Each of the relationships have their own patterns. Many of the patterns are similar and easy to recall.

Size: px
Start display at page:

Download "Each of the relationships have their own patterns. Many of the patterns are similar and easy to recall."

Transcription

1 Proportional Reasoning Much of science and mathematics have a great deal to do with finding patterns. Many scientists spend a lot of time trying to determine how various variables are related mathematically for a given physical phenomena. If a relationship does exist then one can make predictions for various situations. Ones does not then need todo all the possible combinations that may not easily be done in the laboratory. This unit is designed to help one understand some of the simpler mathematical relationships that exist in nature. The unit will also point out some of the simple patterns associated with the various relationships. The following relationships will be developed: A) Direct B) Inverse C) Square D) Square Root E) Inverse Square F) No relationship Patterns that will be investigated for each are: 1) Factor Effect 2) Characteristic Plot 3) Constant Ratio 4) Straight Line Plot 5) Same Factor Effect Each of the relationships have their own patterns. Many of the patterns are similar and easy to recall. To better understand relationships, only two variables will be considered at one time. a) the independent variable - the one that you can often decide upon actual values before actually collecting data. b) the dependent variable - the one that changes as the independent variable is varied. The result of this variable depends on what the independent variable is. Tables: the first or left hand column of all tables will always be the independent variable, the second column will be the dependent. Always provide the unit of measurement under the variable. Mathematical operations (multiplying or raising to a power) on variables will always take place on the independent variable. Ratios: will be set up so the dependent variable is divided by the independent variable ( y/ x). Graphs: the independent variable will be plotted on the X (horizontal) axis and the dependent variable on the Y (vertical) axis. Always provide the unit of measurement under the variable.

2 The Factor Effect The following data pairs represent the mass and volume quantities for some material. In this case the volume is the independent variable while the mass is the dependent variable. A) Direct Relationship - this section illustrates patterns that show how the dependent variable changes as the independent variable is changed. SUMMARY: The factor effect pattern associated with the Direct Relationship is that whatever factor change occurs for the independent variable, the same factor change occurs for the dependent variable

3 B) Inverse Relationship - the following data pairs represent the Period and Frequency of a rotating object. The frequency has been selected as the independent variable. SUMMARY: The factor effect pattern associated with the Inverse Relationship is that whatever factor change occurs for the independent variable, the inverse of that factor is the factor change for the dependent variable.

4 Self Quiz: Assume that there is a direct relationship between the position a car has and the time it is on the road. Fill in the blanks of the following tables: Assume that there is an inverse relationship that exists between the following two variables, x and y, which have no units. Fill in each of the blank boxes in the following problems.

5 C) Square Relationship - the following data pairs represent the Area and Length of various rectangles that have the same width. The Length has been selected as the independent variable. SUMMARY: The factor effect pattern associated with Square Relationship is that whatever factor change that takes place for the independent variable will cause the dependent to change by the Square of that factor change. Self Quiz: Assume a Square Relationship exists for each of the following tables.

6 D) Square Root Relationship - the following data pairs represent the Period and its corresponding Radius of an object that is attached to the end of a string and rotating about a circular path. The radius is the independent variable. SUMMARY: - the factor effect pattern associated with the Square Root Relationship is such that whatever factor change occurs for the independent variable the dependent variable will change by a factor which is the Square Root of that factor change.

7 Assume a Square Root Relationship exists for each of the following tables of data.

8 The Characteristic Plot A) Direct Relationship - the following Mass-Volume data is from the Factor Effect section and will be used here to determine the characteristic plot for a Direct Relationship. SUMMARY: the characteristic plot for an Inverse Relationship is a curve of the type illustrated above (Hyperbola). As one of the variables increases the other decreases

9 C) Square Relationship SUMMARY: the characteristic plot for a Square Relationship is a curve of the type illustrated (parabola). The Dependent variable increases more rapidly than the independent variable does. SUMMARY: the characteristic plot for a Square Root Relationship is a curve of the type illustrated above. The independent variable increases more rapidly than the Dependent variable.

10 Direct Relationship -----Review The Constant Ratio As can be noted from the above table, the factor change for both variables is the same and the graph has a constant slope. Is there anything else that is constant? For this example a test of the product and ratio of the two variables will be illustrated. As indicated in the above table the ratio is a constant value. SUMMARY: the pattern found when there is a Direct Relationship is that the ratio of the dependent variable over the independent variable is a constant value. In this case, the Mass/Volume is constant. Which of the following sets of data represent an example of a Direct Relationship?

11 Inverse Relationship -----Review This time the factor change is not the same and the graph is not a straight line. Recall that the factor change of the dependent is the inverse of the factor change of the independent variable. The following illustrates a ratio of the two variables and a ratio of dependent over the inverse of the independent variable. The inverse Relationship also demonstrates a Constant Ratio. In this case the ratio of the period over the inverse of the frequency is a constant. SUMMARY: The pattern of a constant ratio continues. For the inverse relationship, the ratio of the dependent variable over the inverse of the independent variable is a constant. Which of the following sets of data represent an example of an Inverse Relationship?

12 Square Relationship -----Review The square relationship does not show a straight line plot nor does it show a factor change that is the same for both variables. Recall that the factor change of the dependent variable is the square of the factor change of the independent variable. The following two ratios are tested. The square Relationship also demonstrates a Constant Ratio. In this case the ratio of the Area over the square of the Length is a constant. SUMMARY: The pattern of a constant ratio continues. For the Square Relationship, the ratio of the dependent variable over the square of the independent variable is a constant. Which of the following sets of data represent an example of a Square Relationship?

13 Square Root Relationship -----Review The Square Root relationship does not show a straight line plot nor does it show a factor change that is the same for both variables. Recall that the factor change of the dependent variable is the square root of the factor change of the independent variable. The following two ratios are tested. The Square Root Relationship also demonstrates a Constant Ratio. In this case the ratio of the Period over the square root of the Radius is a constant. SUMMARY: The pattern of a constant ratio continues. For the Square Root Relationship, the ratio of the dependent variable over the square root of the independent variable is a constant.

14

15 Straight Line Graphs Recall how the Direct relationship data had a constant ratio as well as a straight line plot. The constant ratio has also been found for each of the relationships. Since constant ratios can be determined for each relationship, is it possible to generate a straight line plot using the dependent and independent variable? The answer to this question can be found in a pattern already shown in the direct relationship results. Those results illustrated a constant of the dependent variable over the independent variable and also a straight line of the dependent variable versus the independent variable. The following demonstrates the plots of the dependent variable versus the independent variable raised to the power used to generate the constant ratio. Inverse Relationship Square Relationship Square Root Relationship

16 Indeed straight line plots do exist for each type of relationship. Note the pattern: The Same Factor Change One more pattern needs to be discussed. Each relationship had a constant ratio and a straight line plot both of which were first demonstrated in the direct relationship. In addition, whenever the independent variable doubled the dependent variable also doubled. Is it possible to find a quantity which as it is doubled the dependent variable also doubles? The pattern found in the last two sections will be used to develop the idea of a constant factor change. Inverse Relationship Square Relationship Square Root Relationship

17 The same factor increase can be determined for each relationship. Note the pattern: Which relationship does each of the following sets of data represent?

18 Proportions When each of the following can be found for a set of data pairs 1) same factor change 2) constant ratio 3) straight line plot scientists summarize those phenomenon by saying that a direct proportion exists between the two variables. The words is proportional to will be used several times in the following paragraphs and will be symbolized with the symbol (Dependent Independent) Direct Relationship The results of the direct relationship are summed up by saying that the mass is proportional to the volume or the mass the volume. The statement is summing up each of the following: I. When the volume doubles so does the mass II. There is a constant ratio of mass/volume III. There is a straight line plot of mass versus volume. Also the constant ratio expression (k = (mass/volume)) can also be written Mass = k * Volume Inverse Relationship The results of the inverse relationship are summed up by saying that the period is proportional to the inverse of the frequency or Period 1/Frequency The statement is summing up each of the following: I. When the inverse of the frequency doubles so does the mass II. There is a constant ratio of the period over the inverse of the frequency III. There is a straight line plot of period versus 1/frequency. k = (Period/(1/frequency))or Period = k * (1/frequency) Square Relationship The results of the square relationship are summed up by saying that the Area is proportional to the square of the Length or Area Length 2 I. When the square of the length doubles so does the area II. There is a constant ratio of the Area over the square of the Length III. There is a straight line plot of the Area versus Length squared k = (Area/Length 2 ) or Area = k *Length 2 Square Root Relationship The results of the square root relationship are summed up by saying that the Period is proportional to the square root of the radius or Period Radius I. When the square root of the radius doubles so does the period II. There is a constant ratio of the Period over the square root of the radius III. There is a straight line plot of the Period versus the square root of the radius k = (Period/ Radius ) or Period = k * Radius

19

Formative Assessment: Uniform Acceleration

Formative Assessment: Uniform Acceleration Formative Assessment: Uniform Acceleration Name 1) A truck on a straight road starts from rest and accelerates at 3.0 m/s 2 until it reaches a speed of 24 m/s. Then the truck travels for 20 s at constant

More information

d = k where k is a constant of proportionality equal to the gradient.

d = k where k is a constant of proportionality equal to the gradient. VARIATION In Physics and Chemistry there are many laws where one quantity varies in some way with another quantity. We will be studying three types of variation direct, inverse and joint.. DIRECT VARIATION

More information

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector

Materials: One of each of the following is needed: Cart Meter stick Pulley with clamp 70 cm string Motion Detector Name Date Period Newton s Second Law: Net Force and Acceleration Procedures: Newton s second law describes a relationship between the net force acting on an object and the objects acceleration. In determining

More information

Mathematics Review. Sid Rudolph

Mathematics Review. Sid Rudolph Physics 2010 Sid Rudolph General Physics Mathematics Review These documents in mathematics are intended as a brief review of operations and methods. Early in this course, you should be totally familiar

More information

Kinematics. 1. Introduction to Kinematics. 2. Position and displacement

Kinematics. 1. Introduction to Kinematics. 2. Position and displacement Kinematics 1. Introduction to Kinematics. Scalars & vectors 2. Position & displacement 3. Velocity 4. Acceleration 5. Uniform linear motion 6. Uniformly accelerated motion 7. Uniform circular motion 1.

More information

Chapter 9 Quadratic Functions and Equations

Chapter 9 Quadratic Functions and Equations Chapter 9 Quadratic Functions and Equations 1 9 1Quadratic Graphs and their properties U shaped graph such as the one at the right is called a parabola. A parabola can open upward or downward. A parabola

More information

P - f = m a x. Now, if the box is already moving, for the frictional force, we use

P - f = m a x. Now, if the box is already moving, for the frictional force, we use Chapter 5 Class Notes This week, we return to forces, and consider forces pointing in different directions. Previously, in Chapter 3, the forces were parallel, but in this chapter the forces can be pointing

More information

Experiment 3: Centripetal Force

Experiment 3: Centripetal Force 012-05293F Complete Rotational System Experiment 3: Centripetal Force EQUIPMENT NEEDED - Centripetal Force Accessory (ME-8952) - Rotating Platform (ME-8951) - Stopwatch - Balance - Graph paper (2 sheets)

More information

EXPERIMENT 4: UNIFORM CIRCULAR MOTION

EXPERIMENT 4: UNIFORM CIRCULAR MOTION LAB SECTION: NAME: EXPERIMENT 4: UNIFORM CIRCULAR MOTION Introduction: In this lab, you will calculate the force on an object moving in a circle at approximately constant speed. To calculate the force

More information

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink) Write your name here Surname Other names Pearson Edexcel GCE Centre Number Mechanics M1 Advanced/Advanced Subsidiary Candidate Number Wednesday 8 June 2016 Morning Time: 1 hour 30 minutes You must have:

More information

AP PHYSICS SUMMER ASSIGNMENT

AP PHYSICS SUMMER ASSIGNMENT AP PHYSICS SUMMER ASSIGNMENT There are two parts of the summer assignment, both parts mirror the course. The first part is problem solving, where there are 14 math problems that you are given to solve

More information

Math 1320, Section 10 Quiz IV Solutions 20 Points

Math 1320, Section 10 Quiz IV Solutions 20 Points Math 1320, Section 10 Quiz IV Solutions 20 Points Please answer each question. To receive full credit you must show all work and give answers in simplest form. Cell phones and graphing calculators are

More information

14.3. Volumes of Revolution. Introduction. Prerequisites. Learning Outcomes

14.3. Volumes of Revolution. Introduction. Prerequisites. Learning Outcomes Volumes of Revolution 14.3 Introduction In this Section we show how the concept of integration as the limit of a sum, introduced in Section 14.1, can be used to find volumes of solids formed when curves

More information

1 Reducability. CSCC63 Worksheet Reducability. For your reference, A T M is defined to be the language { M, w M accepts w}. Theorem 5.

1 Reducability. CSCC63 Worksheet Reducability. For your reference, A T M is defined to be the language { M, w M accepts w}. Theorem 5. CSCC63 Worksheet Reducability For your reference, A T M is defined to be the language { M, w M accepts w}. 1 Reducability Theorem 5.1 HALT TM = { M, w M is a T M that halts on input w} is undecidable.

More information

Adding and Subtracting Terms

Adding and Subtracting Terms Adding and Subtracting Terms 1.6 OBJECTIVES 1.6 1. Identify terms and like terms 2. Combine like terms 3. Add algebraic expressions 4. Subtract algebraic expressions To find the perimeter of (or the distance

More information

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800

Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Lab/Demo 5 Periodic Motion and Momentum PHYS 1800 Objectives: Learn to recognize and describe periodic motion. Develop some intuition for the principle of conservation of energy in periodic systems. Use

More information

SEE the list given for chapter 04 where Newton s laws were introduced.

SEE the list given for chapter 04 where Newton s laws were introduced. PH2213 : Examples from Chapter 5 : Applying Newton s Laws Key Concepts Newton s Laws (basically Σ F = m a ) allow us to relate the forces acting on an object (left-hand side) to the motion of the object,

More information

GUIDED NOTES 2.2 LINEAR EQUATIONS IN ONE VARIABLE

GUIDED NOTES 2.2 LINEAR EQUATIONS IN ONE VARIABLE GUIDED NOTES 2.2 LINEAR EQUATIONS IN ONE VARIABLE LEARNING OBJECTIVES In this section, you will: Solve equations in one variable algebraically. Solve a rational equation. Find a linear equation. Given

More information

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue)

PhysicsAndMathsTutor.com. Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Blue) Write your name here Surname Other names Pearson Edexcel International Advanced Level Centre Number Mechanics M1 Advanced/Advanced Subsidiary Candidate Number Wednesday 8 June 2016 Morning Time: 1 hour

More information

CH 88 FUNCTIONS: FORMULAS AND GRAPHS

CH 88 FUNCTIONS: FORMULAS AND GRAPHS CH 88 FUNCTIONS: FORMULAS AND GRAPHS INTRODUCTION T he previous chapter gave us the basic notion of a function: an entity where each input produces exactly one output. In this chapter we look at functions

More information

Chapter 9 Motion and Energy. Table of Contents. Chapter Preview. 9.1 Describing Motion. 9.2 Speed and Velocity. 9.3 Acceleration. 9.

Chapter 9 Motion and Energy. Table of Contents. Chapter Preview. 9.1 Describing Motion. 9.2 Speed and Velocity. 9.3 Acceleration. 9. Table of Contents Chapter Preview 9.1 Describing Motion 9.2 Speed and Velocity 9.3 Acceleration 9.4 Energy Chapter Preview Questions 1. Is a moving bus a good reference point from which to measure your

More information

AP Physics 1 Summer Assignment

AP Physics 1 Summer Assignment Name: Email address (write legibly): AP Physics 1 Summer Assignment Packet 3 The assignments included here are to be brought to the first day of class to be submitted. They are: Problems from Conceptual

More information

CALC 3 CONCEPT PACKET Complete

CALC 3 CONCEPT PACKET Complete CALC 3 CONCEPT PACKET Complete Written by Jeremy Robinson, Head Instructor Find Out More +Private Instruction +Review Sessions WWW.GRADEPEAK.COM Need Help? Online Private Instruction Anytime, Anywhere

More information

To summarize the car s velocity information, let the horizontal axis represent time, and the vertical axis represent velocity.

To summarize the car s velocity information, let the horizontal axis represent time, and the vertical axis represent velocity. To summarize the car s velocity information, let the horizontal axis represent time, and the vertical axis represent velocity. The velocity is constant wherever the slope of the distance-vs-time graph

More information

Modeling Data with Functions

Modeling Data with Functions Chapter 11 Modeling Data with Functions 11.1 Data Modeling Concepts 1 11.1.1 Conceptual Explanations: Modeling Data with Functions In school, you generally start with a function and work from there to

More information

Motion in Two Dimensions: Centripetal Acceleration

Motion in Two Dimensions: Centripetal Acceleration Motion in Two Dimensions: Centripetal Acceleration Name: Group Members: Date: TA s Name: Apparatus: Rotating platform, long string, liquid accelerometer, meter stick, masking tape, stopwatch Objectives:

More information

a factors The exponential 0 is a special case. If b is any nonzero real number, then

a factors The exponential 0 is a special case. If b is any nonzero real number, then 0.1 Exponents The expression x a is an exponential expression with base x and exponent a. If the exponent a is a positive integer, then the expression is simply notation that counts how many times the

More information

2-7 Solving Quadratic Inequalities. ax 2 + bx + c > 0 (a 0)

2-7 Solving Quadratic Inequalities. ax 2 + bx + c > 0 (a 0) Quadratic Inequalities In One Variable LOOKS LIKE a quadratic equation but Doesn t have an equal sign (=) Has an inequality sign (>,

More information

Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary Centre No. Candidate No. Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary Monday 13 May 2013 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical

More information

Section 4.9: Investigating Newton's Second Law of Motion

Section 4.9: Investigating Newton's Second Law of Motion Section 4.9: Investigating Newton's Second Law of Motion Recall: The first law of motion states that as long as the forces are balanced an object at rest stays at rest an object in motion stays in motion

More information

V. Graph Sketching and Max-Min Problems

V. Graph Sketching and Max-Min Problems V. Graph Sketching and Max-Min Problems The signs of the first and second derivatives of a function tell us something about the shape of its graph. In this chapter we learn how to find that information.

More information

Particle Motion Problems

Particle Motion Problems Particle Motion Problems Particle motion problems deal with particles that are moving along the x or y axis. Thus, we are speaking of horizontal or vertical movement. The position, velocity, or acceleration

More information

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular,

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Lecture 6. Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Newton's second law. However, this is not always the most

More information

End-of-Chapter Exercises

End-of-Chapter Exercises End-of-Chapter Exercises For all these exercises, assume that all strings are massless and all pulleys are both massless and frictionless. We will improve our model and learn how to account for the mass

More information

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s

One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s One-Dimensional Motion Review IMPORTANT QUANTITIES Name Symbol Units Basic Equation Name Symbol Units Basic Equation Time t Seconds Velocity v m/s v x t Position x Meters Speed v m/s v t Length l Meters

More information

Review of Fundamental Mathematics, Measurement & Graphing Techniques

Review of Fundamental Mathematics, Measurement & Graphing Techniques Honors Physics Review of Fundamental Mathematics, Measurement & Graphing Techniques Introduction: One of the coolest concepts concerning science is that all of it is tied together by a few fundamental

More information

Basic ALGEBRA 2 SUMMER PACKET

Basic ALGEBRA 2 SUMMER PACKET Name Basic ALGEBRA SUMMER PACKET This packet contains Algebra I topics that you have learned before and should be familiar with coming into Algebra II. We will use these concepts on a regular basis throughout

More information

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached.

2. To study circular motion, two students use the hand-held device shown above, which consists of a rod on which a spring scale is attached. 1. A ball of mass M attached to a string of length L moves in a circle in a vertical plane as shown above. At the top of the circular path, the tension in the string is twice the weight of the ball. At

More information

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force

Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force Circular Motion and Gravitation Notes 1 Centripetal Acceleration and Force This unit we will investigate the special case of kinematics and dynamics of objects in uniform circular motion. First let s consider

More information

Downloaded from

Downloaded from Chapter 5 (Laws of Motion) Multiple Choice Questions Single Correct Answer Type Q1. A ball is travelling with uniform translatory motion. This means that (a) it is at rest. (b) the path can be a straight

More information

Sections 7.1, 7.2: Sums, differences, products of polynomials CHAPTER 7: POLYNOMIALS

Sections 7.1, 7.2: Sums, differences, products of polynomials CHAPTER 7: POLYNOMIALS Sections 7.1, 7.2: Sums, differences, products of polynomials CHAPTER 7: POLYNOMIALS Quiz results Average 73%: high h score 100% Problems: Keeping track of negative signs x = + = + Function notation f(x)

More information

Minnesota K-12 Academic Standards in Mathematics (2007)

Minnesota K-12 Academic Standards in Mathematics (2007) 8.1.1.1 Classify real numbers as rational or irrational. Know that when a square root of a positive integer is not an integer, then it is irrational. Know that the sum of a rational number an irrational

More information

C.3 Nonlinear Systems of Equations and Inequalities

C.3 Nonlinear Systems of Equations and Inequalities 50 section C3 C.3 Nonlinear Systems of Equations and Inequalities In section E, we discussed methods of solving systems of two linear equations. Recall that solutions to such systems are the intercepts

More information

State the condition under which the distance covered and displacement of moving object will have the same magnitude.

State the condition under which the distance covered and displacement of moving object will have the same magnitude. Exercise CBSE-Class IX Science Motion General Instructions: (i) (ii) (iii) (iv) Question no. 1-15 are very short answer questions. These are required to be answered in one sentence each. Questions no.

More information

Understand the vocabulary used to describe polynomials Add polynomials Subtract polynomials Graph equations defined by polynomials of degree 2

Understand the vocabulary used to describe polynomials Add polynomials Subtract polynomials Graph equations defined by polynomials of degree 2 Section 5.1: ADDING AND SUBTRACTING POLYNOMIALS When you are done with your homework you should be able to Understand the vocabulary used to describe polynomials Add polynomials Subtract polynomials Graph

More information

Circles. Example 2: Write an equation for a circle if the enpoints of a diameter are at ( 4,5) and (6, 3).

Circles. Example 2: Write an equation for a circle if the enpoints of a diameter are at ( 4,5) and (6, 3). Conics Unit Ch. 8 Circles Equations of Circles The equation of a circle with center ( hk, ) and radius r units is ( x h) ( y k) r. Example 1: Write an equation of circle with center (8, 3) and radius 6.

More information

CIRCLES: #1. What is an equation of the circle at the origin and radius 12?

CIRCLES: #1. What is an equation of the circle at the origin and radius 12? 1 Pre-AP Algebra II Chapter 10 Test Review Standards/Goals: E.3.a.: I can identify conic sections (parabola, circle, ellipse, hyperbola) from their equations in standard form. E.3.b.: I can graph circles

More information

1.1 Functions and Their Representations

1.1 Functions and Their Representations Arkansas Tech University MATH 2914: Calculus I Dr. Marcel B. Finan 1.1 Functions and Their Representations Functions play a crucial role in mathematics. A function describes how one quantity depends on

More information

Chapter 3. Chapter 3

Chapter 3. Chapter 3 Chapter 3 Review of V, I, and R Voltage is the amount of energy per charge available to move electrons from one point to another in a circuit and is measured in volts. Current is the rate of charge flow

More information

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A

3. A( 2,0) and B(6, -2), find M 4. A( 3, 7) and M(4,-3), find B. 5. M(4, -9) and B( -10, 11) find A 6. B(4, 8) and M(-2, 5), find A Midpoint and Distance Formula Class Work M is the midpoint of A and B. Use the given information to find the missing point. 1. A(4, 2) and B(3, -8), find M 2. A(5, 7) and B( -2, -9), find M 3. A( 2,0)

More information

Average Rate of Change & Slope of a Line MATH 092

Average Rate of Change & Slope of a Line MATH 092 Average Rate of Change Average Rate of Change & Slope of a Line MATH 092 Functions are used to model the way one quantity changes with respect to another quantity. For instance, how does the distance traveled

More information

a c = v2 F = ma F = Gm 1m 2 r d out RMA = F out r 2 " = Fd sin# IMA = d in eff = RMA F in IMA = W out

a c = v2 F = ma F = Gm 1m 2 r d out RMA = F out r 2  = Fd sin# IMA = d in eff = RMA F in IMA = W out Name: Physics Chapter 7 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: a c = v2 F = ma F = Gm 1m 2 r r 2 " = Fd sin#

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

Conceptual Explanations: Modeling Data with Functions

Conceptual Explanations: Modeling Data with Functions Conceptual Explanations: Modeling Data with Functions In school, you generally start with a function and work from there to numbers. Newton s Law tells us that F=ma. So if you push on a 3kg object with

More information

Paper Reference. Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary

Paper Reference. Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary Centre No. Candidate No. Paper Reference 6 6 7 7 0 1 Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary Friday 11 January 2008 Morning Time: 1 hour 30 minutes Materials required

More information

Physics. Chapter 3 Linear Motion

Physics. Chapter 3 Linear Motion Physics Chapter 3 Linear Motion Motion is Relative How fast are you moving? We can only speak of how fast in relation to some other thing. Unless otherwise specified, we will assume motion relative to

More information

PHYSICS LAB Experiment 3 Fall 2004 CENTRIPETAL FORCE & UNIFORM CIRCULAR MOTION

PHYSICS LAB Experiment 3 Fall 2004 CENTRIPETAL FORCE & UNIFORM CIRCULAR MOTION CENTRIPETAL FORCE & UNIFORM CIRCULAR MOTION In this experiment we will explore the relationship between force and acceleration for the case of uniform circular motion. An object which experiences a constant

More information

Name Class Date. t = = 10m. n + 19 = = 2f + 9

Name Class Date. t = = 10m. n + 19 = = 2f + 9 1-4 Reteaching Solving Equations To solve an equation that contains a variable, find all of the values of the variable that make the equation true. Use the equality properties of real numbers and inverse

More information

i. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed.

i. Indicate on the figure the point P at which the maximum speed of the car is attained. ii. Calculate the value vmax of this maximum speed. 1. A 0.20 kg object moves along a straight line. The net force acting on the object varies with the object's displacement as shown in the graph above. The object starts from rest at displacement x = 0

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

Change & Rates of Change

Change & Rates of Change Name: Date: Per: Change & Rates of Change Two concepts that physicist tend to trouble themselves over more than any others are how much a thing changes and at what rate that something changed. Much of

More information

Paper Reference R. Mechanics M1 Advanced/Advanced Subsidiary. Friday 6 June 2014 Afternoon Time: 1 hour 30 minutes

Paper Reference R. Mechanics M1 Advanced/Advanced Subsidiary. Friday 6 June 2014 Afternoon Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6677/01R Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary Friday 6 June 2014 Afternoon Time: 1 hour 30 minutes Materials required for examination Mathematical

More information

MA 137 Calculus 1 with Life Science Applications. (Section 6.1)

MA 137 Calculus 1 with Life Science Applications. (Section 6.1) . MA 137 Calculus 1 with Life Science Applications (Section 6.1). Alberto Corso alberto.corso@uky.edu Department of Mathematics University of Kentucky November 30, 2016 1/12 . The Area Problem We start

More information

1.8 Multi-Step Inequalities

1.8 Multi-Step Inequalities 1.8 Multi-Step Inequalities Learning Objectives Solve a two-step inequality. Solve a multi-step inequality. Identify the number of solutions of an inequality. Solve real-world problems using inequalities.

More information

3 Acceleration. positive and one is negative. When a car changes direction, it is also accelerating. In the figure to the

3 Acceleration. positive and one is negative. When a car changes direction, it is also accelerating. In the figure to the What You ll Learn how acceleration, time, and velocity are related the different ways an object can accelerate how to calculate acceleration the similarities and differences between straight line motion,

More information

Bryn Mawr College Department of Physics Mathematics Readiness Examination for Introductory Physics

Bryn Mawr College Department of Physics Mathematics Readiness Examination for Introductory Physics Brn Mawr College Department of Phsics Mathematics Readiness Eamination for Introductor Phsics There are 7 questions and ou should do this eam in two and a half hours. Do not use an books, calculators,

More information

Math 1314 Lesson 7 Applications of the Derivative. rate of change, instantaneous rate of change, velocity, => the derivative

Math 1314 Lesson 7 Applications of the Derivative. rate of change, instantaneous rate of change, velocity, => the derivative Math 1314 Lesson 7 Applications of the Derivative In word problems, whenever it s anything about a: rate of change, instantaneous rate of change, velocity, => the derivative average rate of change, difference

More information

SKILL BUILDER TEN. Graphs of Linear Equations with Two Variables. If x = 2 then y = = = 7 and (2, 7) is a solution.

SKILL BUILDER TEN. Graphs of Linear Equations with Two Variables. If x = 2 then y = = = 7 and (2, 7) is a solution. SKILL BUILDER TEN Graphs of Linear Equations with Two Variables A first degree equation is called a linear equation, since its graph is a straight line. In a linear equation, each term is a constant or

More information

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink)

Advanced/Advanced Subsidiary. You must have: Mathematical Formulae and Statistical Tables (Pink) Write your name here Surname Other names Pearson Edexcel GCE Centre Number Mechanics M4 Advanced/Advanced Subsidiary Candidate Number Wednesday 15 June 2016 Morning Paper Reference Time: 1 hour 30 minutes

More information

Lab/Demo 4 Circular Motion and Energy PHYS 1800

Lab/Demo 4 Circular Motion and Energy PHYS 1800 Lab/Demo 4 Circular Motion and Energy PHYS 1800 Objectives: Demonstrate the dependence of centripetal force on mass, velocity and radius. Learn to use these dependencies to predict circular motion Demonstrate

More information

Chapter 4. Inequalities

Chapter 4. Inequalities Chapter 4 Inequalities Vannevar Bush, Internet Pioneer 4.1 Inequalities 4. Absolute Value 4.3 Graphing Inequalities with Two Variables Chapter Review Chapter Test 64 Section 4.1 Inequalities Unlike equations,

More information

physicsandmathstutor.com Paper Reference Mechanics M1 Advanced/Advanced Subsidiary Friday 11 January 2008 Morning Time: 1 hour 30 minutes

physicsandmathstutor.com Paper Reference Mechanics M1 Advanced/Advanced Subsidiary Friday 11 January 2008 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference 6 6 7 7 0 1 Paper Reference(s) 6677/01 Edexcel GCE Mechanics M1 Advanced/Advanced Subsidiary Friday 11 January 2008 Morning Time: 1 hour 30 minutes Materials required

More information

2 Representing Motion 4 How Fast? MAINIDEA Write the Main Idea for this section.

2 Representing Motion 4 How Fast? MAINIDEA Write the Main Idea for this section. 2 Representing Motion 4 How Fast? MAINIDEA Write the Main Idea for this section. REVIEW VOCABULARY absolute value Recall and write the definition of the Review Vocabulary term. absolute value NEW VOCABULARY

More information

Mechanics M3 Advanced/Advanced Subsidiary

Mechanics M3 Advanced/Advanced Subsidiary Centre No. Candidate No. Paper Reference 6 6 7 9 0 1 Paper Reference(s) 6679/01 Edexcel GCE Mechanics M3 Advanced/Advanced Subsidiary Wednesday 13 May 2015 Morning Time: 1 hour 30 minutes Surname Signature

More information

Physics 1120: 1D Kinematics Solutions

Physics 1120: 1D Kinematics Solutions Questions: 1 2 3 4 5 6 7 Physics 1120: 1D Kinematics Solutions 1. Initially, a ball has a speed of 5.0 m/s as it rolls up an incline. Some time later, at a distance of 5.5 m up the incline, the ball has

More information

AP Physics Free Response Practice Dynamics

AP Physics Free Response Practice Dynamics AP Physics Free Response Practice Dynamics 14) In the system shown above, the block of mass M 1 is on a rough horizontal table. The string that attaches it to the block of mass M 2 passes over a frictionless

More information

Kinematics 7 Solutions. 7.1 Represent and Reason a) The bike is moving at a constant velocity of 4 m/s towards the east

Kinematics 7 Solutions. 7.1 Represent and Reason a) The bike is moving at a constant velocity of 4 m/s towards the east Kinematics 7 Solutions 7.1 Represent and Reason a) The bike is moving at a constant velocity of 4 m/s towards the east b) For the same motion, a position versus time graph would be a straight line at a

More information

Worksheet for Exploration 6.1: An Operational Definition of Work

Worksheet for Exploration 6.1: An Operational Definition of Work Worksheet for Exploration 6.1: An Operational Definition of Work This Exploration allows you to discover how work causes changes in kinetic energy. Restart. Drag "handy" to the front and/or the back of

More information

Copyright 2015 Edmentum All rights reserved.

Copyright 2015 Edmentum All rights reserved. Copyright 2015 Edmentum All rights reserved. Linear Equations & Graphs 1. A line has a y intercept of and a slope of. Find the equation of the line. A. B. C. D. Evaluate Functions 2. The graph of the function

More information

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills 3.3 Acceleration Constant speed is easy to understand. However, almost nothing moves with constant speed for long. When the driver steps on the gas pedal, the speed of the car increases. When the driver

More information

Section 3.1 Inverse Functions

Section 3.1 Inverse Functions 19 February 2016 First Example Consider functions and f (x) = 9 5 x + 32 g(x) = 5 9( x 32 ). First Example Continued Here is a table of some points for f and g: First Example Continued Here is a table

More information

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s)

RECAP!! Paul is a safe driver who always drives the speed limit. Here is a record of his driving on a straight road. Time (s) RECAP!! What is uniform motion? > Motion in a straight line > Moving at a constant speed Yes or No? Yes or No? Paul is a safe driver who always drives the speed limit. Here is a record of his driving on

More information

Algebra II. A2.1.1 Recognize and graph various types of functions, including polynomial, rational, and algebraic functions.

Algebra II. A2.1.1 Recognize and graph various types of functions, including polynomial, rational, and algebraic functions. Standard 1: Relations and Functions Students graph relations and functions and find zeros. They use function notation and combine functions by composition. They interpret functions in given situations.

More information

Bryn Mawr College Department of Physics Mathematics Readiness Examination for Introductory Physics

Bryn Mawr College Department of Physics Mathematics Readiness Examination for Introductory Physics Brn Mawr College Department of Phsics Mathematics Readiness Eamination for Introductor Phsics There are 7 questions and ou should do this eam in two and a half hours. Do not use an books, calculators,

More information

Lesson 7: Slopes and Functions: Speed and Velocity

Lesson 7: Slopes and Functions: Speed and Velocity Lesson 7: Slopes and Functions: Speed and Velocity 7.1 Observe and Represent Another way of comparing trend lines is by calculating the slope of each line and comparing the numerical values of the slopes.

More information

Speed ( v ) is the distance an object travels during a given time interval divided by the time interval.

Speed ( v ) is the distance an object travels during a given time interval divided by the time interval. v 8.2 Average Velocity Speed ( v ) is the distance an object travels during a given time interval divided by the time interval. Speed is a scalar quantity. The SI unit for speed is metres per second (m/s).

More information

2. If the discriminant of a quadratic equation is zero, then there (A) are 2 imaginary roots (B) is 1 rational root

2. If the discriminant of a quadratic equation is zero, then there (A) are 2 imaginary roots (B) is 1 rational root Academic Algebra II 1 st Semester Exam Mr. Pleacher Name I. Multiple Choice 1. Which is the solution of x 1 3x + 7? (A) x -4 (B) x 4 (C) x -4 (D) x 4. If the discriminant of a quadratic equation is zero,

More information

EQ: How do I convert between standard form and scientific notation?

EQ: How do I convert between standard form and scientific notation? EQ: How do I convert between standard form and scientific notation? HW: Practice Sheet Bellwork: Simplify each expression 1. (5x 3 ) 4 2. 5(x 3 ) 4 3. 5(x 3 ) 4 20x 8 Simplify and leave in standard form

More information

Solutions to the Exercises of Chapter 5

Solutions to the Exercises of Chapter 5 Solutions to the Eercises of Chapter 5 5A. Lines and Their Equations. The slope is 5 5. Since (, is a point on the line, y ( ( is an ( 6 8 8 equation of the line in point-slope form. This simplifies to

More information

Chapter 3.5: Related Rates

Chapter 3.5: Related Rates Expected Skills: Chapter.5: Related Rates Be able to solve related rates problems. It may be helpful to remember the following strategy:. Read the problem carefully. 2. Draw a diagram, if possible, representing

More information

Chapter 1. A Physics Toolkit

Chapter 1. A Physics Toolkit Chapter 1 A Physics Toolkit Chapter 1 A Physics Toolkit In this chapter you will: Use mathematical tools to measure and predict. Apply accuracy and precision when measuring. Display and evaluate data graphically.

More information

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think?

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think? Thrills and Chills Section Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down Florida Next Generation Sunshine State Standards: Additional Benchmarks met in Section SC.91.N..4

More information

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²)

Practice. Newton s 3 Laws of Motion. Recall. Forces a push or pull acting on an object; a vector quantity measured in Newtons (kg m/s²) Practice A car starts from rest and travels upwards along a straight road inclined at an angle of 5 from the horizontal. The length of the road is 450 m and the mass of the car is 800 kg. The speed of

More information

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves 7.1 Ellipse An ellipse is a curve that is the locus of all points in the plane the sum of whose distances r1 and r from two fixed

More information

Mechanics M5 Advanced/Advanced Subsidiary

Mechanics M5 Advanced/Advanced Subsidiary Paper Reference(s) 6681/01 Edexcel GCE Mechanics M5 Advanced/Advanced Subsidiary Friday 4 June 005 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae (Lilac or Green)

More information

Math Precalculus I University of Hawai i at Mānoa Spring

Math Precalculus I University of Hawai i at Mānoa Spring Math 135 - Precalculus I University of Hawai i at Mānoa Spring - 2013 Created for Math 135, Spring 2008 by Lukasz Grabarek and Michael Joyce Send comments and corrections to lukasz@math.hawaii.edu Contents

More information

Algebra II (Common Core) Summer Assignment Due: September 11, 2017 (First full day of classes) Ms. Vella

Algebra II (Common Core) Summer Assignment Due: September 11, 2017 (First full day of classes) Ms. Vella 1 Algebra II (Common Core) Summer Assignment Due: September 11, 2017 (First full day of classes) Ms. Vella In this summer assignment, you will be reviewing important topics from Algebra I that are crucial

More information

Chapter 3. September 11, ax + b = 0.

Chapter 3. September 11, ax + b = 0. Chapter 3 September 11, 2017 3.1 Solving equations Solving Linear Equations: These are equations that can be written as ax + b = 0. Move all the variables to one side of the equation and all the constants

More information

Measurement of Electrical Resistance and Ohm s Law

Measurement of Electrical Resistance and Ohm s Law Measurement of Electrical Resistance and Ohm s Law Objectives In this experiment, measurements of the voltage across a wire coil and the current in the wire coil will be used to accomplish the following

More information

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion.

In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 1 PHYS:100 LECTURE 9 MECHANICS (8) In this lecture we will discuss three topics: conservation of energy, friction, and uniform circular motion. 9 1. Conservation of Energy. Energy is one of the most fundamental

More information