is e ume o o -.

4 DERIVATIVES Te Deivtive of Futio Te eivtive of f, eote f, is te futio wose vue t te poit is Eemety Diffeetitio Rues Costt Rue: k 0 Costt Mutipe Rue: kf k f ( ) Sum Rue: f + g f g + Diffeee Rue: f + f f im, 0 povie te imit eists. f g f g Deivtives of Epoeti Logitmi Futios e e Pout Rue: f g f g f + g ( ) Quotiet Rue: f g Powe Rue: Ci Rue: ( ) ( og ) g f g f g f ( g ) f g g Deivtives of Tigoometi Futios ( si) os ( s)s ot ( os)si ( se) se t ( t) se ( ot)s Deivtives of Ivese Tigoometi Futios si os ( t ) + s se ( ot ) + Deivtives of Hypeoi Futios ( si ) os ( s )s ot ( os ) si ( se )se t ( t ) se ( ot )s

5 Deivtives of Ivese Hypeoi Futios si + ( os ), > ( t ), < s + ( se ), 0< < ( ot ), > Te Deivtive Rue fo Ivese Futios If futio f is iffeetie o itev (, ), if f 0 fo (, ), te f ot eists is iffeetie o te imge of te itev (, ) ue f, eote s f ((, ) ) i te fomu eow. Fute, if,, te f f, f if f (, ), te f f f. ( ) Te Me Vue Teoem If f is otiuous o te ose itev, iffeetie o,,, fo wi [ ] te tee is t est oe poit f f f ( ). INTEGRATION Popeties of te Defiite Iteg Give te itege futios f g o te itev, [ ] y ostt k, te foowig popeties o.. f 0. f f. k k 4. kf ( ) k f ± ± 5. f g f g Te Fumet Teoem of Cuus Pt I Give otiuous futio f o itev I fie poit I, efie te futio F o I y F f () t t. Te F f ( ) fo I. Te Sustitutio Rue If u g te itev I, if f is otiuous o I, te is iffeetie futio wose ge is ( ) f g g f u u. Hee, if F is tieivtive of f o I, f ( g ) g ( ) F( g )+ C. +, ssumig 6. f f f e iteg eists o [, ], te 7. If f g f g. 8. If m mi f M m f, te ( ) m f M. Pt II If f is otiuous futio o te itev, if F is y tieivtive of f o,, [ ] [ ] te f F F. Itegtio y Pts Give iffeetie futios f g, f g f g g f. If we et u f v g, te u f v g esiy ememee iffeeti fom te equtio tkes o te moe uv uv vu.

6 SEQUENCES AND SERIES Summtio Fts Fomus Costt Rue fo Fiite Sums:,fo y ostt Costt Mutipe Rue fo Fiite Sums:,fo y ostt i i Sum/Diffeee Rue fo Fiite Sums: ( ± ) ± i i i i Sum of te Fist Positive Iteges: + i Sum of te Fist Sques: + i 6 ( + ) Sum of te Fist Cues: ( + ) i 4 Geometi Seies Fo geometi sequee Pti Sum: s Ifiite Sum:, if 0,, if < Biomi Seies Fo y e ume m - < <, { } wit ommo tio : m m ( + ) 0 mm ( ) mm ( ) ( m ) + m + +!! m( m) ( m + ) + +! wee m m m mm m 0,,,! m mm m +! fo + Tyo Seies Mui Seies Give futio f wit eivtives of oes tougout ope itev otiig, te powe seies f f f ( ) f + f ( )+ ( ) + (!!! 0 ) ( ) + is e te Tyo seies geete y f out. Te Tyo seies geete y f out 0 is so kow s te Mui seies geete y f.

GEOMETRY. Rectangle Circle Triangle Parallelogram Trapezoid. 1 A = lh A= h b+ Rectangular Prism Sphere Rectangular Pyramid.

GEOMETRY. Rectangle Circle Triangle Parallelogram Trapezoid. 1 A = lh A= h b+ Rectangular Prism Sphere Rectangular Pyramid. ALGEBA Popeties of Asote Ve Fo e mes :, + + Tige Ieqit Popeties of Itege Epoets is Assme tt m e positive iteges, tt e oegtive, tt eomitos e ozeo. See Appeies B D fo gps fte isssio. + ( ) m m m m m m m

More information

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes.

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes. Bltimoe Couty ARML Tem Fomul Seet, v. (08 Ap 008) By Rymo Ceog POLYNOMIALS Ftoig Diffeee of sques Diffeee of ues Sum of ues Ay itege O iteges ( )( ) 3 3 ( )( ) 3 3 ( )( ) ( )(... ) ( )(... ) Biomil expsio

More information

Properties of Addition and Multiplication. For Addition Name of Property For Multiplication

Properties of Addition and Multiplication. For Addition Name of Property For Multiplication Nottio d Sols Tpes of Nues Ntul Nues (Coutig Nues): N = {,, 3, 4, 5, 6,...} Wole Nues: W = { 0,,, 3, 4, 5, 6,...} Iteges: Z = {..., 4, 3,,, 0,,, 3, 4,...} Rtiol Nues: tiol ue is ue tt e witte i te fo of

More information

PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO SO THEN ENSURE THAT YOU HAVE THE CORRECT EXAM PAPER

PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO SO THEN ENSURE THAT YOU HAVE THE CORRECT EXAM PAPER OLLSCOIL NA ÉIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA OLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK 4/5 Autumn Suppement 5 MS Integ Ccuus nd Diffeenti Equtions Pof. P.J. Rippon

More information

Properties and Formulas

Properties and Formulas Popeties nd Fomuls Cpte 1 Ode of Opetions 1. Pefom ny opetion(s) inside gouping symols. 2. Simplify powes. 3. Multiply nd divide in ode fom left to igt. 4. Add nd sutt in ode fom left to igt. Identity

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhsicsAMthsTuto.com 6. The hpeol H hs equtio, whee e costts. The lie L hs equtio m c, whee m c e costts. Leve lk () Give tht L H meet, show tht the -cooites of the poits of itesectio e the oots of the

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

STATICS. CENTROIDS OF MASSES, AREAS, LENGTHS, AND VOLUMES The following formulas are for discrete masses, areas, lengths, and volumes: r c

STATICS. CENTROIDS OF MASSES, AREAS, LENGTHS, AND VOLUMES The following formulas are for discrete masses, areas, lengths, and volumes: r c STTS FORE foe is veto qutit. t is defied we its () mgitude, () oit of litio, d () dietio e kow. Te veto fom of foe is F F i F j RESULTNT (TWO DMENSONS) Te esultt, F, of foes wit omoets F,i d F,i s te mgitude

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAMthsTuto.com . M 6 0 7 0 Leve lk 6 () Show tht 7 is eigevlue of the mti M fi the othe two eigevlues of M. (5) () Fi eigevecto coespoig to the eigevlue 7. *M545A068* (4) Questio cotiue Leve lk *M545A078*

More information

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right: Week 1 Notes: 1) Riem Sum Aim: Compute Are Uder Grph Suppose we wt to fid out the re of grph, like the oe o the right: We wt to kow the re of the red re. Here re some wys to pproximte the re: We cut the

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge og to the ut whh the e fst toue. Thus te sttg ut m e eque to use the fomule tht wee toue peeg ut e.g. tes sttg C mght e epete to use fomule

More information

Area. Ⅱ Rectangles. Ⅲ Parallelograms A. Ⅳ Triangles. ABCD=a 2 The area of a square of side a is a 2

Area. Ⅱ Rectangles. Ⅲ Parallelograms A. Ⅳ Triangles. ABCD=a 2 The area of a square of side a is a 2 Ⅰ Sques e Letue: iu ng Mtemtis dution oundtion Pesident Wen-Hsien SUN Ⅱ Retngles = Te e of sque of side is Ⅲ Pllelogms = Te e of etngle of sides nd is = Te e of pllelogm is te podut of te lengt of one

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

CHAPTERS 5-7 BOOKLET-2

CHAPTERS 5-7 BOOKLET-2 MATHEMATIS XI HAPTERS -7 BOOKLET- otets: Pge No hpte Bioil Theoe 7-8 hpte Stight Lies 8- hpte 7 Sequees Seies - Bioil Epessio A lgei epessio osistig of two tes with ve o ve sig etwee the is lle ioil epessio

More information

Semiconductors materials

Semiconductors materials Semicoductos mteils Elemetl: Goup IV, Si, Ge Biy compouds: III-V (GAs,GSb, ISb, IP,...) IV-VI (PbS, PbSe, PbTe,...) II-VI (CdSe, CdTe,...) Tey d Qutey compouds: G x Al -x As, G x Al -x As y P -y III IV

More information

Advanced Higher Formula List

Advanced Higher Formula List Advaced Highe Fomula List Note: o fomulae give i eam emembe eveythig! Uit Biomial Theoem Factoial! ( ) ( ) Biomial Coefficiet C!! ( )! Symmety Idetity Khayyam-Pascal Idetity Biomial Theoem ( y) C y 0 0

More information

Negative Exponent a n = 1 a n, where a 0. Power of a Power Property ( a m ) n = a mn. Rational Exponents =

Negative Exponent a n = 1 a n, where a 0. Power of a Power Property ( a m ) n = a mn. Rational Exponents = Refeece Popetie Popetie of Expoet Let a ad b be eal umbe ad let m ad be atioal umbe. Zeo Expoet a 0 = 1, wee a 0 Quotiet of Powe Popety a m a = am, wee a 0 Powe of a Quotiet Popety ( a b m, wee b 0 b)

More information

Divide-and-Conquer. Divide-and-Conquer 1

Divide-and-Conquer. Divide-and-Conquer 1 Divide-d-Coquer 7 9 4 4 7 9 7 7 9 4 4 9 7 7 9 9 4 4 Divide-d-Coquer 1 Outie d Redig Divide-d-coquer prdigm 5. Review Merge-sort 4.1.1 Recurrece Equtios 5..1 tertive sustitutio Recursio trees Guess-d-test

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e. olutios to RPL/. < F < F< Applig C C + C, we get F < 5 F < F< F, $. f() *, < f( h) f( ) h Lf () lim lim lim h h " h h " h h " f( + h) f( ) h Rf () lim lim lim h h " h h " h h " Lf () Rf (). Hee, differetile

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES fiziks

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES fiziks Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES iziks Foum o CSIR-UGC JRF/NET, GATE, IIT-JAM/IIS, JEST, TIFR GRE i PHYSICAL SCIENCES Bsi Mthemtis Fomul Sheet o Physil Siees He oie

More information

Physics 235 Final Examination December 4, 2006 Solutions

Physics 235 Final Examination December 4, 2006 Solutions Physics 35 Fi Emitio Decembe, 6 Soutios.. Fist coside the two u quks. They e idetic spi ½ ptices, so the tot spi c be eithe o. The Pui Picipe equies tht the ove wvefuctio be echge tisymmetic. Sice the

More information

Riemann Integral Oct 31, such that

Riemann Integral Oct 31, such that Riem Itegrl Ot 31, 2007 Itegrtio of Step Futios A prtitio P of [, ] is olletio {x k } k=0 suh tht = x 0 < x 1 < < x 1 < x =. More suitly, prtitio is fiite suset of [, ] otiig d. It is helpful to thik of

More information

Lacunary Almost Summability in Certain Linear Topological Spaces

Lacunary Almost Summability in Certain Linear Topological Spaces BULLETIN of te MLYSİN MTHEMTİCL SCİENCES SOCİETY Bull. Malays. Mat. Sci. Soc. (2) 27 (2004), 27 223 Lacuay lost Suability i Cetai Liea Topological Spaces BÜNYMIN YDIN Cuuiyet Uivesity, Facutly of Educatio,

More information

Things I Should Know In Calculus Class

Things I Should Know In Calculus Class Thigs I Should Kow I Clculus Clss Qudrtic Formul = 4 ± c Pythgore Idetities si cos t sec cot csc + = + = + = Agle sum d differece formuls ( ) ( ) si ± y = si cos y± cos si y cos ± y = cos cos ym si si

More information

If a is any non zero real or imaginary number and m is the positive integer, then a...

If a is any non zero real or imaginary number and m is the positive integer, then a... Idices d Surds.. Defiitio of Idices. If is o ero re or igir uer d is the positive iteger the...... ties. Here is ced the se d the ide power or epoet... Lws of Idices. 0 0 0. where d re rtio uers where

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com PhysicsAdMthsTuto.com Jue 009 7. () Sketch the gph of y, whee >, showig the coodites of the poits whee the gph meets the es. () Leve lk () Solve, >. (c) Fid the set of vlues of fo

More information

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip Pmeti Methods Autoegessive AR) Movig Avege MA) Autoegessive - Movig Avege ARMA) LO-.5, P-3.3 to 3.4 si 3.4.3 3.4.5) / Time Seies Modes Time Seies DT Rdom Sig / Motivtio fo Time Seies Modes Re the esut

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Powe Seies Solutios Foeius Metho Septee 6, 7 Powe Seies Solutios Foeius etho L Cetto Mehil Egieeig 5AB Sei i Egieeig Alsis Otoe 6, 7 Outlie Review lst wee Powe seies solutios Geel ppoh Applitio Foeius

More information

Limits and an Introduction to Calculus

Limits and an Introduction to Calculus Nme Chpter Limits d Itroductio to Clculus Sectio. Itroductio to Limits Objective: I this lesso ou lered how to estimte limits d use properties d opertios of limits. I. The Limit Cocept d Defiitio of Limit

More information

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B. Review Sheet: Chpter Cotet: Essetil Clculus, Erly Trscedetls, Jmes Stewrt, 007 Chpter : Fuctios d Limits Cocepts, Defiitios, Lws, Theorems: A fuctio, f, is rule tht ssigs to ech elemet i set A ectly oe

More information

EXPONENTS AND LOGARITHMS

EXPONENTS AND LOGARITHMS 978--07-6- Mthemtis Stdrd Level for IB Diplom Eerpt EXPONENTS AND LOGARITHMS WHAT YOU NEED TO KNOW The rules of epoets: m = m+ m = m ( m ) = m m m = = () = The reltioship etwee epoets d rithms: = g where

More information

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Using Difference Equations to Generalize Results for Periodic Nested Radicals Usig Diffeece Equatios to Geealize Results fo Peiodic Nested Radicals Chis Lyd Uivesity of Rhode Islad, Depatmet of Mathematics South Kigsto, Rhode Islad 2 2 2 2 2 2 2 π = + + +... Vieta (593) 2 2 2 =

More information

12.2 The Definite Integrals (5.2)

12.2 The Definite Integrals (5.2) Course: Aelerted Egieerig Clulus I Istrutor: Mihel Medvisky. The Defiite Itegrls 5. Def: Let fx e defied o itervl [,]. Divide [,] ito suitervls of equl width Δx, so x, x + Δx, x + jδx, x. Let x j j e ritrry

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

MA 1201 Engineering Mathematics MO/2017 Tutorial Sheet No. 2

MA 1201 Engineering Mathematics MO/2017 Tutorial Sheet No. 2 BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI DEPARTMENT OF MATHEMATICS MA Egieeig Matheatis MO/7 Tutoia Sheet No. Modue IV:. Defie Beta futio ad Gaa futio.. Pove that,,,. Pove that, d. Pove that. & whee

More information

LIMITS AND DERIVATIVES

LIMITS AND DERIVATIVES Capter LIMITS AND DERIVATIVES. Overview.. Limits of a fuctio Let f be a fuctio defied i a domai wic we take to be a iterval, say, I. We sall study te cocept of it of f at a poit a i I. We say f ( ) is

More information

( ) dx ; f ( x ) is height and Δx is

( ) dx ; f ( x ) is height and Δx is Mth : 6.3 Defiite Itegrls from Riem Sums We just sw tht the exct re ouded y cotiuous fuctio f d the x xis o the itervl x, ws give s A = lim A exct RAM, where is the umer of rectgles i the Rectgulr Approximtio

More information

Technical Report: Bessel Filter Analysis

Technical Report: Bessel Filter Analysis Sasa Mahmoodi 1 Techical Repot: Bessel Filte Aalysis 1 School of Electoics ad Compute Sciece, Buildig 1, Southampto Uivesity, Southampto, S17 1BJ, UK, Email: sm3@ecs.soto.ac.uk I this techical epot, we

More information

Sequences and series Mixed exercise 3

Sequences and series Mixed exercise 3 eqees seies Mixe exeise Let = fist tem = ommo tio. tem = 7 = 7 () 6th tem = 8 = 8 () Eqtio () Eqtio (): 8 7 8 7 8 7 m to te tems 0 o 0 0 60.7 60.7 79.089 Diffeee betwee 0 = 8. 79.089 =.6 ( s.f.) 0 The

More information

LIMITS AND DERIVATIVES NCERT

LIMITS AND DERIVATIVES NCERT . Overview.. Limits of a fuctio Let f be a fuctio defied i a domai wic we take to be a iterval, say, I. We sall study te cocept of it of f at a poit a i I. We say f ( ) is te epected value of f at a give

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com PhysicsAdMthsTuto.com Jue 009 3. Fid the geel solutio of the diffeetil equtio blk d si y ycos si si, d givig you swe i the fom y = f(). (8) 6 *M3544A068* PhysicsAdMthsTuto.com Jue

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

Numerical integration

Numerical integration Numeicl itegtio Alyticl itegtio = ( ( t)) ( t) Dt : Result ( s) s [0, t] : ( t) st ode odiy diffeetil equtio Alyticl solutio ot lwys vilble d( ) q( ) = σ = ( d ) : t 0 t = Numeicl itegtio 0 t t 2. t. t

More information

Appendix D: Formulas, Properties and Measurements

Appendix D: Formulas, Properties and Measurements Appendi D: Fomul, Popetie nd Meuement Review of Alge, Geomet, nd Tigonomet Unit of Meuement D. REVIEW OF ALGEBRA, GEOMETRY, AND TRIGONOMETRY Alge Popetie of Logitm Geomet Plne Anltic Geomet Solid Anltic

More information

Raytracing: Intersections. Backward Tracing. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method

Raytracing: Intersections. Backward Tracing. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method Rtig: Itesetios Bkwd Tig COC 4328/5327 ott A. Kig Bsi R Cstig iels i see hoot fom the ee though the iel. Fid losest -ojet itesetio. Get olo t itesetio Bsi R Cstig iels i see hoot fom the ee though the

More information

POWER SERIES R. E. SHOWALTER

POWER SERIES R. E. SHOWALTER POWER SERIES R. E. SHOWALTER. sequeces We deote by lim = tht the limit of the sequece { } is the umber. By this we me tht for y ε > 0 there is iteger N such tht < ε for ll itegers N. This mkes precise

More information

GEOMETRY Properties of lines

GEOMETRY Properties of lines www.sscexmtuto.com GEOMETRY Popeties of lines Intesecting Lines nd ngles If two lines intesect t point, ten opposite ngles e clled veticl ngles nd tey ve te sme mesue. Pependicul Lines n ngle tt mesues

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers

Mathematical Notations and Symbols xi. Contents: 1. Symbols. 2. Functions. 3. Set Notations. 4. Vectors and Matrices. 5. Constants and Numbers Mthemticl Nottios d Symbols i MATHEMATICAL NOTATIONS AND SYMBOLS Cotets:. Symbols. Fuctios 3. Set Nottios 4. Vectors d Mtrices 5. Costts d Numbers ii Mthemticl Nottios d Symbols SYMBOLS = {,,3,... } set

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTuto.com 5. () Show tht d y d PhysicsAdMthsTuto.com Jue 009 4 y = sec = 6sec 4sec. (b) Fid Tylo seies epsio of sec π i scedig powes of 4, up to d 3 π icludig the tem i 4. (6) (4) blk *M3544A08*

More information

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i Mth 06 Clculus Sec. 5.: The Defiite Itegrl I. Riem Sums A. Def : Give y=f(x):. Let f e defied o closed itervl[,].. Prtitio [,] ito suitervls[x (i-),x i ] of legth Δx i = x i -x (i-). Let P deote the prtitio

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

CHAPTER 11 Limits and an Introduction to Calculus

CHAPTER 11 Limits and an Introduction to Calculus CHAPTER Limits ad a Itroductio to Calculus Sectio. Itroductio to Limits................... 50 Sectio. Teciques for Evaluatig Limits............. 5 Sectio. Te Taget Lie Problem................. 50 Sectio.

More information

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi d Iteatioal Cofeece o Electical Compute Egieeig ad Electoics (ICECEE 5 Mappig adius of egula Fuctio ad Cete of Covex egio Dua Wexi School of Applied Mathematics Beijig Nomal Uivesity Zhuhai Chia 363463@qqcom

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Important Facts You Need To Know/Review:

Important Facts You Need To Know/Review: Importt Fcts You Need To Kow/Review: Clculus: If fuctio is cotiuous o itervl I, the its grph is coected o I If f is cotiuous, d lim g Emple: lim eists, the lim lim f g f g d lim cos cos lim 3 si lim, t

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

BINOMIAL THEOREM & ITS SIMPLE APPLICATION

BINOMIAL THEOREM & ITS SIMPLE APPLICATION Etei lasses, Uit No. 0, 0, Vadhma Rig Road Plaza, Vikas Pui Et., Oute Rig Road New Delhi 0 08, Ph. : 9690, 87 MB Sllabus : BINOMIAL THEOREM & ITS SIMPLE APPLIATION Biomia Theoem fo a positive itegal ide;

More information

ANSWER KEY PHYSICS. Workdone X

ANSWER KEY PHYSICS. Workdone X ANSWER KEY PHYSICS 6 6 6 7 7 7 9 9 9 0 0 0 CHEMISTRY 6 6 6 7 7 7 9 9 9 0 0 60 MATHEMATICS 6 66 7 76 6 6 67 7 77 7 6 6 7 7 6 69 7 79 9 6 70 7 0 90 PHYSICS F L l. l A Y l A ;( A R L L A. W = (/ lod etesio

More information

D Properties and Measurement

D Properties and Measurement APPENDIX D. Review of Alge, Geomet, nd Tigonomet A D Popetie nd Meuement D. Review of Alge, Geomet, nd Tigonomet Alge Popetie of Logitm Geomet Plne Anltic Geomet Solid Anltic Geomet Tigonomet Li of Function

More information

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve)

x a y n + b = 1 0<b a, n > 0 (1.1) x 1 - a y = b 0<b a, n > 0 (1.1') b n sin 2 + cos 2 = 1 x n = = cos 2 6 Superellipse (Lamé curve) 6 Supeellipse (Lmé cuve) 6. Equtios of supeellipse A supeellipse (hoizotlly log) is epessed s follows. Implicit Equtio y + b 0 0 (.) Eplicit Equtio y b - 0 0 (.') Whe 3, b, the supeellipses fo

More information

3.3 Rules for Differentiation Calculus. Drum Roll please [In a Deep Announcer Voice] And now the moment YOU VE ALL been waiting for

3.3 Rules for Differentiation Calculus. Drum Roll please [In a Deep Announcer Voice] And now the moment YOU VE ALL been waiting for . Rules or Dieretiatio Calculus. RULES FOR DIFFERENTIATION Drum Roll please [I a Deep Aoucer Voice] A ow the momet YOU VE ALL bee waitig or Rule #1 Derivative o a Costat Fuctio I c is a costat value, the

More information

Mathematical Notation Math Calculus & Analytic Geometry I

Mathematical Notation Math Calculus & Analytic Geometry I Mthemticl Nottio Mth - Clculus & Alytic Geometry I Nme : Use Wor or WorPerect to recrete the ollowig ocumets. Ech rticle is worth poits c e prite give to the istructor or emile to the istructor t jmes@richl.eu.

More information

The Discrete Fourier Transform

The Discrete Fourier Transform (7) The Discete Fouie Tasfom The Discete Fouie Tasfom hat is Discete Fouie Tasfom (DFT)? (ote: It s ot DTFT discete-time Fouie tasfom) A liea tasfomatio (mati) Samples of the Fouie tasfom (DTFT) of a apeiodic

More information

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations

M5. LTI Systems Described by Linear Constant Coefficient Difference Equations 5. LTI Systes Descied y Lie Costt Coefficiet Diffeece Equtios Redig teil: p.34-4, 245-253 3/22/2 I. Discete-Tie Sigls d Systes Up til ow we itoduced the Fouie d -tsfos d thei popeties with oly ief peview

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Fobeius ethod pplied to Bessel s Equtio Octobe, 7 Fobeius ethod pplied to Bessel s Equtio L Cetto Mechicl Egieeig 5B Sei i Egieeig lsis Octobe, 7 Outlie Review idte Review lst lectue Powe seies solutios/fobeius

More information

Limit of a function:

Limit of a function: - Limit of fuctio: We sy tht f ( ) eists d is equl with (rel) umer L if f( ) gets s close s we wt to L if is close eough to (This defiitio c e geerlized for L y syig tht f( ) ecomes s lrge (or s lrge egtive

More information

Chapter 1 Functions and Graphs

Chapter 1 Functions and Graphs Capte Functions and Gaps Section.... 6 7. 6 8 8 6. 6 6 8 8.... 6.. 6. n n n n n n n 6 n 6 n n 7. 8 7 7..8..8 8.. 8. a b ± ± 6 c ± 6 ± 8 8 o 8 6. 8y 8y 7 8y y 8y y 8 o y y. 7 7 o 7 7 Capte : Functions and

More information

MTH 146 Class 16 Notes

MTH 146 Class 16 Notes MTH 46 Clss 6 Notes 0.4- Cotiued Motivtio: We ow cosider the rc legth of polr curve. Suppose we wish to fid the legth of polr curve curve i terms of prmetric equtios s: r f where b. We c view the cos si

More information

A Study on the Bases of Space of Vector Valued Entire Multiple Dirichlet Series

A Study on the Bases of Space of Vector Valued Entire Multiple Dirichlet Series A Study o te Bses of Spce of Vecto Vued tie Mutipe Diicet Seies Mustq Si A Hussei d Nge R Nge * Deptet of Mtetics Coege of Sciece Uivesity of Mustsiy Bgdd Iq Abstct: Let f ( s s e ( s s ( s it beig icesig

More information

Continuous Functions

Continuous Functions Cotiuous Fuctios Q What does it mea for a fuctio to be cotiuous at a poit? Aswer- I mathematics, we have a defiitio that cosists of three cocepts that are liked i a special way Cosider the followig defiitio

More information

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Divide-and-Conquer

Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, Divide-and-Conquer Presettio or use wit te textook, Agoritm Desig Appictios, y M. T. Gooric R. Tmssi, Wiey, 015 Divie--Coquer 015 Gooric Tmssi Divie--Coquer 1 Appictio: Mxim Sets We c visuize te vrious tre-os or optimizig

More information

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017

DRAFT. Formulae and Statistical Tables for A-level Mathematics SPECIMEN MATERIAL. First Issued September 2017 Fist Issued Septembe 07 Fo the ew specifictios fo fist techig fom Septembe 07 SPECIMEN MATERIAL Fomule d Sttisticl Tbles fo A-level Mthemtics AS MATHEMATICS (7356) A-LEVEL MATHEMATICS (7357) AS FURTHER

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

Chapter 23. Geometric Optics

Chapter 23. Geometric Optics Cpter 23 Geometric Optic Ligt Wt i ligt? Wve or prticle? ot Geometric optic: ligt trvel i trigt-lie pt clled ry Ti i true if typicl ditce re muc lrger t te wvelegt Geometric Optic 2 Wt it i out eome ddreed

More information

PLANCESS RANK ACCELERATOR

PLANCESS RANK ACCELERATOR PLANCESS RANK ACCELERATOR MATHEMATICS FOR JEE MAIN & ADVANCED Sequeces d Seies 000questios with topic wise execises 000 polems of IIT-JEE & AIEEE exms of lst yes Levels of Execises ctegoized ito JEE Mi

More information

Quantum Mechanics Lecture Notes 10 April 2007 Meg Noah

Quantum Mechanics Lecture Notes 10 April 2007 Meg Noah The -Patice syste: ˆ H V This is difficut to sove. y V 1 ˆ H V 1 1 1 1 ˆ = ad with 1 1 Hˆ Cete of Mass ˆ fo Patice i fee space He Reative Haitoia eative coodiate of the tota oetu Pˆ the tota oetu tota

More information

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I EXERCISE I t Q. d Q. 6 6 cos si Q. Q.6 d d Q. d Q. Itegrte cos t d by the substitutio z = + e d e Q.7 cos. l cos si d d Q. cos si si si si b cos Q.9 d Q. si b cos Q. si( ) si( ) d ( ) Q. d cot d d Q. (si

More information

10.3 The Quadratic Formula

10.3 The Quadratic Formula . Te Qudti Fomul We mentioned in te lst setion tt ompleting te sque n e used to solve ny qudti eqution. So we n use it to solve 0. We poeed s follows 0 0 Te lst line of tis we ll te qudti fomul. Te Qudti

More information

Mathematical Description of Discrete-Time Signals. 9/10/16 M. J. Roberts - All Rights Reserved 1

Mathematical Description of Discrete-Time Signals. 9/10/16 M. J. Roberts - All Rights Reserved 1 Mathematical Descriptio of Discrete-Time Sigals 9/10/16 M. J. Roberts - All Rights Reserved 1 Samplig ad Discrete Time Samplig is the acquisitio of the values of a cotiuous-time sigal at discrete poits

More information

LIMIT. f(a h). f(a + h). Lim x a. h 0. x 1. x 0. x 0. x 1. x 1. x 2. Lim f(x) 0 and. x 0

LIMIT. f(a h). f(a + h). Lim x a. h 0. x 1. x 0. x 0. x 1. x 1. x 2. Lim f(x) 0 and. x 0 J-Mathematics LIMIT. INTRODUCTION : The cocept of it of a fuctio is oe of the fudametal ideas that distiguishes calculus from algebra ad trigoometr. We use its to describe the wa a fuctio f varies. Some

More information

[Q. Booklet Number]

[Q. Booklet Number] 6 [Q. Booklet Numer] KOLKATA WB- B-J J E E - 9 MATHEMATICS QUESTIONS & ANSWERS. If C is the reflecto of A (, ) i -is d B is the reflectio of C i y-is, the AB is As : Hits : A (,); C (, ) ; B (, ) y A (,

More information

2002 Quarter 1 Math 172 Final Exam. Review

2002 Quarter 1 Math 172 Final Exam. Review 00 Qute Mth 7 Fil Exm. Review Sectio.. Sets Repesettio of Sets:. Listig the elemets. Set-uilde Nottio Checkig fo Memeship (, ) Compiso of Sets: Equlity (=, ), Susets (, ) Uio ( ) d Itesectio ( ) of Sets

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

(Figure 2.9), we observe x. and we write. (b) as x, x 1. and we write. We say that the line y 0 is a horizontal asymptote of the graph of f.

(Figure 2.9), we observe x. and we write. (b) as x, x 1. and we write. We say that the line y 0 is a horizontal asymptote of the graph of f. The symbol for ifiity ( ) does ot represet a real umber. We use to describe the behavior of a fuctio whe the values i its domai or rage outgrow all fiite bouds. For eample, whe we say the limit of f as

More information

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE.

The type of limit that is used to find TANGENTS and VELOCITIES gives rise to the central idea in DIFFERENTIAL CALCULUS, the DERIVATIVE. NOTES : LIMITS AND DERIVATIVES Name: Date: Period: Iitial: LESSON.1 THE TANGENT AND VELOCITY PROBLEMS Pre-Calculus Mathematics Limit Process Calculus The type of it that is used to fid TANGENTS ad VELOCITIES

More information

EXERCISE - 01 CHECK YOUR GRASP

EXERCISE - 01 CHECK YOUR GRASP EXERISE - 0 HEK YOUR GRASP 3. ( + Fo sum of coefficiets put ( + 4 ( + Fo sum of coefficiets put ; ( + ( 4. Give epessio c e ewitte s 7 4 7 7 3 7 7 ( 4 3( 4... 7( 4 7 7 7 3 ( 4... 7( 4 Lst tem ecomes (4

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAdMthsTutor.com PhysicsAdMthsTutor.com Jue 009 4. Give tht y rsih ( ), > 0, () fid d y d, givig your swer s simplified frctio. () Leve lk () Hece, or otherwise, fid 4 d, 4 [ ( )] givig your swer

More information

Lacunary Weak I-Statistical Convergence

Lacunary Weak I-Statistical Convergence Ge. Mat. Notes, Vol. 8, No., May 05, pp. 50-58 ISSN 9-784; Copyigt ICSRS Publicatio, 05 www.i-css.og vailable ee olie at ttp//www.gema.i Lacuay Wea I-Statistical Covegece Haize Gümüş Faculty o Eegli Educatio,

More information

CITY UNIVERSITY LONDON

CITY UNIVERSITY LONDON CITY UNIVERSITY LONDON Eg (Hos) Degree i Civil Egieerig Eg (Hos) Degree i Civil Egieerig with Surveyig Eg (Hos) Degree i Civil Egieerig with Architecture PART EXAMINATION SOLUTIONS ENGINEERING MATHEMATICS

More information