GEOMETRY. Rectangle Circle Triangle Parallelogram Trapezoid. 1 A = lh A= h b+ Rectangular Prism Sphere Rectangular Pyramid.

Size: px
Start display at page:

Download "GEOMETRY. Rectangle Circle Triangle Parallelogram Trapezoid. 1 A = lh A= h b+ Rectangular Prism Sphere Rectangular Pyramid."

Transcription

1 ALGEBA Popeties of Asote Ve Fo e mes :, + + Tige Ieqit Popeties of Itege Epoets is Assme tt m e positive iteges, tt e oegtive, tt eomitos e ozeo. See Appeies B D fo gps fte isssio. + ( ) m m m m m m m m m m m Spei Pot Foms + A B ( A B) A B + + A+ B A AB B + A B A AB B 3 3 ( A+ B) A + 3AB+ 3AB + B A B A 3A B 3AB B Ftoig Spei Biomis A B A B A B ( + ) A B A B A AB B 3 3 A + B A+ B A AB B 3 3 Qti Fom Te sotios of te eqtio + + e: ± 4 Diste Fom Te iste etee to poits, Mipoit Fom + +, (, ) is: + ( ) Sope of Lie Hoizot ies ve sope. m Veti ies ve efie sope. Pe Pepei Lies Give ie it sope m: sope of pe ie m sope of pepei ie m Foms of Eqtios of Lie St Fom: + Sope-Iteept Fom: m +, ee m is te sope is te -iteept ( ) is poit o te ie () t + t Poit-Sope Fom: m, ee m is te sope, Veto Fom: v, ee is fie veto v is ietio veto Popeties of Logitms Let,,, e positive e mes it, et e e me. See Appei B fo gps fte isssio. og og og og og ( ) og ( ) og + og og og og og ( ) og og og og e eqivet ge of se fom Tigoometi Hpeoi Ftios: Defiitios, Gps, Ietities See Appei.

2 GEOMETY A e, imfeee, SA sfe e o te e, V vome etge ie Tige Peogm Tpezoi A A p p A A A + etg Pism Spee etg Pmi V SA + + V 4 3 π SA 4p V 3 3 V igt ie igt i ie oe Ae of Bse V p SA p + p V π SA π 3 + π + Defiitio of Limit Let f e ftio efie o ope itev otiig, eept possi t itsef. We s tt te imit of f s ppoes is L, ite im f L, if fo eve me e > tee is me > s tt f L <ε eeve stisfies < < δ. Bsi Limit Ls ± ± Sm/Diffeee L: im f g im f im g ostt Mtipe L: im kf kim f Pot L: im f g im f im g f im f Qotiet L: im, im g g povie im g Sqeeze Teoem If g f otiig, eept possi t itsef, if img im L, te im f L s e. fo i some ope itev LIMITS otiit t Poit Give ftio f efie o ope itev otiig, e s f is otios t if im f f. L Hôpit s e Sppose f g e iffeetie t poits of ope itev I otiig, tt g fo I eept possi t. Sppose fte tt eite o Te im f im g ± ± im f im g. ( ) f f im im, g g ssmig te imit o te igt is e me o o -.

3 Te Deivtive of Ftio Te eivtive of f, eote f, is te ftio ose ve t te poit is povie te imit eists. f + f f im, Eemet Diffeetitio es ostt e: k ostt Mtipe e: Sm/Diffeee e: Pot e: Qotiet e: Poe e: i e: kf ( ) kf f ± g f g ± f g f g f g + f f g f g g g f ( g ) f g g Deivtives of Tigoometi Ftios ( si) os ( os)si ( t) se ( s)s ot ( se) se t ( ot)s Deivtives of Ivese Tigoometi Ftios si os ( t ) + s se ( ot ) + Te Me Ve Teoem If f is otios o te ose itev, DEIVATIVES Deivtives of Epoeti Logitmi Ftios e e ( ) ( og ) Deivtives of Hpeoi Ftios ( si ) os ( os ) si ( t ) se ( s )s ot ( se )se t ( ot )s Deivtives of Ivese Hpeoi Ftios si + ( os ), > ( t ), < s + ( se ), ( ot ), > < < Te Deivtive e fo Ivese Ftios If ftio f is iffeetie o itev (, ), if f fo (, ), te f ot eists is iffeetie o te imge of te itev (, ) e f, eote s f, () i te fom eo. Fte, if,, te f f, f if f (, ), te f f f. ( ) [ ] iffeetie o (, ), te tee is t est oe poit ( ) f f f ( )., fo i

4 INTEGATION Popeties of te Defiite Iteg Give te itege ftios f g o te itev, ostt k, te fooig popeties o. [ ]. f. f f 3. k k 4. kf ( ) k f ± ± 5. f g f g 6. f f f +, ssmig e iteg eists 7. If f g o [, ], te f g. 8. If m mi f M m f, te m f M. Te Fmet Teoem of s Pt I Give otios ftio f o itev I fie poit I, efie te ftio F o I F f () t t. F f fo I. Te Te Sstittio e If g itev I, if f is otios o I, te is iffeetie ftio ose ge is te ( ) f g g f. Hee, if F is tieivtive of f o I, f ( g ) g ( ) F( g )+. Itegtio Pts Give iffeetie ftios f g, f g f g g f. If e et f v g, te f v g ememee iffeeti fom te eqtio tkes o te moe esi v v v. Pt II If f is otios ftio o te itev, tieivtive of f o,, [ ] te f F F. [ ] if F is Smmtio Fts Foms SEQUENES AND SEIES ostt e fo Fiite Sms: ostt Mtipe e fo Fiite Sms: Sm/Diffeee e fo Fiite Sms:,fo ostt,fo ostt ( ± ) ± i i i i i i Sm of te Fist Positive Iteges: Sm of te Fist Sqes: Sm of te Fist es: ( + ) ( + ) ( + ) 3 ( + ) i i i 6 4 Geometi Seies Fo geometi seqee { } it ommo tio : Pti Sm: s Ifiite Sm:, if,, if < Biomi Seies Fo e me m - < < : m ( + ) m ( ) mm mm m + m + +! 3! mm ( ) ( m + ) + +! 3 +

5 To Seies Mi Seies Give ftio f it eivtives of oes togot ope itev otiig, te poe seies f f f ( ) f + f ( ( )+ ) ( ) ( +!! 3! ) 3 ( ) + is e te To seies geete f ot. Te To seies geete f ot is so ko s te Mi seies geete f. VETO ALULUS Popeties of S Mtipitio Veto Aitio Fo vetos, v, ss : S Mtipitio Popeties ( + v) + v + + ( ) ( ),, Veto Aitio Popeties + v v + + ( v+ ) ( + v)+ + + ( ) Dot Pot Give to vetos,, 3 v v, v, v3, te ot pot v of te to vetos is te s efie v v + v + v 3 3. A simi fom efies te ot pot of to vetos i. Popeties of te Dot Pot Fo vetos, v, s : v v ( v+ ) v+ ( v) ( ) v ( v) Dot Pot te Age etee To Vetos If to ozeo vetos v e epite so tt tei iiti poits oiie, if q epesets te sme of te to ges fome v (so tt q p), te v v os θ. Pojetio of oto v Let v e ozeo vetos. Te pojetio of oto v is te veto poj v v v. v oss Pot Give,, 3 v v, v, v3, i j k v 3 v v v i j+ k v v v v v v 3 v v 3 ( ) + ( ) i v v j v v k Popeties of te oss Pot Fo vetos, v, i 3 ss : v v ( v+ ) v+ ( + v) + v ( ) ( v) v ( v ) ( v) ( v ) ( ) v( v) ooite ovesio etiosips ii tesi Spei ii Spei tesi + + z + + z os q si j ρsiϕosθ si q q q ρsiϕsiθ z z z os j z os j Giet Veto Give ftio f,,,, f (,,, ) f,,,, f,,,,, f,,,.

6 (Dietio Deivtive) t te poit (, ) i te ompttio of Df Assmig te eivtive of f, ietio of te it veto, eists, D f, f,, f,, f,. Moe gee, if f,,, is iffeetie t te poit,,, if,,, is it veto, te D f ( ) f ( ). Popeties of te Giet Assme f g e ot iffeetie ftios tt k is fie e me. Te te fooig s o. Sm/Diffeee L: ( f ± g) f ± g ostt Mtipe L: ( kf ) k f Pot L: ( fg) f g + g f Qotiet L: f g f f g, povie g g g Te Fmet Teoem fo Lie Itegs (Giet Teoem) Assme tt f is iffeetie ftio ose giet f is otios og ve tt is efie te smoot veto ftio t (), t. Te, ( ) ( ) f f f. Divegee (F Desit) of Veto Fie Te ivegee, o f esit, of veto fie F( z,, ) P, Q, is te s ftio iv F P + Q + z. I gee, e eote te ivegee of veto fie F s te ot pot of te e opeto F. of Veto Fie Te of veto fie iv F F F( z,, ) P( z,, ), Q( z,, ), ( z,, ) is te veto ftio F Q P Q P,,. z z Te of veto fie F e ememee s te oss pot of te e opeto F. F F Gee s Teoem (Tgeti- Fom) Let e positive oiete, pieeise smoot, simpe ose ve i te pe, et e te egio eose. If F, P,, Q, pti eivtives o ope egio otiig, te P Q ve otios F Ts F P+ Q Q P A. sig te Eteig F to F z,, P,, Q,, ft tt Q P Q P k k F k F k, e ite tis vesio of te fom s F Ts F ka. Gee s Teoem (Nom-Divegee Fom) Let e positive oiete, pieeise smoot, simpe ose ve i te pe, et e te egio eose. If F, P,, Q, pti eivtives o ope egio otiig, te P Q ve otios F s PQ P + Q A F A. Stokes Teoem Assme F is veto fie it otios pti eivtives i ope egio of spe otiig pieeise smoot sfe S. Assme tt te o of S is simpe, ose, pieeise smoot ve, tt is positive oiete it espet to S. Te F Ts F σ. S Te Divegee Teoem Assme F is veto fie it otios pti eivtives i ope egio of spe otiig D 3, ssme D is eite simpe io o fiite io of simpe egios. Let S eote te sfe of D, et e te ot-poitig fie of it vetos om to S. Te S F σ FV. D

ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y

ALGEBRA. ( ) is a point on the line ( ) + ( ) = + ( ) + + ) + ( Distance Formula The distance d between two points x, y ALGEBRA Popeties of Asoute Vue Fo e umes : 0, 0 + + Tige Iequity Popeties of Itege Epoets Ris Assume tt m e positive iteges, tt e oegtive, tt eomitos e ozeo. See Appeies B D fo gps fute isussio. + ( )

More information

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes.

Baltimore County ARML Team Formula Sheet, v2.1 (08 Apr 2008) By Raymond Cheong. Difference of squares Difference of cubes Sum of cubes. Bltimoe Couty ARML Tem Fomul Seet, v. (08 Ap 008) By Rymo Ceog POLYNOMIALS Ftoig Diffeee of sques Diffeee of ues Sum of ues Ay itege O iteges ( )( ) 3 3 ( )( ) 3 3 ( )( ) ( )(... ) ( )(... ) Biomil expsio

More information

Sequences and series Mixed exercise 3

Sequences and series Mixed exercise 3 eqees seies Mixe exeise Let = fist tem = ommo tio. tem = 7 = 7 () 6th tem = 8 = 8 () Eqtio () Eqtio (): 8 7 8 7 8 7 m to te tems 0 o 0 0 60.7 60.7 79.089 Diffeee betwee 0 = 8. 79.089 =.6 ( s.f.) 0 The

More information

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip

Parametric Methods. Autoregressive (AR) Moving Average (MA) Autoregressive - Moving Average (ARMA) LO-2.5, P-13.3 to 13.4 (skip Pmeti Methods Autoegessive AR) Movig Avege MA) Autoegessive - Movig Avege ARMA) LO-.5, P-3.3 to 3.4 si 3.4.3 3.4.5) / Time Seies Modes Time Seies DT Rdom Sig / Motivtio fo Time Seies Modes Re the esut

More information

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know

AP Calculus BC Formulas, Definitions, Concepts & Theorems to Know P Clls BC Formls, Deiitios, Coepts & Theorems to Kow Deiitio o e : solte Vle: i 0 i 0 e lim Deiitio o Derivtive: h lim h0 h ltertive orm o De o Derivtive: lim Deiitio o Cotiity: is otios t i oly i lim

More information

Properties and Formulas

Properties and Formulas Popeties nd Fomuls Cpte 1 Ode of Opetions 1. Pefom ny opetion(s) inside gouping symols. 2. Simplify powes. 3. Multiply nd divide in ode fom left to igt. 4. Add nd sutt in ode fom left to igt. Identity

More information

Viscosity Solutions with Asymptotic Behavior of Hessian Quotient Equations. Limei Dai +

Viscosity Solutions with Asymptotic Behavior of Hessian Quotient Equations. Limei Dai + Itertio oferee o ompter d Atomtio Egieerig IAE IPIT vo 44 IAIT Pre igpore OI: 776/IPIT44 ioit otio ith Amptoti ehvior of Hei Qotiet Eqtio Limei i hoo of Mthemti d Iformtio iee Weifg Uiverit Weifg 66 The

More information

MA 1201 Engineering Mathematics MO/2017 Tutorial Sheet No. 2

MA 1201 Engineering Mathematics MO/2017 Tutorial Sheet No. 2 BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI DEPARTMENT OF MATHEMATICS MA Egieeig Matheatis MO/7 Tutoia Sheet No. Modue IV:. Defie Beta futio ad Gaa futio.. Pove that,,,. Pove that, d. Pove that. & whee

More information

STATICS. CENTROIDS OF MASSES, AREAS, LENGTHS, AND VOLUMES The following formulas are for discrete masses, areas, lengths, and volumes: r c

STATICS. CENTROIDS OF MASSES, AREAS, LENGTHS, AND VOLUMES The following formulas are for discrete masses, areas, lengths, and volumes: r c STTS FORE foe is veto qutit. t is defied we its () mgitude, () oit of litio, d () dietio e kow. Te veto fom of foe is F F i F j RESULTNT (TWO DMENSONS) Te esultt, F, of foes wit omoets F,i d F,i s te mgitude

More information

The Discrete Fourier Transform

The Discrete Fourier Transform (7) The Discete Fouie Tasfom The Discete Fouie Tasfom hat is Discete Fouie Tasfom (DFT)? (ote: It s ot DTFT discete-time Fouie tasfom) A liea tasfomatio (mati) Samples of the Fouie tasfom (DTFT) of a apeiodic

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES fiziks

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES fiziks Istitute o NET/JRF, GATE, IIT-JAM, JEST, TIFR GRE i PHYSICAL SCIENCES iziks Foum o CSIR-UGC JRF/NET, GATE, IIT-JAM/IIS, JEST, TIFR GRE i PHYSICAL SCIENCES Bsi Mthemtis Fomul Sheet o Physil Siees He oie

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Powe Seies Solutios Foeius Metho Septee 6, 7 Powe Seies Solutios Foeius etho L Cetto Mehil Egieeig 5AB Sei i Egieeig Alsis Otoe 6, 7 Outlie Review lst wee Powe seies solutios Geel ppoh Applitio Foeius

More information

Semiconductors materials

Semiconductors materials Semicoductos mteils Elemetl: Goup IV, Si, Ge Biy compouds: III-V (GAs,GSb, ISb, IP,...) IV-VI (PbS, PbSe, PbTe,...) II-VI (CdSe, CdTe,...) Tey d Qutey compouds: G x Al -x As, G x Al -x As y P -y III IV

More information

Advanced Higher Formula List

Advanced Higher Formula List Advaced Highe Fomula List Note: o fomulae give i eam emembe eveythig! Uit Biomial Theoem Factoial! ( ) ( ) Biomial Coefficiet C!! ( )! Symmety Idetity Khayyam-Pascal Idetity Biomial Theoem ( y) C y 0 0

More information

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral

Definition Integral. over[ ab, ] the sum of the form. 2. Definite Integral Defiite Itegrl Defiitio Itegrl. Riem Sum Let f e futio efie over the lose itervl with = < < < = e ritrr prtitio i suitervl. We lle the Riem Sum of the futio f over[, ] the sum of the form ( ξ ) S = f Δ

More information

BINOMIAL THEOREM & ITS SIMPLE APPLICATION

BINOMIAL THEOREM & ITS SIMPLE APPLICATION Etei lasses, Uit No. 0, 0, Vadhma Rig Road Plaza, Vikas Pui Et., Oute Rig Road New Delhi 0 08, Ph. : 9690, 87 MB Sllabus : BINOMIAL THEOREM & ITS SIMPLE APPLIATION Biomia Theoem fo a positive itegal ide;

More information

Physics 235 Final Examination December 4, 2006 Solutions

Physics 235 Final Examination December 4, 2006 Solutions Physics 35 Fi Emitio Decembe, 6 Soutios.. Fist coside the two u quks. They e idetic spi ½ ptices, so the tot spi c be eithe o. The Pui Picipe equies tht the ove wvefuctio be echge tisymmetic. Sice the

More information

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering

UNIT V: Z-TRANSFORMS AND DIFFERENCE EQUATIONS. Dr. V. Valliammal Department of Applied Mathematics Sri Venkateswara College of Engineering UNIT V: -TRANSFORMS AND DIFFERENCE EQUATIONS D. V. Vllimml Deptmet of Applied Mthemtics Si Vektesw College of Egieeig TOPICS:. -Tsfoms Elemet popeties.. Ivese -Tsfom usig ptil fctios d esidues. Covolutio

More information

MATH Midterm Solutions

MATH Midterm Solutions MATH 2113 - Midtem Solutios Febuay 18 1. A bag of mables cotais 4 which ae ed, 4 which ae blue ad 4 which ae gee. a How may mables must be chose fom the bag to guaatee that thee ae the same colou? We ca

More information

Negative Exponent a n = 1 a n, where a 0. Power of a Power Property ( a m ) n = a mn. Rational Exponents =

Negative Exponent a n = 1 a n, where a 0. Power of a Power Property ( a m ) n = a mn. Rational Exponents = Refeece Popetie Popetie of Expoet Let a ad b be eal umbe ad let m ad be atioal umbe. Zeo Expoet a 0 = 1, wee a 0 Quotiet of Powe Popety a m a = am, wee a 0 Powe of a Quotiet Popety ( a b m, wee b 0 b)

More information

GEOMETRY Properties of lines

GEOMETRY Properties of lines www.sscexmtuto.com GEOMETRY Popeties of lines Intesecting Lines nd ngles If two lines intesect t point, ten opposite ngles e clled veticl ngles nd tey ve te sme mesue. Pependicul Lines n ngle tt mesues

More information

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version

Auchmuty High School Mathematics Department Sequences & Series Notes Teacher Version equeces ad eies Auchmuty High chool Mathematics Depatmet equeces & eies Notes Teache Vesio A sequece takes the fom,,7,0,, while 7 0 is a seies. Thee ae two types of sequece/seies aithmetic ad geometic.

More information

Chapter 5. Long Waves

Chapter 5. Long Waves ape 5. Lo Waes Wae e s o compaed ae dep: < < L π Fom ea ae eo o s s ; amos ozoa moo z p s ; dosac pesse Dep-aeaed coseao o mass

More information

CHAPTERS 5-7 BOOKLET-2

CHAPTERS 5-7 BOOKLET-2 MATHEMATIS XI HAPTERS -7 BOOKLET- otets: Pge No hpte Bioil Theoe 7-8 hpte Stight Lies 8- hpte 7 Sequees Seies - Bioil Epessio A lgei epessio osistig of two tes with ve o ve sig etwee the is lle ioil epessio

More information

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method

CHAPTER 5 : SERIES. 5.2 The Sum of a Series Sum of Power of n Positive Integers Sum of Series of Partial Fraction Difference Method CHAPTER 5 : SERIES 5.1 Seies 5. The Sum of a Seies 5..1 Sum of Powe of Positive Iteges 5.. Sum of Seies of Patial Factio 5..3 Diffeece Method 5.3 Test of covegece 5.3.1 Divegece Test 5.3. Itegal Test 5.3.3

More information

Definition 2.1 (The Derivative) (page 54) is a function. The derivative of a function f with respect to x, represented by. f ', is defined by

Definition 2.1 (The Derivative) (page 54) is a function. The derivative of a function f with respect to x, represented by. f ', is defined by Chapter DACS Lok 004/05 CHAPTER DIFFERENTIATION. THE GEOMETRICAL MEANING OF DIFFERENTIATION (page 54) Defiitio. (The Derivative) (page 54) Let f () is a fctio. The erivative of a fctio f with respect to,

More information

Hyperbolic Heat Equation as Mathematical Model for Steel Quenching of L-shape and T-shape Samples, Direct and Inverse Problems

Hyperbolic Heat Equation as Mathematical Model for Steel Quenching of L-shape and T-shape Samples, Direct and Inverse Problems SEAS RANSACIONS o HEA MASS RANSER Bos M Be As Bs Hpeo He Eo s Me Moe o See Qe o L-spe -spe Spes De Iese Poes ABIA BOBINSKA o Pss Mes es o L Ze See 8 L R LAIA e@o MARARIA BIKE ANDRIS BIKIS Ise o Mes Cope

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials)

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials) Dt proie: Form Sheet MAS5 SCHOOL OF MATHEMATICS AND STATISTICS Mthemtics II (Mteris) Atm Semester -3 hors Mrks wi e wre or swers to qestios i Sectio A or or est THREE swers to qestios i Sectio. Sectio

More information

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi

Mapping Radius of Regular Function and Center of Convex Region. Duan Wenxi d Iteatioal Cofeece o Electical Compute Egieeig ad Electoics (ICECEE 5 Mappig adius of egula Fuctio ad Cete of Covex egio Dua Wexi School of Applied Mathematics Beijig Nomal Uivesity Zhuhai Chia 363463@qqcom

More information

A.P. Calculus Formulas Hanford High School, Richland, Washington revised 8/25/08

A.P. Calculus Formulas Hanford High School, Richland, Washington revised 8/25/08 A.P. Clls Formls 008-009 Hfor High Shool, Rihl, Wshigto revise 8/5/08. floor ftio (ef) Gretest iteger tht is less th or eql to.. (grph) 3. eilig ftio (ef) Lest iteger tht is greter th or eql to. 4. (grph)

More information

PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO SO THEN ENSURE THAT YOU HAVE THE CORRECT EXAM PAPER

PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED TO DO SO THEN ENSURE THAT YOU HAVE THE CORRECT EXAM PAPER OLLSCOIL NA ÉIREANN, CORCAIGH THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA OLLSCOILE, CORCAIGH UNIVERSITY COLLEGE, CORK 4/5 Autumn Suppement 5 MS Integ Ccuus nd Diffeenti Equtions Pof. P.J. Rippon

More information

PHY2061 Enriched Physics 2 Lecture Notes Relativity 3. Relativity 3

PHY2061 Enriched Physics 2 Lecture Notes Relativity 3. Relativity 3 PHY61 Eried Psis Letre Notes Reltiit 3 Reltiit 3 Dislimer: Tese letre otes re ot met to reple te orse tetbook. Te otet m be iomplete. Some topis m be ler. Tese otes re ol met to be std id d spplemet to

More information

We show that every analytic function can be expanded into a power series, called the Taylor series of the function.

We show that every analytic function can be expanded into a power series, called the Taylor series of the function. 10 Lectue 8 We show tht evey lytic fuctio c be expded ito powe seies, clled the Tylo seies of the fuctio. Tylo s Theoem: Let f be lytic i domi D & D. The, f(z) c be expessed s the powe seies f( z) b (

More information

Using Difference Equations to Generalize Results for Periodic Nested Radicals

Using Difference Equations to Generalize Results for Periodic Nested Radicals Usig Diffeece Equatios to Geealize Results fo Peiodic Nested Radicals Chis Lyd Uivesity of Rhode Islad, Depatmet of Mathematics South Kigsto, Rhode Islad 2 2 2 2 2 2 2 π = + + +... Vieta (593) 2 2 2 =

More information

Area. Ⅱ Rectangles. Ⅲ Parallelograms A. Ⅳ Triangles. ABCD=a 2 The area of a square of side a is a 2

Area. Ⅱ Rectangles. Ⅲ Parallelograms A. Ⅳ Triangles. ABCD=a 2 The area of a square of side a is a 2 Ⅰ Sques e Letue: iu ng Mtemtis dution oundtion Pesident Wen-Hsien SUN Ⅱ Retngles = Te e of sque of side is Ⅲ Pllelogms = Te e of etngle of sides nd is = Te e of pllelogm is te podut of te lengt of one

More information

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e. olutios to RPL/. < F < F< Applig C C + C, we get F < 5 F < F< F, $. f() *, < f( h) f( ) h Lf () lim lim lim h h " h h " h h " f( + h) f( ) h Rf () lim lim lim h h " h h " h h " Lf () Rf (). Hee, differetile

More information

Linear Algebra Math 221

Linear Algebra Math 221 Linea Algeba Math Open Book Eam Open Notes Sept Calculatos Pemitted Sho all ok (ecept #). ( pts) Gien the sstem of equations a) ( pts) Epess this sstem as an augmented mati. b) ( pts) Bing this mati to

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Properties of Addition and Multiplication. For Addition Name of Property For Multiplication

Properties of Addition and Multiplication. For Addition Name of Property For Multiplication Nottio d Sols Tpes of Nues Ntul Nues (Coutig Nues): N = {,, 3, 4, 5, 6,...} Wole Nues: W = { 0,,, 3, 4, 5, 6,...} Iteges: Z = {..., 4, 3,,, 0,,, 3, 4,...} Rtiol Nues: tiol ue is ue tt e witte i te fo of

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhysicsAMthsTuto.com . M 6 0 7 0 Leve lk 6 () Show tht 7 is eigevlue of the mti M fi the othe two eigevlues of M. (5) () Fi eigevecto coespoig to the eigevlue 7. *M545A068* (4) Questio cotiue Leve lk *M545A078*

More information

is monotonically decreasing function of Ω, it is also called maximally flat at the

is monotonically decreasing function of Ω, it is also called maximally flat at the Le.8 Aalog Filte Desig 8. Itodtio: Let s eview aalog filte desig sig lowpass pototype tasfomatio. This method ovets the aalog lowpass filte with a toff feqey of adia pe seod, alled the lowpass pototype,

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae : Fomule Gee (G): Fomule you bsolutely must memoise i ode to pss Advced Highe mths. Remembe you get o fomul sheet t ll i the em! Ambe (A): You do t hve to memoise these fomule, s it is possible to deive

More information

Numerical integration

Numerical integration Numeicl itegtio Alyticl itegtio = ( ( t)) ( t) Dt : Result ( s) s [0, t] : ( t) st ode odiy diffeetil equtio Alyticl solutio ot lwys vilble d( ) q( ) = σ = ( d ) : t 0 t = Numeicl itegtio 0 t t 2. t. t

More information

Advanced Higher Maths: Formulae

Advanced Higher Maths: Formulae Advced Highe Mths: Fomule Advced Highe Mthemtics Gee (G): Fomule you solutely must memoise i ode to pss Advced Highe mths. Rememe you get o fomul sheet t ll i the em! Ame (A): You do t hve to memoise these

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Disjoint Sets { 9} { 1} { 11} Disjoint Sets (cont) Operations. Disjoint Sets (cont) Disjoint Sets (cont) n elements

Disjoint Sets { 9} { 1} { 11} Disjoint Sets (cont) Operations. Disjoint Sets (cont) Disjoint Sets (cont) n elements Disjoit Sets elemets { x, x, } X =, K Opeatios x Patitioed ito k sets (disjoit sets S, S,, K Fid-Set(x - etu set cotaiig x Uio(x,y - make a ew set by combiig the sets cotaiig x ad y (destoyig them S k

More information

AP Calculus AB AP Review

AP Calculus AB AP Review AP Clulus AB Chpters. Re limit vlues from grphsleft-h Limits Right H Limits Uerst tht f() vlues eist ut tht the limit t oes ot hve to.. Be le to ietify lel isotiuities from grphs. Do t forget out the 3-step

More information

Conditional Convergence of Infinite Products

Conditional Convergence of Infinite Products Coditioal Covegece of Ifiite Poducts William F. Tech Ameica Mathematical Mothly 106 1999), 646-651 I this aticle we evisit the classical subject of ifiite poducts. Fo stadad defiitios ad theoems o this

More information

Generating Function for

Generating Function for Itetiol Joul of Ltest Tehology i Egieeig, Mgemet & Applied Siee (IJLTEMAS) Volume VI, Issue VIIIS, August 207 ISSN 2278-2540 Geetig Futio fo G spt D. K. Humeddy #, K. Jkmm * # Deptmet of Memtis, Hidu College,

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com PhsicsAMthsTuto.com 6. The hpeol H hs equtio, whee e costts. The lie L hs equtio m c, whee m c e costts. Leve lk () Give tht L H meet, show tht the -cooites of the poits of itesectio e the oots of the

More information

Raytracing: Intersections. Backward Tracing. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method

Raytracing: Intersections. Backward Tracing. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method. Basic Ray Casting Method Rtig: Itesetios Bkwd Tig COC 4328/5327 ott A. Kig Bsi R Cstig iels i see hoot fom the ee though the iel. Fid losest -ojet itesetio. Get olo t itesetio Bsi R Cstig iels i see hoot fom the ee though the

More information

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P.

Progression. CATsyllabus.com. CATsyllabus.com. Sequence & Series. Arithmetic Progression (A.P.) n th term of an A.P. Pogessio Sequece & Seies A set of umbes whose domai is a eal umbe is called a SEQUENCE ad sum of the sequece is called a SERIES. If a, a, a, a 4,., a, is a sequece, the the expessio a + a + a + a 4 + a

More information

I N A C O M P L E X W O R L D

I N A C O M P L E X W O R L D IS L A M I C E C O N O M I C S I N A C O M P L E X W O R L D E x p l o r a t i o n s i n A g-b eanste d S i m u l a t i o n S a m i A l-s u w a i l e m 1 4 2 9 H 2 0 0 8 I s l a m i c D e v e l o p m e

More information

PROGRESSION AND SERIES

PROGRESSION AND SERIES INTRODUCTION PROGRESSION AND SERIES A gemet of umbes {,,,,, } ccodig to some well defied ule o set of ules is clled sequece Moe pecisely, we my defie sequece s fuctio whose domi is some subset of set of

More information

Chapter 2 Transformations and Expectations

Chapter 2 Transformations and Expectations Chapter Trasformatios a Epectatios Chapter Distributios of Fuctios of a Raom Variable Problem: Let be a raom variable with cf F ( ) If we efie ay fuctio of, say g( ) g( ) is also a raom variable whose

More information

Multivector Functions

Multivector Functions I: J. Math. Aal. ad Appl., ol. 24, No. 3, c Academic Pess (968) 467 473. Multivecto Fuctios David Hestees I a pevious pape [], the fudametals of diffeetial ad itegal calculus o Euclidea -space wee expessed

More information

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode

Software Process Models there are many process model s in th e li t e ra t u re, s om e a r e prescriptions and some are descriptions you need to mode Unit 2 : Software Process O b j ec t i ve This unit introduces software systems engineering through a discussion of software processes and their principal characteristics. In order to achieve the desireable

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

Copyright 2014 Winnebago Industries, Inc.

Copyright 2014 Winnebago Industries, Inc. anger of electrical shock, burns or death. lways remove all power sources before attempting any repair, service or diagnostic work. Power can be present from shore power, generator, inverter or battery.

More information

= y and Normed Linear Spaces

= y and Normed Linear Spaces 304-50 LINER SYSTEMS Lectue 8: Solutos to = ad Nomed Lea Spaces 73 Fdg N To fd N, we eed to chaacteze all solutos to = 0 Recall that ow opeatos peseve N, so that = 0 = 0 We ca solve = 0 ecusvel backwads

More information

Mathematical Description of Discrete-Time Signals. 9/10/16 M. J. Roberts - All Rights Reserved 1

Mathematical Description of Discrete-Time Signals. 9/10/16 M. J. Roberts - All Rights Reserved 1 Mathematical Descriptio of Discrete-Time Sigals 9/10/16 M. J. Roberts - All Rights Reserved 1 Samplig ad Discrete Time Samplig is the acquisitio of the values of a cotiuous-time sigal at discrete poits

More information

( ) ( ) Last Time. 3-D particle in box: summary. Modified Bohr model. 3-dimensional Hydrogen atom. Orbital magnetic dipole moment

( ) ( ) Last Time. 3-D particle in box: summary. Modified Bohr model. 3-dimensional Hydrogen atom. Orbital magnetic dipole moment Last Time 3-dimensional quantum states and wave functions Couse evaluations Tuesday, Dec. 9 in class Deceasing paticle size Quantum dots paticle in box) Optional exta class: eview of mateial since Exam

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Advanced Physical Geodesy

Advanced Physical Geodesy Supplemetal Notes Review of g Tems i Moitz s Aalytic Cotiuatio Method. Advaced hysical Geodesy GS887 Chistophe Jekeli Geodetic Sciece The Ohio State Uivesity 5 South Oval Mall Columbus, OH 4 7 The followig

More information

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : ,

Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., Outer Ring Road New Delhi , Ph. : , MB BINOMIAL THEOREM Biomial Epessio : A algebaic epessio which cotais two dissimila tems is called biomial epessio Fo eample :,,, etc / ( ) Statemet of Biomial theoem : If, R ad N, the : ( + ) = a b +

More information

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai

Classical Theory of Fourier Series : Demystified and Generalised VIVEK V. RANE. The Institute of Science, 15, Madam Cama Road, Mumbai Clssil Thoy o Foi Sis : Dmystii Glis VIVEK V RANE Th Istitt o Si 5 Mm Cm Ro Mmbi-4 3 -mil ss : v_v_@yhoooi Abstt : Fo Rim itgbl tio o itvl o poit thi w i Foi Sis t th poit o th itvl big ot how wh th tio

More information

A.P. Calculus Formulas. 1. floor function (def) Greatest integer that is less than or equal to x.

A.P. Calculus Formulas. 1. floor function (def) Greatest integer that is less than or equal to x. A.P. Clls Formls. floor ftio (ef) Gretest iteger tht is less th or eql to.. (grph). eilig ftio (ef) Lest iteger tht is greter th or eql to. 4. (grph) 5. 6. g h g h Pge 7. f ( ) (grph) - - - - - - 8. Chge

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia.

RECIPROCAL POWER SUMS. Anthony Sofo Victoria University, Melbourne City, Australia. #A39 INTEGERS () RECIPROCAL POWER SUMS Athoy Sofo Victoia Uivesity, Melboue City, Austalia. athoy.sofo@vu.edu.au Received: /8/, Acceted: 6//, Published: 6/5/ Abstact I this ae we give a alteative oof ad

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

On composite conformal mapping of an annulus to a plane with two holes

On composite conformal mapping of an annulus to a plane with two holes O composite cofomal mappig of a aulus to a plae with two holes Mila Batista (July 07) Abstact I the aticle we coside the composite cofomal map which maps aulus to ifiite egio with symmetic hole ad ealy

More information

Stanford University Medical Center

Stanford University Medical Center tanford University Medical enter VTO TTIO 00 Pasteur rive, tanford, 940 G I I G O T POF T U IO 6 exp /09 I T U I F O 6 IGIGWOO O MTO, IFOI 9864 GI I Y @ MY T TI OT OUTWIGHT IMT IM TW GUII H XITIG VTO XPIO

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Technical Report: Bessel Filter Analysis

Technical Report: Bessel Filter Analysis Sasa Mahmoodi 1 Techical Repot: Bessel Filte Aalysis 1 School of Electoics ad Compute Sciece, Buildig 1, Southampto Uivesity, Southampto, S17 1BJ, UK, Email: sm3@ecs.soto.ac.uk I this techical epot, we

More information

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T

Greatest term (numerically) in the expansion of (1 + x) Method 1 Let T BINOMIAL THEOREM_SYNOPSIS Geatest tem (umeically) i the epasio of ( + ) Method Let T ( The th tem) be the geatest tem. Fid T, T, T fom the give epasio. Put T T T ad. Th will give a iequality fom whee value

More information

5 - Determinants. r r. r r. r r. r s r = + det det det

5 - Determinants. r r. r r. r r. r s r = + det det det 5 - Detemts Assote wth y sque mtx A thee s ume lle the etemt of A eote A o et A. Oe wy to efe the etemt, ths futo fom the set of ll mtes to the set of el umes, s y the followg thee popetes. All mtes elow

More information

Lecture 24: Observability and Constructibility

Lecture 24: Observability and Constructibility ectue 24: Obsevability ad Costuctibility 7 Obsevability ad Costuctibility Motivatio: State feedback laws deped o a kowledge of the cuet state. I some systems, xt () ca be measued diectly, e.g., positio

More information

Multi-Electron Atoms-Helium

Multi-Electron Atoms-Helium Multi-lecto Atos-Heliu He - se s H but with Z He - electos. No exct solutio of.. but c use H wve fuctios d eegy levels s sttig poit ucleus sceeed d so Zeffective is < sceeig is ~se s e-e epulsio fo He,

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm ith Form Pure Mthemtis Uit lger Trigoometr Geometr lulus lger equees The ifiite sequee of umers U U U... U... is si to e () overget if U L fiite limit s () iverget to if U s Emple The sequee...

More information

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f

c. What is the average rate of change of f on the interval [, ]? Answer: d. What is a local minimum value of f? Answer: 5 e. On what interval(s) is f Essential Skills Chapter f ( x + h) f ( x ). Simplifying the difference quotient Section. h f ( x + h) f ( x ) Example: For f ( x) = 4x 4 x, find and simplify completely. h Answer: 4 8x 4 h. Finding the

More information

«A first lesson on Mathematical Induction»

«A first lesson on Mathematical Induction» Bcgou ifotio: «A fist lesso o Mtheticl Iuctio» Mtheticl iuctio is topic i H level Mthetics It is useful i Mtheticl copetitios t ll levels It hs bee coo sight tht stuets c out the poof b theticl iuctio,

More information

The formulae in this booklet have been arranged according to the unit in which they are first

The formulae in this booklet have been arranged according to the unit in which they are first Fomule Booklet Fomule Booklet The fomule ths ooklet hve ee ge og to the ut whh the e fst toue. Thus te sttg ut m e eque to use the fomule tht wee toue peeg ut e.g. tes sttg C mght e epete to use fomule

More information

Chapter 1 Functions and Graphs

Chapter 1 Functions and Graphs Capte Functions and Gaps Section.... 6 7. 6 8 8 6. 6 6 8 8.... 6.. 6. n n n n n n n 6 n 6 n n 7. 8 7 7..8..8 8.. 8. a b ± ± 6 c ± 6 ± 8 8 o 8 6. 8y 8y 7 8y y 8y y 8 o y y. 7 7 o 7 7 Capte : Functions and

More information

Tutorial on Strehl ratio, wavefront power series expansion, Zernike polynomials expansion in small aberrated optical systems By Sheng Yuan

Tutorial on Strehl ratio, wavefront power series expansion, Zernike polynomials expansion in small aberrated optical systems By Sheng Yuan Tutoial on Stel atio, wavefont powe seies expansion, Zenike polynomials expansion in small abeated optical systems By Seng Yuan. Stel Ratio Te wave abeation function, (x,y, is defined as te distance, in

More information

EL2520 Control Theory and Practice

EL2520 Control Theory and Practice oals EL252 Cotol Theoy ad Pactice Lecte 2: The closed-loop system Mikael Johasso School of Electical Egieeig KTH, Stockholm, Sede Afte this lecte, yo shold: Ko that the closed-loop is chaacteied by 6 tasfe

More information

Thermal-Fluids I. Chapter 17 Steady heat conduction. Dr. Primal Fernando Ph: (850)

Thermal-Fluids I. Chapter 17 Steady heat conduction. Dr. Primal Fernando Ph: (850) emal-fluids I Capte 7 Steady eat conduction D. Pimal Fenando pimal@eng.fsu.edu P: (850 40-633 Steady eat conduction Hee we conside one dimensional steady eat conduction. We conside eat tansfe in a plane

More information

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction

Thomas J. Osler Mathematics Department Rowan University Glassboro NJ Introduction Ot 0 006 Euler s little summtio formul d speil vlues of te zet futio Toms J Osler temtis Deprtmet Row Uiversity Glssboro J 0608 Osler@rowedu Itrodutio I tis ote we preset elemetry metod of determiig vlues

More information

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2

MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS. and x i = a + i. i + n(n + 1)(2n + 1) + 2a. (b a)3 6n 2 MATH 104: INTRODUCTORY ANALYSIS SPRING 2009/10 PROBLEM SET 8 SOLUTIONS 6.9: Let f(x) { x 2 if x Q [, b], 0 if x (R \ Q) [, b], where > 0. Prove tht b. Solutio. Let P { x 0 < x 1 < < x b} be regulr prtitio

More information

Chapter 8 Complex Numbers

Chapter 8 Complex Numbers Chapte 8 Complex Numbes Motivatio: The ae used i a umbe of diffeet scietific aeas icludig: sigal aalsis, quatum mechaics, elativit, fluid damics, civil egieeig, ad chaos theo (factals. 8.1 Cocepts - Defiitio

More information

Summary: Binomial Expansion...! r. where

Summary: Binomial Expansion...! r. where Summy: Biomil Epsio 009 M Teo www.techmejcmth-sg.wes.com ) Re-cp of Additiol Mthemtics Biomil Theoem... whee )!!(! () The fomul is ville i MF so studets do ot eed to memoise it. () The fomul pplies oly

More information

ANSWERS, HINTS & SOLUTIONS HALF COURSE TEST VII (Main)

ANSWERS, HINTS & SOLUTIONS HALF COURSE TEST VII (Main) AIITS-HT-VII-PM-JEE(Mai)-Sol./7 I JEE Advaced 06, FIITJEE Studets bag 6 i Top 00 AIR, 7 i Top 00 AIR, 8 i Top 00 AIR. Studets fom Log Tem lassoom/ Itegated School Pogam & Studets fom All Pogams have qualified

More information

Section 2.2. Matrix Multiplication

Section 2.2. Matrix Multiplication Mtri Alger Mtri Multiplitio Setio.. Mtri Multiplitio Mtri multiplitio is little more omplite th mtri itio or slr multiplitio. If A is the prout A of A is the ompute s follow: m mtri, the is k mtri, 9 m

More information

10.3 The Quadratic Formula

10.3 The Quadratic Formula . Te Qudti Fomul We mentioned in te lst setion tt ompleting te sque n e used to solve ny qudti eqution. So we n use it to solve 0. We poeed s follows 0 0 Te lst line of tis we ll te qudti fomul. Te Qudti

More information

On a Problem of Littlewood

On a Problem of Littlewood Ž. JOURAL OF MATHEMATICAL AALYSIS AD APPLICATIOS 199, 403 408 1996 ARTICLE O. 0149 O a Poblem of Littlewood Host Alze Mosbache Stasse 10, 51545 Waldbol, Gemay Submitted by J. L. Bee Received May 19, 1995

More information

2 n = n=1 a n is convergent and we let. i=1

2 n = n=1 a n is convergent and we let. i=1 Lecture 3 : Series So far our defiitio of a sum of umbers applies oly to addig a fiite set of umbers. We ca exted this to a defiitio of a sum of a ifiite set of umbers i much the same way as we exteded

More information

EECE 260 Electrical Circuits Prof. Mark Fowler

EECE 260 Electrical Circuits Prof. Mark Fowler EECE 60 Electicl Cicuits Pof. Mk Fowle Complex Numbe Review /6 Complex Numbes Complex numbes ise s oots of polynomils. Definition of imginy # nd some esulting popeties: ( ( )( ) )( ) Recll tht the solution

More information

Features of incommensurate phases in crystals TlGaSe2 and TlInS2

Features of incommensurate phases in crystals TlGaSe2 and TlInS2 Fetues of iommesute phses i ystls TlGSe TlIS B.R. Gjiev Itetiol Uivesity of Ntue Soiety Ms Du 9 9 Uivesitetsky st. Du Mosow Regio Russi gjiev@ui-u.u Astt The theoy of sequee of phse tsitios of high-symmety-iommesute-ommesute

More information

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx), FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES To -periodic fuctio f() we will ssocite trigoometric series + cos() + b si(), or i terms of the epoetil e i, series of the form c e i. Z For most of the

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , R Pen Towe Rod No Conttos Ae Bistupu Jmshedpu 8 Tel (67)89 www.penlsses.om IIT JEE themtis Ppe II PART III ATHEATICS SECTION I (Totl ks : ) (Single Coet Answe Type) This setion ontins 8 multiple hoie questions.

More information