Flow Decomposition and Large Deviations

Size: px
Start display at page:

Download "Flow Decomposition and Large Deviations"

Transcription

1 ounal of funconal analy (1995) acle no. 97 Flow Decompoon and Lage Devaon Ge ad Ben Aou and Fabenne Caell Laboaoe de Mode laon ochaque e aque Unvee Pa-Sud (Ba^. 425) Oay Cedex Fance Receved July We udy lage devaon popee elaed o he behavo a = goe o of dffuon pocee geneaed by = 2 L 1 +L 2 whee L 1 and L 2 ae wo econd-ode dffeenal opeao exendng ecen eul of Do and Soock and Rabehemanana. The man ool he decompoon heoem fo flow of ochac dffeenal equaon poved by Bmu and Kuna. We gve anohe applcaon of flow decompoon n a nonlnea fleng poblem Academc Pe Inc. 1. INTRODUCTION The pupoe of h wok o how how he decompoon heoem fo flow of ochac dffeenal equaon poved by Bmu [4] and Kuna [9] can be ued o oban new lage devaon pncple fo he dffuon geneaed by = 2 L 1 +L 2 when L 1 and L 2 ae wo econd-ode dffeenal opeao and when =. Th poblem now clacal when L 2 f ode (ee Fedln and Wenzell [8] Azenco [1]). I ha alo been eaed when L 2 he Laplacan (Bezudenhou [3]) and when L 1 can be wen a a um of quae of veco feld L 1 = 1 X 2 2 whee he Le algeba geneaed by he X abelan (Do and Soock [7]) o nlpoen (Rabehemanana [11]). Thee auho gve a lage devaon pncple fo he law of he andom vaable R = pacula veon of he condonal law of X = elave o (=B) whee X = a oluon o he Saonovch ochac dffeenal equaon X = =x+= : =1 l _ (X = ) db + : _~ (X = ) db + _~ (X = ) d: (1.1) =1 v x # R n ; v #[1]; v Fo all # [1... ] and all # [... l] _ and _~ ae uffcenly mooh veco feld on R n Copygh 1996 by Academc Pe Inc. All gh of epoducon n any fom eeved.

2 24 BEN AROUS AND CASTELL v B and B ae wo ndependen Bownan moon wh value n R and R l epecvely defned on he Wene pace W=C ([ 1] R ) and W =C ([ 1] R l ). We wll denoe by P (epecvely P ) he Wene meaue on W (epecvely W ). One could wonde whehe a lage devaon pncple fo he law of X = aanable. A a mae of fac no a Do and Soock have poned ou. Indeed he uppo of he law of he nonpeubed dffuon X no compac n geneal. Snce he ae funcon * aocaed o he lage devaon of X = vanhe on he uppo of P he level e [*L] canno be compac. Howeve X = can be condeed a a andom vaable X = : (W P) (L p (W C x ([ 1] R n )) (=B) (B X. = (x)). In h cae hee no obvou conadcon o have a lage devaon pncple fo he law P = of X =. The uppo of P now a pon of L p (W C x ([ 1] R n )) whch obvouly compac. And we do oban a lage devaon pncple fo he law of X =. Ou eul conan he eul of [7 11] and exend hem o he geneal cae wh no hypohe a all on he Le algeba. The key obevaon he fac ha a conacon pncple can be ued f one ha wo ngeden 1. he decompoon pncple: we ecall h eul n Secon a lage devaon pncple fo flow of ochac dffeenal equaon. Such a lage devaon pncple fo flow ha been obaned by Mlle Nuala and Sanz-Sole [1] and Bald and Sanz-Sole [2]. We need a lgh exenon of o be able o conol devave of he flow. We gve he poof of h lage devaon pncple n Secon 3 and we ge n Secon 4 o he man heoem ha we now ae. Theoem 7. Le P = be he law of he andom vaable X = (P = a pobably meaue on L p (W C x ([ 1] R n ))). Then P = afe a lage devaon pncple wh ae funcon 4 defned fo all z # L p (W E x ) by 4(z)=nf { 1 2 &h&2 H h # H uch ha P a.e. z =x+ : =1 _ (z ) h4 d+ : l =1 _~ (z ) db + _~ (z ) d =.

3 FLOW DECOMPOSITION 25 Th conan a lage devaon pncple fo he condonal law R = of X = elave o (=B) (a n Do and Soock [7] and n Rabehemanana [11]) a a val conacon pncple how. Fnally n Secon 5 we how how h mehod can be ued fo a poblem n nonlnea fleng exendng eale eul of Do [6] and Rabehemanana [11]. 2. FLOW DECOMPOSITION FOR STOCHASTIC DIFFERENTIAL EQUATIONS We menon hee he eul of [4 9] fo lae ue. Fo # [... k] le X and Y be C m b veco feld on Rn (ha dffeenable up o ode m bounded wh bounded devave). Le u conde he Saonovch dffeenal equaon k dx = : =1 x =x. X (x ) db +X (x ) d Then hee a veon of ( x) [ x (x) whch a flow of C m -dffeomophm n R n ha an elemen of D n whee [1]_R D #{: n R n (x)[ (x) uch ha \ #[1] n a C m -dffeomophm of R n \l # N n l m l (x) l ( ) &1 x l x l = (x) ae connuou n ( x). Le (x) denoe h eenally unque veon of x (x). Almo uely fo all # [ 1] we can hen defne he ochac veco feld &1 &1 V Y ( y)= \ x (y) Y + ( ( y)). Le u conde hen he Saonovch dffeenal equaon k dy = : =1 y = y. &1 V Y ( y ) db +&1 V Y ( y ) d (2.2)

4 26 BEN AROUS AND CASTELL Theoem Thee a ong oluon o (2.2) defned on [ 1]. 2. Le z # ( y ( y)). Then z oluon o he ochac dffeenal equaon k dz = : (X +Y )(z ) db +(X +Y )(z ) d =1 (2.3) z = y. Poof. Le! be he ong oluon of Eq. (2.3). Le u conde he poce defned fo all #[1] by y~ = &1 (! ). Then by he genealzed Io^ fomula (ee Theoem 4.1 n [4]) y~ oluon o Eq. (2.2). Theefoe 1 and 2 ae poved. K Theoem 1 ha Io^ counepa. Theoem 2. Le u defne v v v (X +Y )* (x)#x (x)+y (x)+ 1 2 : k Y *(x)=y (x)+ 1 2 : k =1 Y (x)=y *(x)+ 1 2 : k & 1 2 : k =1 =1 =1 Y $(x) Y (x). (X +Y )$ (x)(x +Y )(x). &1 V [X Y ](x) 2 x 2 (&1 V Y (x) &1 V Y (x)) whee [X Y] he Le backe of he veco feld X and Y. Le u conde he Io^ ochac dffeenal equaon Then k dy = : =1 y = y. &1 V Y ( y ) $B + &1 V Y ( y ) d (2.4) 1. Thee a ong oluon o (2.4) defned on [ 1]. 2. Le z = ( y ). Then z oluon o he Io^ ochac dffeenal equaon k $z = : (X +Y )(z ) $B +(X +Y )* (z ) d. =1 Poof. The ame a Theoem 1. K

5 FLOW DECOMPOSITION 27 We wll ue hee Theoem 2 n he followng conex: v k=l+; v B=(B 1... B B 1... B l ); v \ # [1... ] Y =; v \ # [+1... l+] X = o ha Eq. (1.1) pl n wo ochac dffeenal equaon one dven by he Bownan B he ohe by he Bownan B. 3. LARGE DEVIATIONS FOR STOCHASTIC FLOWS 3.1. Noaon and Reul In h econ we wll conde he Saonovch dffeenal equaon d! = == : _ (=! = ) db =1 (3.5)! = =x whee v _ (= } ) ae C m+2 b veco feld on R n fo ome mn+1. We wll aume ha _ (= } ) convege n C m b unfomly on compac ube of Rn o ome veco feld _ when = goe o. v B a andad Bownan moon defned on he Wene pace (W P) whee W he pace C ([ 1] R n ) wh he opology of unfom convegence and P he Wene meaue. Le D n be defned a n Secon 2. D n wll be endowed wh he C k o k C -opology defned fo all km by v n w C k ff \K compac ube of R n v n w C k up x#k; #[1]" : x : : k (x)& : n x : ff \K compac ube of R n up x#k;#[1]" x : : k : (x)& : n x : (x) " (x) " ww n " : ( + ) &1 (x)& : ( n )&1 (x) " x : x ww. : n

6 28 BEN AROUS AND CASTELL Le 8 = (x) be he veon of!=(x) whch an elemen of Dn. Ou pupoe o how a lage devaon pncple fo he law of 8 = (pobably on D n wh he C k -opology). Mlle Nuala and Sanz-Sole [1] Bald and Sanz-Sole [2] have aleady hown h eul fo he C opology. Befoe ang he eul we wll noduce fuhe noaon. Le H be he CameonMan pace ove R [1]R H ={h: h()= h aboluely connuou wh epec o= Lebegue meaue uch ha 1 &h4 & 2 d<. H a Hlbe pace fo he nne poduc (h g) H = 1 h4 g* d. Gven h # H we aocae o (3.5) he odnay dffeenal equaon dx (h)= : =1 x (h)=x. _ (x (h) h4 d (3.6) Unde he aumpon made on he veco feld x(h) an elemen of D n. Thu we defne a map F: H D n (3.7) h [ ( x [ x (h)(x)). Ung he eul of Bmu [4] F can be exended n a meauable way o W: P-a.e. F ( )(x) wll be a oluon o he ochac dffeenal equaon d! = : =1 $ =x _ (! ) db Th exenon wll ll be denoed by F. We defne now he ae funcon aocaed o he lage devaon of he ochac flow 8 =. Le be n D n. I()#nf[ 1 2 &h&2 H h # H F(h)=]. (3.8) When A a ube of D n we wll denoe by I(A)=nf[I() # A]. We have hen he followng eul. Theoem 3. D n povded wh he C k -opology fo ome km&1& [n2]. Then 1. I lowe em-connuou and fo all L> [IL] a compac ube of D n.

7 FLOW DECOMPOSITION Fo all # D n uch ha I()< hee ex a unque h # H uch ha =F(h) and I()= 1 2 &h&2. Moeove f _(x)=(_ H 1(x)}}}_ (x)) and f V# x # R n Ke _(x) hen d-a.e. h4 # V =. 3. \A/D n &I(A1 )lm nf = = 2 log P(8 = # A)lm up = 2 log P(8 = # A)&I(A ). = Thee eul eman ue when D n povded wh he C k -opology Poof of Theoem 3 Lage Devaon fo he C k -opology F of all le u noe ha he map F defned by (3.7) connuou fom H #[h # a H &h& H a] endowed wh he unfom convegence o (D n C k ). Le ndeed f and g be wo funcon n H a and le x=f( f ) and y=f( g). Then &x (x)&y (x)& 2 2 " 2Ka 2 (_(x )&_(y )) f4 d " 2 +2 " &x & y & 2 d+2 " And an negaon by pa hen yeld _(y )( f4 & g* ) d " 2 _(y )( f4 & g* ) d " 2. &x & y &K &_( y )( f & g )&+ &_$( y ) y* ( f & g )& d +2Ka 2 &x &y & 2 d K & f & g& \ 1+ +2Ka 2 &x &y & 2 d. By Gonwall' lemma we have hen: &_$( y )&&_(y )g*&d + &x &y &K & f & g& (1+Ka). The ame agumen hold fo he devave of x& y. Theefoe Lemma 1.3 [1 p. 69] enue ha I a ``good'' ae funcon. Moeove when I()< he nfmum n he defnon of I eached.

8 3 BEN AROUS AND CASTELL We ae now gong o pove ha he pon whee he nfnum eached unque. So le # D n be uch ha I()<. Le h # H be uch ha I()= 1 2 &h & 2 H and =F(h ). Le u defne he map 6: H H (3.9) h [ 6h: 6h = P V =h4 d whee P V = he ohogonal poecon on V =. Then eay o check ha v &6h& H &h& H ; v &6h& H =&h& H d-a.e. h4 # V = ; v F(h)=F(6h). Thu = F(h )=F(6h ) and &h & H = &6h & H. Theefoe d-a.e. h4 ()#V =. Le u aume now ha =F(h )=F(h 1 ) I()=12 &h & 2 H =12 &h 1& 2 H. The equaon afed by F(h 1 ) and F(h ) yeld \ \x _( (x)) h4 ()=_( (x)) h4 1(). Ung he dffeomophm popey of we deve ha \ \x _(x)(h4 ()&h4 1())=. Theefoe h4 ()&h4 1()#V. Bu we aleady know ha h4 ()&h4 1()#V =. Theefoe h =h 1 and 2 poved. Followng Azenco [1] we begn wh he ``quaconnuy'' of he map F n ode o oban 3. Lemma 4. \K compac ube of R n \a> \L> \R> hee ex b and = > uch ha \bb \== \h # H &h& H a P[&8 = &F(h)& C k ([1]_K) R; &=B&h&b]exp(&L=2 ). Poof of Lemma 4 Thoughou he pape C a conan whch can dffe fom one expeon o he ohe. Snce mk+1+[n2] Sobolev' embeddng heoem gve &}& C (K)C &}& k W m2 (K) whee W m2 he pace of funcon dffeenable up o ode m whoe devave ae quae negable wh epec o Lebegue meaue. W m2 (K) a Hlbe pace fo he nom & f & W m2 (K)= K : : m" : f x :" 2 dx.

9 FLOW DECOMPOSITION 31 Theefoe P[&8 = &F(h)& C k ([1]_K) R; &=B&h&b] P _ up &8 = &F (h)& W m2 (K) R #[1] C ;&=B&h&b &. So we have o how ha \K compac e of R n \a R L> hee ex b = > uch ha bb == &h& H a mply 6 1 #P[ up &8 = &F (h)& W m2 (K)R; &=B&h&b]exp(&L= 2 ). #[1] In he followng we wll denoe { = R =nf[ uch ha &8= &F (h)& W m2 (K)R]. Then 6 1 =P[up #[1] &8 = 7{ = &F R 7{ = (h)& W R m2 (K)R; &=B&h&b]. Snce he veco feld _ ae C m b one can ealy check ha hee a conan M (dependng on a and K) uch ha up #[1] up &F (h)& W m2 (K)M. h; &h& H a Fom he defnon of { = R eul hen ha up { = R &8= & W m2 (K)R+M. Theefoe nce mn+1 poved n Appendx 1 ha hee a conan C uch ha \ # [1... ] \= \ #[1] &_ (8 = 7{ = R )&_ (F 7{ = R (h))& W m2 (K)C &8 = 7{ = R &F 7{ = R (h)& W m2 (K) &_ (= 8 = 7{ = R )&_ (8 = 7{ = R )& W m2 (K)C&_ (=})&_ (})& C m (B R+M ) (whee B R+M he ball of adu R+M n R n ). Thu \ #[1] &8 = 7{ = R &F 7{ = R (h)& W m2 (K) ": =1 7{ = R + : 7{ =1 + : _ (= 8 = ) d(=b &h ) "W m2 (K) = R = R =1 7{ &_ (= 8 = )&_ (8 = )& W m2 (K) h4 d &_ (8 = )&_ (F (h))& W m2 (K) h4 d

10 32 BEN AROUS AND CASTELL " : =1 7{ = R +C _a : + 7{ = R =1 _ (= 8 = ) d(=b &h ) "W m2 (K) &_ (=})&_ (})& C m (B R+M ) &8 = &F (h)& W m2 (K) h4 d &. I follow fom Gonwall' lemma ha \ #[1] up &8 = 7{ = &F R 7{ = (h)& W R m2 (K) #[1] Theefoe 6 1 P _up " : +P _ : C \ up #[1]" : =1 + : =1 =1 7{ = R =1 7{ &_ (=})&_ (})& C m (B R+M )+. = R _ (= 8 = ) d(=b &h ) "W m2 (K) _ (= 8 = ) d(=b &h ) R "W m2 (K) 2C ;&=B&h&b & &_ (=})&_ (})& C m (B R+M ) R 2C ;&=B&h&b &. Fom he unfom convegence of _ (= }) o_ ( } ) we can chooe = uch ha == O &_ (= })&_ (})& <R2C. C m (B R+M ) Thu we ae led o how ha \K compac of R n \R R$ L a> hee ex b and = uch ha bb == &h& H a mply 6 2 #P _up " : exp \&L = 2+ = R =1 7{ _ (= 8 = ) d(=b &h ) R$; &=B&h&b & "W m2 (K) An negaon by pa yeld 6 2 P 1 +P 2 +P 3 +P 4 whee P 1 =P _ up { = R : =1 =B &h &_ (= 8 = )& W m2 (K)> R$ 4 ;&=B&h&b & P 2 =P _up " : (_ (= 8 = ) =B ) = 7 { > R$ =1 R"W m2 (K) 4 ;&=B&h&b &

11 FLOW DECOMPOSITION 33 P 3 =P _up " : = R =1 7{ > R$ 4 ;&=B&h&b & whee $ denoe he Io^ dffeenal P 4 =P up _=2 " : =1 7{ > 2R$ 4 ;&=B&h&b &. _ $(= 8 = ) _ (= 8 = )(=B &h ) =$B "W m2 (K) = R (=B &h ) Tace(_*_ "_)(= 8 = ) d "W m2 (K) Teamen of P 1. Snce up &8 = 7 { = & W R m2 (K)R+M follow fom Appendx 1 ha hee a conan C uch ha \=1 \ # [1... ] up &_ (= 8 = )& W m2 (K)C. Theefoe P 1 P[Cb>R$4]= fo uffcenly mall b. Teamen of P 2. : =1 (_ (= 8 = ) =B ) = 7 { ==2 : R = R =1 7{ _ $(= 8 = ) _ (= 8 = ) d. Appendx 1 yeld hen a conan C uch ha P 2 P[= 2 C>R$4].e. P 2 = fo = 2 R$4C. Teamen of P 4. mall. P 4 P[C= 2 b>2r$4]= fo = and b uffcenly Teamen of P 3. The conol of P 3 gven by an exponenal nequaly fo mangale wh value n ome Hlbe pace poved n Appendx 2. Le (e n ) n be an ohonomal ba n W m2 (K). Le u denoe v M = (x)= _$ (= 8 = ) _ (= 8 = )(=B &h ) =$B. v T = =nf[ uch ha &=B b &h &b] v S = =nf[ uch ha &M = & R$ W m2 (K)R$] v {={ = R 7T= b 7S=. R$ We have hen o how ha \K compac of R n \L R R$ a> hee ex b and = uch ha \== \bb \h &h& H a 6 3 =P[ up &M = & 7{ W m2 (K)R$]exp(&L= 2 ). #[1]

12 34 BEN AROUS AND CASTELL Fo { M = # W m2 = n K and f we denoe M #(M = e n) can be checked ha M = n =: (_ $(= 8 = (}))_ (=8 = (}))e n)(=b &h ) =$B by wng he ochac negal a L 2 -lm of Remann um. Theefoe (M =n M =m ) = : l = 2 (_ $(= 8 = ) _ (= 8 = ) e n)(=b &h ) _(_ $(= l 8 = ) _ (= 8 = ) e m)(=b l &hl ) d. Th allow u o conol he quane appeang n Appendx 2. N : 7 { n m Moeove N : k=1 M = n M =m : d(m = n M = m ) =: = 2 7{ 2 ( $(= 8 = ) _ (= 8 = ) P N(M = ))(=B &h ) d & (whee P N he ohogonal poecon on Span[e N]) C= 2 b 2 : 7 { : &_ $(= 8 = ) _ (= 8 = )&2 &P W m2 (K) N(M = )&2 d W m2 (K) C= 2 b 2 R$ 2 by Appendx 1. (M =k ) 7{ =: = 2 7{ k _ : 2 (_ $(= 8 = ) _ (= 8 = ) e k)(=b &h ) d & C= 2 b 2 : 7 { : &P N (_ $(= 8 = ) _ (= 8 = ))&2 d W m2 (K) C= 2 b 2 by Appendx 1. Choong = 2 R$ 2 Cb 2 we oban by Appendx 2 &= 2 b 2 C) exp _&(R$2 8C= 2 b 2 R$ & exp \ 2+ &L 2 = fo b and = uffcenly mall. The poof of Lemma 4 hen complee. Fom Lemma 4 and fom he connuy of F fom H a o (Dn C k ) nequale of lage devaon ae now clacal. We efe he eade fo nance o Azenco [1]. K

13 FLOW DECOMPOSITION 35 Lage Devaon fo he C k -Topology. In he followng he & ndex wll concen he C k -opology. Ung he dffeenal equaon afed by he nvee flow eay o ee ha he funcon F defned by (3.7) connuou fom H o a (Dn C k ). Theefoe we deve a pevouly ha I a good ae funcon n C k opology. Now \A/D n A /A and A1 /A1 o ha I(A )I(A ) and I(A1 )I(A1 ). Bu h doe no allow u o conclude. The man pon ha when no a C m -dffeomophm I()=. Theefoe I(A )=nf[i() # A and C m -dffeomophm]. Aume hen ha I(A )< (he cae I(A )= obvou). Le # A C m -dffeomophm be uch ha I()=I(A ). Le n be a equence n A uch ha n w Ck. Snce a C m -dffeomophm we deduce fom he fac ha [ &1 an open mappng ha n w C k. Theefoe # A and I(A )I()=I(A ). A mla agumen hold fo he open e. K 4. LARGE DEVIATIONS FOR PERTURBED STOCHASTIC DIFFERENTIAL EQUATIONS We wll be neeed n h econ n he peubed ochac dffeenal equaon (1.1); (1.1) wll be wen n Io^ fom dx = ==2 _ *(X = ) d+= : X = =x =1 _ (X = ) $B +_~ *(X = ) d+ : l =1 _~ (X = ) $B (4.1) whee _ *( y)= 1 2 : =1\ _ x (y) _ ( y) + _~ *( y)=_~ (y)+ 1 2 : l =1\ _~ x (y) _~ (y) +: v B and B ae wo ndependen andad Bownan moon epecvely defned on he Wene pace W=C ([ 1] R ) and W = C ([ 1] R l ). W and W ae endowed wh he opology of unfom convegence and he Boelan _-feld. We wll denoe by P (epecvely P ) he Wene meaue on W (epecvely W ) and by P he meaue PP on W_W.SoE(epecvely E E) wll be he expecaon unde P (epecvely P P).

14 36 BEN AROUS AND CASTELL v E x wll be he pace C x ([ 1] R n ) of all connuou pah ang fom x wh value n R n endowed wh he unfom convegence. v _ and _~ ae aumed o be n C k b wh kmax(n+1 4+[n2]) ``Peudo'' Lage Devaon fo X = We deve fom Theoem 3 ome exponenal lowe and uppe bound fo X = exendng he eul of [7 11]. Thoughou we wll denoe by H l he CameonMan pace aocaed o he Wene pace W. When h # H and h # H l G(h h ) wll be he oluon o he odnay dffeenal equaon x =x+ : =1 _ (x ) h4 d+ l : =1 Popoon Le A be an open ube of E x : _~ (x ) h4 d+ _~ (x ) d. lm nf = 2 log P(X = # A) = &nf[ 1 2 &h&2 h # H H uch ha _h # H l G(h h )#A] 2. Le A be a cloed ube of E x : lm up = 2 log P(X = # A) = &nf { 1 2 &h&2 H h # $> [g#h _h #H l G(gh )#A $ ] =. The cloue aken wh epec o he unfom convegence and A $ =[y#e x _z#a&z&y&<$]. The eade efeed o Secon 4.3 fo he poof of Popoon Lage Devaon fo a Peubed Sochac Dffeenal Equaon Ung he Bu kholdedavegundy nequaly eay o check ha X = n all L p (W_W E x ). Bu ha aleady been poned ou ha one can no expec a lage devaon pncple fo he law of X =. Howeve Fubn' heoem allow u o conde he andom vaable X = defned fo p2 by X = : WL p (W E x ) (4.12) [ X = ( }).

15 FLOW DECOMPOSITION 37 Le P = be he law of X = (pobably meaue on L p (W E x )). Ou pupoe o how a lage devaon pncple fo he famly (P = ) =. Th wll be done by wng he oluon o Eq. (1.1) n em of he ochac flow defned by he ochac dffeenal equaon (3.5) and by applyng he conacon pncple. Befoe ang he eul we defne he ae funcon. Le be n D n. We aocae o he veco feld n R n ~ ~ ( y )=&1 V _~ ( y) \ # [1... l] ( y )=&1 V _~ *( y)& 1 l 2 =1\ : &1 x (y) + We conde hen he Io^ ochac dffeenal equaon _ 2 x ( y)(~ ( y ) ~ ( y )) 2 &. (4.13) dz~ z~ l =~ ( z~ ) d+ : = x =1 ~ ( z~ ) $B (4.14) Whou aumpon on he exence of a ong oluon o (4.14) no enued. So we wll ec ouelve o flow of dffeomophm n D n b whee ={ # D n up D n y # R n #[1]" m ( ) &1 ( y) m=1 2 = x m "< b (4.15) up y # R n #[1]" m x (y) " < m=123. m D n an open e of b Dn wh he C 3 opology. We defne he opology on D n a he nduced opology. When n b Dn he veco feld ~ b ae bounded and Lpchz n y o ha (4.14) ha a ong oluon. Moeove eay o ee ha E (up #[1] & (z~ ) & p )<. Fo p2 we can hen conde he map D D: D n b L p (W E x ) [ ( ~ [.(z~. ( ~ ))). (4.16) D allow u o anfe on L p (W E x ) he ae funcon I defned by (3.8). \z # L p (W E x ) 4(z)=Inf[I() # D n b D()=z] (4.17) (whee Inf(<)=+).

16 38 BEN AROUS AND CASTELL When A a ube of L p (W E x ) we wll denoe by 4(A)= Inf[4(z) z # A]. Ung he expeon of he ae funcon I we have he followng expeon fo 4. Popoon 6. Fo all z # L p (W E x ) 4(z)=nf { 1 2 &h&2 H h # H uch ha P a.e. \ z =x+ : _ =1 (z ) h4 d l + : =1 _~ (z ) db + _~ (z ) d =. (4.18) Poof. I ealy een fom he expeon (3.8) of I ha 4(z)=nf[ 1 2 &h&2 H h # H F(h)#D n b DbF(h)=z] whee F he map defned by (3.7). Now ung he odnay dffeenal equaon afed by he devave of F(h) and F(h) &1 one can deduce fom Gonwall' lemma ha F(H ) ncluded n D n b. Fuhemoe Theoem 2 how ha D b F(h) a oluon o he ochac dffeenal equaon z =x+ : =1 l _ (z ) h4 d+ : =1 _~ (z ) db + _~ (z ) d. K Once he ae funcon 4 defned we can ae he lage devaon pncple fo he famly (P = ). Theoem 7. v 4 a good ae funcon. v \A/L p (W E x ) &4(A1 )lm nf = = 2 log P = (A)lm up = 2 log P=(A)&4(A ). (4.19) = Befoe povng Theoem 7 we would lke o undelne ha exend o he nonnlpoen cae he eul of Do and Soock [7] when he veco feld _ commue and hoe of Rabehemanana [11] when he Le algeba geneaed by he _ nlpoen. In hee wo pape a pacula veon R =} of he condonal law of he poce X = elave o (=B) condeed and a lage devaon pncple obaned fo he law Q = of he andom vaable # W [ R = =B( ) # M 1 (E x ) (Q = an elemen of M 1 (M 1 (E x ))).

17 FLOW DECOMPOSITION 39 Applyng he conacon pncple we deduce h lage devaon pncple fom Theoem 7 whou nlpoence aumpon. Coollay The map D can be exended o F(W) whee F defned by (3.7). 2. When # F(W) le N be he law of he poce D(). Le u defne R =B by N F(=B). Then R =B a veon of he condonal law of X = elave o (=B). 3. When + an elemen of M 1 (E x ) le u defne 4 (+)=nf[ 1 2 &h&2 h # H H uch ha + he law of he poce z oluon o (4.18)]. If _=(_ 1 }}}_ ) a conan max uch ha a= * nveble hen 4 2 (+)={1 1 + * &E + ( )&E + (_~ *( ))& 2 d f + # a &1 [Rh h # H ] ohewe. 4. Le Q = be he law of he andom vaable [ R =B( ) and le A be a ube of M 1 (E x ). Then &4 (A1 )lm nf = = 2 log Q = (A)lm up = 2 log Q = (A)&4 (A ). (4.2) = Poof of Coollay 8. 1 and 2 ae conequence of Theoem 2 whee poved ha when n F(W) Eq. (4.14) ha a ong oluon defned on [ 1] and ha P-a.e. \ #[1] X = ( ~ )=D(F(=B( ))) ( ~ ). Saemen 3 que obvou nce f +=R h hen akng he expecaon n (4.18) yeld * Snce &E + ( ) * E + ( )=x+ _h4 d+ E + _~ *( ) d. * &E + (_~ *( ))& 2 a &1=nf[&x&2 _x=e + ( ) &E + (_~ *( ))] 1 2 &h&2 H &E +( )&E + (_~ *( ))& 2 a &1 d. Th nequaly beng ue fo all h uch ha +=R h alo hold fo 4 (+). Moeove le P be he ohogonal poecon on G#(Ke(_)) = and defne 6h by 6h = Ph4 * * d; hen +=R 6h _6h=E + ( )&E + (_~ *( )). Bu nce * nveble _ G : G R n nveble and * 6h=_ &1 (E * G +( )&E + (_~ *( ))).

18 4 BEN AROUS AND CASTELL Thu &6h& 2 H = 1 * &E + ( )&E + (_~ *( ))& 2 (_ G _* G ) &1 = 1 * &E + ( )&E + (_~ *( ))& 2 a &1 and 4 (+) 1 2 &6h&2 1 H 2 1 &E * +( )&E + (_~ *( ))& 2 a &1 d. 4 deved fom he conacon pncple. Indeed he map L p (W E x ) P = M 1 (E x ) Z [ he law of Z unde P (4.21) connuou when M 1 (E x ) endowed wh he opology of weak convegence. Moeove anfom P = no Q =. K Remak. Le q + ( } ) be he conugaed quadac fom of E + (_( )) E + (_( ))* ha Then Popoon 6 of [7] ay ha 4 2 (+)={1 1 q + ( x)=nf[&w& 2 E + (_( ))w=x]. * q + ( E + ( )&E + (_~ *( ))) d f + # [R h h # H ] + ohewe. I eem ha h aeon fale. Le u conde he cae v n==l=1; v _~ #1; _(x)=x; _~ =; v x=. Then he law + of he OnenUhlenbeck poce dz =z d+$b can be expeed a R h wh h =. Fo all E(_(z ))=E(z )=. Thu q + ( x)= { + f x= ohewe 1 * q + ( E + ( )&E + (_~ *( ))) d=. Bu f 4 (+)= hen +=R ; ha + he law of he Bownan moon.

19 FLOW DECOMPOSITION Poof of Popoon 5 and Theoem 7 Lemma 9. When D n b povded wh he C 3 opology he map D defned by (4.16) connuou. Poof of Lemma 9. uch ha n w C 3 Le n and be flow of dffeomophm n D n b &D( n )&D()& L p (W E x )=E [ up & n(z~ n )& (z~ )& p ] 1p T 1 +T 2 #[1] whee T 1 =up y " n x ( y) " E [up &z~ n & z~ & p ] 1p T 2 =E [up & n (z~ )& (z~ )& p ] 1p. Teamen of T 1. The f devave of n convege unfomly on compac e of [ 1]_R n o he f devave of (whch ae bounded). Hence up n y &( n x)( y)&<+. We have now o how ha E [up &z~ n ] www n +. Fo # [ 1] le f n ()=E [up #[] &z~ ] 1p. The angle nequaly n L p and he convexy of x [ x p fo p1 yeld f n ()E _ &~ n ( z~ n )&~ n ( z~ )& p d & 1p +E _ &~ n ( z~ )&~ ( z~ )& p d & 1p l +E _ up #[]" =1 p& : 1p (~ n (u z~ n )&~ ( u z~ )) $B & u u u. Ung he Bu kholdedavegundy nequaly hee ex a conan C uch ha l #[]" =1 : E _ up CE _\ (~ l : =1 p& 1p n (u z~ n )&~ ( u z~ )) $B & u u u &~ n ( u z~ n )&~ ( u z~ )& 2 u u du + p2 1p &

20 42 BEN AROUS AND CASTELL l C : =1 E _\ &~ l +C : E _\ =1 l C : =1 u n y" ~ n ( y ) x n (u z~ n )&~ n u (u z~ )& 2 n du + p2 1p & &~ n (u z~ u )&~ ( u z~ u ) & 2 du + p2 1p & " E _ &z~ n & z~ & p u u du & 1p l +C : E _ &~ n (u z~ u )&~ ( u z~ u )& p du & 1p. =1 Bu E [ &z~ n & z~ & p u u du] 1p ( f n(u) p du) 1p 3. Fuhemoe he C convegence of n o mple he unfom convegence on compac e of [ 1]_R n of ~ n and f devave o ~ and f devave whch ae bounded nce an elemen of D n. Theefoe b up n y &~ n ( y )x& <+. Thu hee ex a conan C uch ha f p ()C n _ l f p () d+ : n Gonwall' lemma yeld hen = \ #[1] f p n ()C : l and we have o how ha = E \ 1 &~ n (u z~ )&~ ( u z~ )& p u u du +&. E \ 1 &~ n (u z~ )&~ ( u z~ )& p n u du + ec \ # [... l] E \ 1 &~ n (u z~ u )&~ ( u z~ u )& p du + www. n + Le R be a pove eal numbe and B( R) he ball of adu R n R n E \ 1 &~ n (u z~ )&~ ( u z~ )& p u u du + up #[1]y#B(R) &~ n p ( y )&~ ( y )& +2 p&1 E [1 up #[1] &z~ & R up (&~ n ( y )& p + &~ ( y )& p ]. y

21 FLOW DECOMPOSITION 43 The convegence of n o mple ha up n y (&~ n < ; hu hee a conan C uch ha E \ 1 &~ n (u z~ u )&~ ( u z~ u ) & p du + up #[1]y#B(R) ( y )& + &~ ( y )& ) &~ n ( y )&~ ( y )& p + CP ( up &z~ & R ). #[1] Le '>. Snce z~ oluon o a ochac dffeenal equaon wh bounded coeffcen we can fnd R uch ha CP (up #[1] &z~ & R )< '2. Le n # N be uch ha \nn up #[1]y#B(R) &~ n ( y )& ~ ( y )& p < '2. Then fo nn E ( 1 &~ n (u z~ )&~ ( u z~ ) & p u u du)<'. Teamen of T 2. Snce n and ae elemen of D n and b n w C 3 one can chooe conan K n and K uch ha v \ #[1]\y#R n v up n K n <+. Theefoe T p 2 up y # B(R) & n (y)&k n(1+&y&) & (y)&k(1+&y&); & n (y)& (y)& p +C (up K n +K) E [up (1+&z~ & p ) 1 up &z~ & p > R ] n up & n ( y)&( y)& p y # B(R) +CE (up (1+&z~ & 2p )) 12 P [up < &z~ & > R ] 12. Le '>. Le R be uch ha he econd em le han '2. Fom he unfom convegence of n o we can hen fnd n uch he f em le han '2. Lemma 9 follow. K We ae now able o pove Theoem 7 and Popoon 5. The key o we X = n em of he ochac flow defned by (3.5) ung he map D and hen o apply he conacon pncple. The only echncal pon ha he pobably fo he ochac flow o be n D n b cly le han

22 44 BEN AROUS AND CASTELL one. So we wll have o uncae he veco feld _. Fo all R> we appoxmae he veco feld _ by ome C k veco feld b _R uch ha _ R ( y)= f &y&2r _ R (y)=_ (y) f &y&r. Le X = R be oluon o he Saonovch ochac dffeenal equaon =x+= : =1 X = R l + : =1 _ R (X=R ) db _~ (X =R ) db + _~ (X = R ) d. A long a X = ay n B( R) X =R =X =. Moeove X = and X =R ae oluon o ochac dffeenal equaon wh bounded coeffcen. Theeby one can fnd conan C R > uch ha fo RR and =1 P(up &X = &R)C exp(&r 2 C ) E(up &X = R &X = & p )C exp(&r 2 C ). (4.22) The advanage n condeng X = R nead of X = ha f 8 = R he ochac flow aocaed o he ochac dffeenal equaon d! = R = ) db 8= R # D n nce b 8= R (x)=x wheneve x B( 2R). = =1 _R (!=R Poof of Popoon 5. The lowe bound ha aleady been poved n [7] and n [11] n he geneal cae. So we only gve he poof of he uppe bound. Le A be a cloed ube of E x. Le u fx L> and = =LR (whee R choen o ha (4.22) hold). Then fo == P[X = # A]P[X =L= # A]+P[up &X = &L=] P[D(8 = L= )(B )#A]+C exp(&l 2 C = 2 ) E[N 8 = L= (A)]+C exp(]&l 2 C = 2 ). We ecall ha N 8 he law of he poce D(8) o ha N 8 (A)1. Theefoe P[X = # A]P[N 8=L= (A)>]+C exp(&l 2 C = 2 ).

23 FLOW DECOMPOSITION 45 Noaon ae he ame a n Coollay 8. The veco feld _ L= convege n C m unfomly on compac e o he veco feld _ b. Fom Theoem 3 eul hen ha lm up = 2 log P[N 8 =L= (A)>] = &nf[ 1 2 &h&2 F(h)#[ # H F(W)&Dn b N (A)>]]. Bu F(W)/F(H ) (cf. [4]) and he connuy of he map D yeld [ # F(W)&D n b N (A)>]/[ # F(H ) N (A)>] / $> / $> F[h # H N F(h) (A $ )>] F[h # H _h # H l G(h h )#A $ ]. The la ncluon gven by he uppo heoem fo dffuon nce N F(h) nohng bu he law of he dffuon defned by (4.18). Le B $ #[h # H _h # H l G(h h )#A $ ]. I eman o how ha I 1 #nf {12 &h&2 H h # $> B $= nf { 12 &h&2 H F(h)# F(B $ ) =#I 2. $> Th nequaly obvou when I 2 =+. Theefoe we aume ha I 2 <. Le h # H uch ha I 2 =12 &h& 2 H and uch ha #F(h)# $> F(B $ ). Fo all $> le (h $ ) be a equence n B n $ uch ha $ # n F(h $ n ). Le u defne he map M: F(H ) H [ he unque h uch ha {=F(h) I()=12 &h& 2 H. I poved n Appendx 3 ha M connuou when H endowed wh he unfom convegence. Theefoe M( $ ) M()=h. Bu n M($ n )=6h$ n (whee 6 defned by (3.9)). Moeove eay o check ha 6h $ n # B $. Thu h # $> B $ and I 1 12 &h& 2 =I H 2. K Poof of Theoem 7. F of all eul fom he connuy of D and he conacon pncple ha 4 a ``good'' ae funcon. Poof of he uppe bound. Le A be a cloed ube of L p (W E x ). Le u fx '> L> = =LR (whee R choen o ha (4.22) hold). A ' wll denoe he ube of L p (W E x ) defned by

24 46 BEN AROUS AND CASTELL A ' =[z # L p (W E x ) _y # A &y&z& L p (W E x )'] P = (A)=P(X = #A) P(X =L= # A ' )+P(&X =L= &X = & L p (W E x )>') P(D(8 = L= )#A ' )+P(E (up P(D(8 =L= )#A ' )+ 1 ' p E(up = L= &X &X = & p )>' p ) = L= &X &X = & p ). Fo == 7 1 L=R. We deve fom (4.22) ha he econd em bounded up by C exp(&l 2 C = 2 = L= ). Fom Theoem 3 he law of 8 afe a lage devaon pncple wh ae funcon I. The map D beng connuou we u have o apply he conacon pncple o deve Theefoe \L> \'> lm up = 2 log P(D(8 = L= )#A ' )&4(A ' ). = lm up = 2 log P = (A) &nf(4(a ' ) L 2 C ). = Leng L go o nfny we deve ha \'> lm up = = 2 log P = (A) &4(A ' ). 4 beng a good ae funcon 4(A ' ) ww 4(A). ' Poof of he lowe bound. Le A be an open ube of L p (W E x ). When 4(A)=+ he lowe bound val. So we aume ha 4(A)<+. Le g # A be uch ha 4( g)<+. Le L 1 be uch ha 4( g)<l 1. A beng open we can chooe '> uch ha B( g ')/A. Le u fx L>- C L 1 and = =LR (whee R C ae conan uch ha (4.22) hold). P = (A)P = (B(g ')) P(X =L= # B( g '2); &X =L= &X = & L p (W E x )<'2) P(X =L= # B( g '2))&P(&X =L= &X = & L p (W E x )'2) P(D(8 =L= )#B(g'2))& 2p ' E(up p By he conacon pncple = L= &X &X = & p ). lm nf = 2 log P(D(8 = L= )#B(g'2))&4(B(g '2))&4(g) =

25 FLOW DECOMPOSITION 47 Fo == = L= E(up &X &X = & p )C e &L2 C = 2 ' p 1=2 e&l p 2 fo uffcenly mall =. Fom 4(g)<L 1 follow ha lm nf = 2 log P = (A)&4(g) = Takng he upemum ove A we oban he eul. K 5. LARGE DEVIATIONS IN A NONLINEAR FILTERING PROBLEM Th econ deal wh anohe applcaon of flow decompoon. I concen a nonlnea fleng poblem ha ha been f uded by Do [6] and hen by Rabehemanana [11]. The poblem can be aed a follow. Le u conde he couple gnal-obevaon (X = Y = ) oluon o he yem of ochac dffeenal equaon dx = == : =1 dy = =1(X = ) d+db _ (X = ) db +=2 _~ (X = ) d+ : l =1 _~ (X = ) dy= (5.23) whee X = =x; Y = = v B B ~ afy he ame aumpon a n Secon 4. v 1 a uffcenly mooh funcon fom R n o R l. We wan o oban a lage devaon pncple fo he condonal law of he gnal X = elave o he obevaon Y =. Such a pncple ha been obaned n [6 11] unde ome nlpoence aumpon fo he veco feld. A n Secon 4 we would lke o fee ouelve of hee aumpon by ung flow decompoon and he lage devaon fo ochac flow. A done n [6 11] he f ep o oban uch a pncple o make a change of pobably n uch a way ha he new law of Y = he law of a Bownan moon ndependen of B. So we ae led o oban a lage devaon pncple fo he condonal law of he poce X = defned by (1.1) elave o he Bownan moon B.

26 48 BEN AROUS AND CASTELL 5.1. Lage Devaon fo he Condonal Law of X = Relave o B We begn by decompong he ochac dffeenal equaon (4.1) (o (1.1)). Le be n D n. We aocae o he veco feld ( y)=&1 V _ ( y) \ # [1... ] ( y)=&1 V _*( y)& 1 2 =1\ : &1 x ( y) + 2 x 2 ( y)( ( y) ( y)) &. (5.24) We conde hen he Io^ ochac dffeenal equaon dz = == 2 = ( z ) d+= : =1 z = =x. = ( z ) $B (5.25) ae connuou and locally Lpchz. Thu he aecoe of z = may explode. Nevehele (5.25) defne a map fom W o he pace of explove aecoe E x (R n ) (ee Azenco [1]) E x (R n )=[f:[1]r n _f()=x f connuou: f( )=O\ #[ 1]f()=]. When f # E x (R n ) we defne he exploon me of f a {( f )#nf[ f()=]. We wll ay ha a equence ( f n ) n n E x (R n ) convege o f # E x (R n ) f and only f ( f n ) n convege o f unfomly on compac ube of [ {( f )[. In pacula h mean ha {( f )lm nf {( f n ). Smlaly a n Secon 4 we defne hen he map D : D n L (W E x (R n )) [ ( [.(z. = )) (wh he convenon ()=). Le T = ( d ) denoe he law of he poce D ()(T = ( d ) a pobably meaue on E x (R n )). We wll how a lage devaon pncple fo he famly (T = ( d )) =. A n Secon 3 we begn wh he ``quaconnuy'' of he map = [ D ()(= ).

27 FLOW DECOMPOSITION 49 Popoon 1. Gven h # H and # D n we defne he poce x (h) a he oluon o he odnay dffeenal equaon x (h)=x+ : =1 ( x (h)) h4 d. (5.26) Then \ # D n \K compac e of R n \a> \L> \R> \T #]1] _b= uch ha \== \h # H uch ha &h& H a x (h)([ T])/K P[ up & (z = )& (x (h))&r; 2 &=B&h&b]e&L=. #[T] Poof of Popoon 1. \'> we wll denoe by K ' he e K ' =[y#r n _z#k&y&z&']. Le ' # ] 1[ be uch ha Then up & (y)& (z)&<r. #[1]yz#K 1 &y&z&' P[ up #[T] & (z = )& (x (h))&r; &=B&h&b] P[ up & (z = )& (x (h))&r; up #[T] #[T] +P[ up #[T] P[ up #[1] yz#k 1 & y&z&' +P[ up #[T] =P[ up #[T] &z = &x (h)&';&=b&h&b] & (y)& (z)&r] &z = &x (h)&';&=b&h&b] &z = &x (h)&';&=b&h&b]. &z = &x (h)&'] So we ae led o how ha \K compac ube of R n \T # ] 1] \a L> \R> ee ex = b> uch ha \== and \h # H &h& H a x (h)([ T])/K P[ up &z = &x 2 (h)&r;&=b&h&b]e&l=. #[T] Cae h=. We wll need he followng lemma whch ae he quaconnuy n he cae h=.

28 5 BEN AROUS AND CASTELL Lemma 11. Gven c: [1]_R n R n n C k we defne he pocee z = and x a he oluon (n E x (R n )) o he equaon z = = x + c( z x = =x+ c( x ) d. ) d+= 2 = ( z ) d+= : =1 ( z = ) $B Then \ # D n \L R> \T # ] 1] \K compac ube of R n uch ha x ([ T])/K _b = uch ha \== = P[ up &z & x & R; 2 &=B&b]e&L=. #[T] Poof of Lemma 11. Le % = R be he oppng me % = R=nf[ uch ha &z = & x & R]. When % = 7 T z = R # K R. Theefoe {(z = )>% = R7TP-a.e. Fuhemoe Fo all % = R 7 T &z P[ up &z #[T] =P[ = & x & &c( z = & x up % = R 7 T &z & R; &=B&b] = & x & R; &=B&b]. = )&c( x )& d+=2 += " =1 : ( z = ) $B " c up y # K R" x ( y) " &z + " = =1 : ( z = ) $B " & ( z = ) & d = & x & d+=2 up & ( y)& y # K R. By Gonwall' lemma we oban ha fo ome conan C (dependng on K and R) = up &z % = & x & C \ = 2 + up 7T" = : R 7T % = R =1 ( z = ) $B"+.

29 FLOW DECOMPOSITION 51 Theefoe P[ up % = R 7 T &z = & x & R; &=B&b] P C R 2& +P _ up T" = : ( z = _=2 % = R 7 =1 ) $B " R 2C ; &=B&b &. The f em vanhe when =<(R2C) 12. Thu we ae led o how ha \L R R$> _b = uch ha == O P _ up T" = : ( z = % = R 7 =1 ) $B " R$; &=B&b & 2 e&l=. Fo all nege n we defne v k =kn (k=... n). v n ( y)=( k y) \y # R n \ #[ k ; k+1 [. n = = v z = z k \ #[ k ; k+1 [. Le L be a compac e n R n uch ha [( y); #[1] y#k R ]/L: wh P _ up T" = : % = R =1 ( z = ) $B 7 " R$; &=B&b & P 1+P 2 +P 3 v P 1 =P[up = % &z R 7 T n = = & z & + & n & & >#] C 1 (L) v P 2 =P[up = % R 7 T&z n = = & z & + & n & & #; C 1 (L) up = % R 7 T&= =1 ( ( z = )& n n = ( z )) $B &R$2] v P 3 =P[up = % R 7 T &= =1 n = n ( z ) $B R$2; &=B&b]. Teamen of P 2. = =1 7%= R 7T ( ( z = )& n n = ( z _ )) $B a mangale wh quadac vaaon = 2 : =1 7% = R 7T & ( z = )& n ( z n = ) & 2 d C= 2 = n = ( up &z % = & z & + & n & & C 1 (L) )2 R 7T C= 2 # 2. Theefoe P 2 C 1 e &C 2R$ 2 = 2 # e&l= 2 fo # and = uffcenly mall.

30 52 BEN AROUS AND CASTELL Teamen of P 1. & n && C 1 (L) up $#[1] &$ <1n y # L : n\" :#N : 1 : " : &1 + ( y)& : &1 $ x : y)& : x ( $ ( y) " : x : x : ( y) "+. Thu he connuy n ( y) of he funcon ( y) &1 ( y) ( x)( y) (( x)( y)) &1 how ha & n && C 1 (L) n. Once # fxed poble o chooe n 1 uch ha fo nn 1 & n && C (L)<#2. Thu fo 1 nn 1 Now \=1 P 1 P _ up % = R 7 T &z n = = & z & > 2& #. n = = up &z % = & z & = up R 7 T % = R 7 T k; #[ k k+1 [" + : =1 ( z = ) =$B k " = c( z ) k d+ = 2 ( z = ) d k up y # K R (&c( y)&+& ( y)&) 1 n So P _ up % = R 7 T &z + up k; #[ k k+1 [" % = R 7 T n = = & z & > 2& # =1 : ( z = ) =$B k ". P _ up y # K R (&c( y)&+& ( y)&) 1 n >#4 & n&1 + : k= #[ k k+1 [" : k =1 % = R 7 T P _ up ( z = ) =$B" ># 4&.

31 FLOW DECOMPOSITION 53 The f em of he ummaon vanhe fo uffcenly lage n (nn 2 ). Fuhemoe he quadac vaaon of k = =1 ( z = ) $B bounded up by C= 2 n. Theefoe fo nup(n 1 n 2 ) P 1 C 1 e &C 2# 2 n= e&l= 2 fo lage n and mall =. Teamen of P 3. Fo #[ k k+1 [ n ( z yeld ha \% = 7 T R " = : =1 n&1 n n = ( z ) $B " = " = : k= : =1 ( k z n = )= ( k z = k ). Th = k )(B 7 k+1 &B 7 k ) " up & ( y)& : &=B k+1 &=B k & y # K R k Cbn. Theefoe P 3 P(CbnR$2)= fo b uffcenly mall. And he poof of Lemma 11 complee. K We eun now o he poof of Popoon 1 ha o he cae h{. Cae h{. Gven h # H &h& H a x (h)([ T])/K we defne v he poce W = =B &h = v he pobably P = on W by dp = =exp dp } _1 _(B ) = (h4 $B )& 1 2= &h4 & 2 d & 2 v A#[up T &z = (=B)&x (h)&r]&[&=b&h&b]. v B#[ 1 (h4 $B )<&*=]. Then P(A)P(B)+E = [(dpdp = ) 1 A 1 B c]. Snce 1 (h4 $B ) gauan wh mean and vaance &h& 2 H fo lage * and mall =: E = P(B) = &h& H * -2? exp \ & *2 + 2= 2 &h& 1 2 H 2 exp \ 2+ &L = _ dp dp 1 A1 = B c& exp \ * 2+ = exp \ a 2+ 2= _P = [up T &z = &x (h)&r; &=W = &b]

32 54 BEN AROUS AND CASTELL wh dz = == 2 = ( z ) d+ : =1 dx (h)= : =1 ( x (h)) h4 d. = ( z ) h4 d+= : =1 = ( z ) $W = Unde P = W = a andad Bownan moon. Applyng Lemma 11 wh c( y)= =1 ( y) h4 we oban an exponenal bound fo E = [(dpdp = ) 1 A 1 B c] and he poof of Popoon 1 follow. K Fom Popoon 1 we deve a uually a lage devaon pncple fo he famly (T = ( d )) =. Popoon 12. E x (R n ) by Fo fxed n D n we defne he ae funcon L on \z # E x (R n ) L (z)=nf[ 1 2 &h&2 H h # H uch ha z.=.(x. (h))] whee x (h) oluon o (5.26). Then we have v L a ``good'' ae funcon. v \A/E x (R n ) &L (A1 )lm nf = = 2 log T = ( A)= 2 lm up = 2 log T = ( A)&L (A ). = Moeove f {(z = )>1 P-a.e. and f \h # H {(x (h))>1 he eul eman ue when he opologcal pace E x (R n ) eplaced by he opologcal pace E x. Poof of Popoon 12. I eul a uual fom he quaconnuy and he connuy of he map h # H a [ (x (h)) # E x (R n ). K We deve fom Popoon 12 a lage devaon pncple fo a pacula veon of he condonal law of X = elave o B. A n Secon 4 we defne: F : H l D n h [ flow of dffeomophm aocaed o he odnay dffeenal equaon (5.27) l dx =_~ (x ) d+ : =1 _~ (x ) h 4. Accodng o he eul of Bmu [4] F can be exended n a meauable way o W. Th exenon wll ll be denoed by F. We defne hen fo P -almo all ~ :

33 FLOW DECOMPOSITION 55 v he pobably N = ( ~ d )#T = (F ( ~ ) d ); v \h # H l! (h)( ~ )#F ( ~ )(x F ( ~ ) (h)); v he ae funcon l ~ =L F ( ~ ). We have hen he followng eul. Popoon \h # H! (h) a oluon o d! (h)=x+ : =1 _ (! (h)) h4 d+ _~ (! (h)) d l + : =1 _~ (! (h)) db and l ~ (z)=nf[12 &h& 2 h # H l H uch ha z=! (h)]. P -a.e. l ~ a good ae funcon. 2. N = ( ~ d ) a pobably meaue on E x whch a veon of he condonal law of X = elave o B. P -a.e.\a/e x : &l ~ (A1)lm nf = = 2 log N = ( ~ A)lm up = 2 log N = ( ~ A)&l ~ (A ). = Poof of Popoon 13. Pon 1 a conequence of Theoem 2 and of he defnon of l ~. We deve alo fom Theoem 2 ha P({(z F ( ~ ) = ( ))>1)=1 and P-a.e. X = ( ~ )=D (F ( ~ ))( ). Theefoe N = ( ~ d ) veon of he law of X = elave o B. Lage devaon nequale ae he ame a n Popoon 12. K 5.2. Applcaon o Nonlnea Fleng We conde now he ognal poblem ha lage devaon fo he condonal law of X = elave o Y = whee (X = Y = ) a oluon o (5.23). To begn wh we noduce ome noaon: v An elemen y of R n+1 wll be decompoed no ( y 1 y 2 ) whee y 1 # R n and y 2 # R. v We defne he followng veco feld n R n+1 : \y # R n+1 \ # [1... ] * ( y)# \_ ( y 1 ) + ; \ # [1... l] * (y 1 ) (y)# \_~ 1 (y 1 )+ ;

34 56 BEN AROUS AND CASTELL _~ ( y 1 ) * ( y)#\ + & 1 l 2 =1\ : 1 x ( y 1) _~ ( y 1 ) + * *( y)# 1 2 : =1\ * x ( y) * ( y) +. no v A flow of dffeomophm n R n+1 anpo hee veco feld &^ &^ ( y )=&1 V * ( y) =1... ( y )=&1 V **( y)& 1 2 =1\ : &1 x ( y) + 2 x 2 ( y)(^ ( y ) ^ ( y )) &. v Fo all # D n+1 we wll denoe by z^ = he poce n E x (R n+1 ) oluon o dz^ z^ = == 2 ^ ( z^ = ) d+= : = o =(x). =1 ^ ( z^ = v We map hen D n+1 o L (W E x (R n+1 )) by D : D n+1 L (W E x (R n+1 )) [ ( [.(z^. = ( ))). ) $B v The pocee C = (1) # E x(r n ) and C = (2) # E x(r 1 ) ae defned by D ()#(C = (1) C= (2) ). v Fnally we wll denoe by F he ``flow'' map F : W D n+1 ~ [ ochac flow aocaed o he ochac dffeenal l equaon d! =* (! ) d+ : We hen have hen he followng eul. =1 * (! ) db.

35 FLOW DECOMPOSITION 57 Theoem \A # B(E x (R n )) we defne M = ( ~ A)# E[1 = F ( ~ ) A(C (1) ) exp(c = F ( ~ ) E[exp(C = F ( ~ ) (2) 1 &1 2 1 F ( ~ ) &1(C= (2) 1 &1 2 1 (1) )& 2 d)] &1(C= F ( ~ ) (1) )& 2 d)] M = ( ~ v) a pobably meaue on E x whch a veon of he condonal law of X = elave o Y =. 2. P -a.e. \A/E x &l ~ (A1 )lm nf = = 2 log M = ( ~ A)lm up = 2 log M = ( ~ A)&l ~ (A ) = wh l ~ a n Popoon 13. Poof of Popoon 14. = \=> we defne a new pobably P on W W by = dp =exp dp} _(B _& 1(X = ) $B & 1 B ) 2 &1 (X = )&2 d & =exp _& 1(X = ) $Y = &1 (X = )& 2 d &. Unde P = Y = ha he law of a Bownan moon ndependen of B. Theefoe (X = Y = ) ha he ame law unde P = a (X = B ) unde P. Le G and H be wo meauable funcon epecvely defned on E x and E : E(G(X = ) H(Y = ))=E = We deduce hen ha P -a.e. \ G(X= ) H(Y = ) dp dp =+ =E _G(X = ) H(B ) exp \ 1 & &1(X = )&2 d +&. 1(X = ) $B E(G(X = ) Y = = ~ )= E[G(X= ) exp( 1 1(X = ) $B & &1(X = )&2 d) B = ~ ] E[exp( 1 1(X = ) $B & &1(X = )&2 d) B = ~ ] The poce S = =(X= 1(X= ) $B ) afe he ochac dffeenal equaon ds = == : =1 S = =(x). * (S = ) db + : l =1 * (S = ) db +* (S = ) d.

36 58 BEN AROUS AND CASTELL Thu he decompoon of ochac dffenal equaon yeld F ( ~ v P-a.e. {(z^ ) ( ))>1. v P-a.e. S = =D (F ( ~ ))( ). By ndependence of B and B eul ha P -a.e. \A # B(E x ) E(1 A (X = ) Y = = ~ )= E[1 = F ( ~ ) = F ( ~ ) A(C (1) ) exp(c (2) 1 &1 2 1 F ( ~ ) &1(C= (1) )& 2 d)] = F ( ~ ) E[exp(C (2) 1 & = F ( ~ ) &1(C(1) )& 2 d)] Th pove 1. =M = ( ~ A) Poof of he lowe bound. Le A be an open e of E x. When l ~ (A)=+ he lowe bound val le u uppoe ha l ~ (A)<+. Le h # H be uch ha z#f ( ~ )(x F ( ~ ) (h)) # A (whee x (h) defned by (5.26)) 1 2 &h&2 =l H ~ (z)=l ~ (A). le u noduce v he andom vaable U = #exp \C = F ( ~ ) (2) 1 &1 2 1 v he poce W = =B &h = v he pobably meaue P = on W = F ( ~ ) &1(C (1) )& 2 d + (5.28) dp} = =exp _1 _(B ) = (h4 $W = )+ 1 2= &h4 & 2 d &. 2 Then M = = F ( ~ ) ( ~ A)=E(1 A (C(1) ) U = )E(U = ). By Ganov' anfomaon = F ( ~ ) E(1 A (C (1) )U = ) =E = \ 1 = F ( ~ ) A(C (1) ) U dp =+ = dp = F ( ~ ) =E \1 A(C (1) ) U = exp \&1 = (h4 $B )& 1 2= &h4 & 2 d 2 ++

37 FLOW DECOMPOSITION 59 whee &C = ( )=D () \ +h =+ Theefoe &U = =exp \C = F ( ~ ) (2) 1 &1 2 1 = F ( ~ ) &1(C (1) ) " 2 d +. = F ( ~ ) E(1 A (C (1) ) U = = F ( ~ ) )E(1 A (C (1) ) U = 1 1 h4 $B K) ~ (A) _exp \&l = + exp \ &K =+. 2 Now ung well-known eul abou he aympoc behavo of peubed = dynamc yem P-a.e. C ww (z )ne = x (R n ) whee z a oluon o he odnay dffeenal equaon z = \ x + + =1 : ^ ( z ) h4 d. Thu P-a.e. U = ww = U wh U > and ndependen of B. Moeove ealy een fom defnon of F ha \ #[1] \(x 1 x 2 )#R n+1 F ( ~ )(x 1 x 2 )= \ F ( ~ )(x 1 ) x 2 +G (x 1 ~ )+ fo ome funcon G and F defned by (5.27). Th yeld ha v \ # [1... ] F ( ~ ) v \#[1] z F ( ~ ) ( x 1 ) F ( ~ ) ^ ( x 1 x 2 )=\ +. & G F ( ~ ) ( x 1 ) x 1 F ( ~ ) 1 =x = F ( ~ ) Theefoe C (1) F ( ~ )(x ha = F ( ~ ) lm nf E(1 A (C (1) ) U = F ( ~ ) (h). (h))=z. By Faou' lemma we deduce hen = 1 1 )E(1 h4 $B K A(z) U 1 1 ) h4 $B K =U P \ 1 h4 $B K + U 2

38 6 BEN AROUS AND CASTELL fo uffcenly lage K. I eul hen ha lm nf = = 2 = F ( ~ ) log E(1 A (C (1) ) U = )&l ~ (A). Now = 2 log M = ( ~ A)== 2 = F ( ~ ) log E(1 A (C (1) )U = )&= 2 log E(U = ). The lowe bound follow hen fom he fac ha P -a.e. \p1 up =1 E((U = ) p )< whch poved n Appendx 4. Poof of he uppe bound. Le A be a cloed ube of E x. Ung Ho lde' nequaly \p>1 = 2 log M = ( ~ A) 1 p =2 = F ( ~ ) log E(1 A (C (1) ))+ 1 q =2 log E((U = ) q ) &= 2 log E(U = ) (wh 1p+1q=1). = F ( ~ ) The pacula fom of F ( ~ ) mple ha C (1) =F ( ~ )(z F ( ~ ) = ) whee z = defned by (5.25). Snce P -a.e. \p1 up =1 E((U = ) p )< we have lm up = 2 log M = ( ~ A) 1 = p lm up = 2 log P(F ( ~ )(z F ( ~ ) = )#A) = & 1 p l ~ (A) by Popoon 13. Leng p deceae o 1 we oban he eul. K APPENDIX 1 Le F and G be wo funcon n C m b (Rn R). Le be a bounded doman n R n. Le : R n be n W m2 (). We aume ha hee a conan R> uch ha && W m2 ()R && W ()R. m2 Then f mn+1 1. F b # W m2 () and hee a conan C> uch ha up &Fb& W m2 ()C. && W m2 () R 2. When F # C m+1 b &Fb&Fb& W m2 ()C&&& W m2 (). 3. &F b &G b & W m2 ()C&F&G& Cb m.

39 FLOW DECOMPOSITION 61 Poof. \: # N n : m D : (Fb)(x)= : ;#N n ; : D ; F((x)) P ; (x) whee P ; a polynomal n he devave of whoe each monomal > l =1 D# (x) afe l =1 # =:. Theefoe &D : (F b )(x)& 2 dxc : ;#N n ; : up &D ; F(x)& 2 &P ; (x)& 2 dx. x Thu we have o conol em uch a > l =1 &D# (x)& 2 dx wh # =:. When # m&[n2]&1 he Sobolev embeddng heoem enue ha up &D # (x)&c && W ()CR. m2 x Bu hee a mo one em wh # >m&[n2]&1. Indeed f # m&[n2] nce mn+1. Theefoe : { # = : & # _n 2& m& _ n 2& &1 l ` &D # (x)& 2 dx ` up &D # (x)& 2 =1 { &D # (x)& 2 dx x CR 2l&2 && 2 W m2 () CR2l. Th pove 1. 2 and 3 ae obaned n a mla way: &D : (F b )(x)&d : (Fb)(x)& 2 dx C : ;#N n ; : +C : ;#N n ; : up &D ; F(x)& 2 &P ; (x)&q ; (x)& 2 dx x up &D ; F((x))&D ; F((x))& 2 &Q ; (x)& 2 dx. x

40 62 BEN AROUS AND CASTELL Q ; he ame polynomal a P ; fo he devave of. Snce F n C m+1 b up x &D ; F((x))&D ; F((x))& 2 C up &(x)&(x)& 2 x C &&& 2 W m2 (). We oban an uppe bound (dependng on R) o &Q ; (x)& 2 (x)dx a pevouly. To conol &P ; (x)&q ; (x)& 2 dx we have o bound up em uch a l " ` =1 l D # (x)& ` D # (x) " 2 dx =1 l C : D =1 "` # (x)(d # (x)&d # (x)) ` D # (x) " 2 dx. < > The ame agumen a fo 1 mple 2. Fnally &D : (F b )(x)&d : (Gb)(x)& 2 dx C : ;#N n ; : &(D ; F((x))&D ; G((x))) P ; (x)& 2 dx C &F&G& 2 m C b : &P ; (x)& 2 dx. K ;#N n ; : APPENDIX 2 Le H be a Hlbe pace and le (e n ) n be an ohonomal ba of H. Le ( A (F ) #[1] P) be a pobably pace. Le M be a F -adaped poce wh value n H. We aume ha fo all n M n #(M e n ) a eal F -mangale and ha hee ex conan K L> uch ha \N # N* \ #[1] N : k=1 (M k ) K P-a.e. N : k l=1 M k Ml d(mk M l ) L P-a.e.

41 FLOW DECOMPOSITION 63 Then \R uch ha R 2 K &K) 2 P[ up &M & H R]exp #[1] _&(R2 8L &. Poof. Le V N #Span(e 1... e N ) and le P N denoe he ohogonal poecon on V N : P[ up &P N M & H R]=P[ up &P N M & 2 HR 2 ] #[1] #[1] P _ N up #[1]\ : (M k )2 &(M k ) k=1 + R2 &K &; N k=1 (Mk )2 &(M k ) a eal mangale whoe quadaque vaaon A a eul: N 4 : k l=1 M k Ml d(mk M l ) 4L. &K) 2 P[ up &P N (M )& H R]exp #[1] _&(R2 8L &. Leng N go o nfny Beppo Lev' lemma yeld he eul. K APPENDIX 3 The map M: F(H ) H [ he unque h uch ha {=F(h) I()=12 &h& 2 H connuou when H endowed wh he unfom convegence. Poof. Le ( n ) and be uch ha n C k. Le h n =M( n ) and h=m(). By Theoem 3 d-a.e. h4 n and h4 # V =. Moeove n (x)& (x)= (_( n (x))&_( (x))) h4 d + _( n (x))(h4 n &h4 ) d.

42 64 BEN AROUS AND CASTELL Ung he popee of _ we deve ha fo all K compac ube of R n up x # K" _( n (x))(h4 n &h4 ) d " ww. (5.29) n Now le u noe ha V= x # R n Ke _(x)= x # I Ke _(x) whee I a fne e. Le K be a compac e of R n uch ha I/K. The convegence of n o yeld up x # K &( n )&1 (x)& up x # K &( ) &1 (x)&. Thu hee a compac e K of R n uch ha [( n )&1 (x) x # K #[1]n#N]/K. Now up x # I & _(x)(h4 n & h4 ) d& up x # K & o _(n(x))(h4 n &h4 ) d&. Ung (5.29) we oban ha up &_(x)(h n &h )&. x # I Le I=[x 1... x n ] _ #_(x ) V #Ke _ and P poecon on V = : be he ohogonal whee up &_ (h n &h )&=up &_ (P (h n &h ))& * mn ((_ V = )* _ V = ) 12 up &P (h n &h )& v fo all max S ymmec and pove * mn (S) he lowe egenvalue of S. v _ V = : V = Im(_ ) y [ _ ( y). By defnon _ V = nveble; hu * mn ((_ V = )* _ V = )>. Theefoe \ # [1... n] up &P (h n &h )&. Bu h n &h # V = =( V ) = =V = and we oban ha up &h n&h &. K APPENDIX 4 Le U = be defned n Secon 5 by (5.28). Then\p P -a.e. up =1 E[(U = ) p ]<. Poof. We wll n fac how ha E [up =1 E[(U = ) p ]]<:

43 FLOW DECOMPOSITION 65 Le E [up =1 a oluon o E[(U = ) p ]]E[up(U = ) p ] =1 E _up exp \ p 1 1(X = ) $B & p =1 2 1 &1 (X = )&2 d +& E _up exp \ p 1 1(X = ) $B =1 +&. + X = M = #p 1(X= )$B ; V = #\M = = dv = =* (V = ) db +* (V = ) db +* (V = ) d =\+ x V = = whee \m+=\ x =_ (x) x _~ (x) * + * \m+=\p1 (x)+ = = x _~ (x) * \m+=\12 1$ (x) 1 (x)+. = Thu all hee veco feld ae C m b on Rn _R + _[ 1]. Theefoe hee a veon of V = whch connuouly dffeenable n (x =). Moeove V = = a oluon o he vaaonal equaon d \V = = + =: *$ (V = ) V = = db +: +*$ (V = ) V = = d V = = =\+. 1 * $ (V = ) V = = db

44 66 BEN AROUS AND CASTELL Theefoe E[up exp(m = )]E =1 _ 1 exp(m = ) } M = = } d= & +E(exp(M )) E[exp(2M = )] 12 E d=+e(exp(m _\M= = + & )). v Snce (M = ) =p 2 &1(X= )&2 d bounded by ome conan K fo all =1 E[exp(2M = )]exp(2k). v E _\M= = + 2& =E _ M= = & =p 2 E _: \ C 1$ (X = ) X = 2 d = + & = 2 E _"X = " & d. Applyng Io^ fomula eay o check ha hee a conan C uch ha \=1. E _"X = = " 2& C+CE _ : " +CE _: C \1+ _ (X = )+=_$ (X = ) X = 2 d = " & " _~ $ ( = ) X = 2 d = " & = 2 E _"X = " & d +. Anohe applcaon of he Gonwall lemma complee he poof. K REFERENCES 1. R. Azenco Gande de vaon e applcaon. Ecole d'e e de Pobable de San- Flou VIII 1978 Lecue Noe n Mah. Vol. 774 pp. 176 Spnge-Velag BelnHedelbegNew Yok P. Bald and M. Sanz-Sole Modulu of connuy fo ochac flow Poge n Pobably Vol. 32 Bkha ue Bael 1993.

45 FLOW DECOMPOSITION C. Bezudenhou Sngula peubaon of degeneae dffuon Ann. Pobab. 15 No. 3 (1987) J. M. Bmu A genealzed fomula of Io and ome ohe popee of ochac flow Z. Wach. 55 (1981) H. Do Len ene e quaon dffe enelle ochaque e odnae Ann. In. H. Poncae Nouv. Se. Sec. B 13 (1977) H. Do Un nouveau pncpe de gande de vaon en he oe du flage non lne ae Ann. In. H. Poncae 27 No. 3 (1991) H. Do and D. W. Soock Nouveaux e ula concenan le pee peubaon de ye me dynamque J. Func. Anal. 11 No. 2 (1991) M. I. Fedln and A. D. Wenzell Small andom peubaon of dynamcal yem Ruan Mah. Suvey 25 (197) H. Kuna On he decompoon of oluon of ochac dffeenal equaon. Sochac Inegal n ``Poceedng LMS Duham Sympoum 198'' Lecue Noe n Mahemac Vol. 851 pp Spnge-Velag BelnHedelbegNew Yok A. Mlle D. Nuala and M. Sanz-Sole Lage devaon fo a cla of ancpang ochac dffeenal equaon Ann. Pobab. 2 No. 4 (1992) J. T. Rabehemanana ``Pee peubaon de ye me dynamque e alge be de Le nlpoene'' The e de l'unvee Pa

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

Optimal control of Goursat-Darboux systems in domains with curvilinear boundaries

Optimal control of Goursat-Darboux systems in domains with curvilinear boundaries Opmal conol of Goua-Daboux yem n doman wh cuvlnea boundae S. A. Belba Mahemac Depamen Unvey of Alabama Tucalooa, AL. 35487-0350. USA. e-mal: SBELBAS@G.AS.UA.EDU Abac. We deve neceay condon fo opmaly n

More information

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing Peenaon fo Theoecal Condened Mae Phyc n TU Beln Geen-Funcon and GW appoxmaon Xnzheng L Theoy Depamen FHI May.8h 2005 Elecon n old Oulne Toal enegy---well olved Sngle pacle excaon---unde developng The Geen

More information

arxiv: v1 [math.pr] 4 Jul 2014

arxiv: v1 [math.pr] 4 Jul 2014 Mean-feld ochac dffeenal equaon and aocaed PDE Rane Buckdahn 1,3, Juan L 2, Shge Peng 3, Cahene Rane 1 1 Laoaoe de Mahémaque LMBA, CNRS-UMR 6205, Unveé de Beagne Occdenale, 6, avenue Vco-le-Gogeu, CS 93837,

More information

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( )

5-1. We apply Newton s second law (specifically, Eq. 5-2). F = ma = ma sin 20.0 = 1.0 kg 2.00 m/s sin 20.0 = 0.684N. ( ) ( ) 5-1. We apply Newon s second law (specfcally, Eq. 5-). (a) We fnd he componen of he foce s ( ) ( ) F = ma = ma cos 0.0 = 1.00kg.00m/s cos 0.0 = 1.88N. (b) The y componen of he foce s ( ) ( ) F = ma = ma

More information

Matrix reconstruction with the local max norm

Matrix reconstruction with the local max norm Marx reconrucon wh he local max norm Rna oygel Deparmen of Sac Sanford Unvery rnafb@anfordedu Nahan Srebro Toyoa Technologcal Inue a Chcago na@cedu Rulan Salakhudnov Dep of Sac and Dep of Compuer Scence

More information

Name of the Student:

Name of the Student: Engneeng Mahemacs 05 SUBJEC NAME : Pobably & Random Pocess SUBJEC CODE : MA645 MAERIAL NAME : Fomula Maeal MAERIAL CODE : JM08AM007 REGULAION : R03 UPDAED ON : Febuay 05 (Scan he above QR code fo he dec

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Mau Lkelhood aon Beln Chen Depaen of Copue Scence & Infoaon ngneeng aonal Tawan oal Unvey Refeence:. he Alpaydn, Inoducon o Machne Leanng, Chape 4, MIT Pe, 4 Saple Sac and Populaon Paaee A Scheac Depcon

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series

Degree of Approximation of a Class of Function by (C, 1) (E, q) Means of Fourier Series IAENG Inenaional Jounal of Applied Mahemaic, 4:, IJAM_4 7 Degee of Appoximaion of a Cla of Funcion by C, E, q Mean of Fouie Seie Hae Kihna Nigam and Kuum Shama Abac In hi pape, fo he fi ime, we inoduce

More information

ScienceDirect. Behavior of Integral Curves of the Quasilinear Second Order Differential Equations. Alma Omerspahic *

ScienceDirect. Behavior of Integral Curves of the Quasilinear Second Order Differential Equations. Alma Omerspahic * Avalable onlne a wwwscencedeccom ScenceDec oceda Engneeng 69 4 85 86 4h DAAAM Inenaonal Smposum on Inellgen Manufacung and Auomaon Behavo of Inegal Cuves of he uaslnea Second Ode Dffeenal Equaons Alma

More information

ESS 265 Spring Quarter 2005 Kinetic Simulations

ESS 265 Spring Quarter 2005 Kinetic Simulations SS 65 Spng Quae 5 Knec Sulaon Lecue une 9 5 An aple of an lecoagnec Pacle Code A an eaple of a knec ulaon we wll ue a one denonal elecoagnec ulaon code called KMPO deeloped b Yohhau Oua and Hoh Mauoo.

More information

ROBUST EXPONENTIAL ATTRACTORS FOR MEMORY RELAXATION OF PATTERN FORMATION EQUATIONS

ROBUST EXPONENTIAL ATTRACTORS FOR MEMORY RELAXATION OF PATTERN FORMATION EQUATIONS IJRRAS 8 () Augus www.apapess.com/olumes/ol8issue/ijrras_8.pdf ROBUST EXONENTIAL ATTRACTORS FOR EORY RELAXATION OF ATTERN FORATION EQUATIONS WANG Yuwe, LIU Yongfeng & A Qaozhen* College of ahemacs and

More information

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova

I-POLYA PROCESS AND APPLICATIONS Leda D. Minkova The XIII Inenaonal Confeence Appled Sochasc Models and Daa Analyss (ASMDA-009) Jne 30-Jly 3, 009, Vlns, LITHUANIA ISBN 978-9955-8-463-5 L Sakalaskas, C Skadas and E K Zavadskas (Eds): ASMDA-009 Seleced

More information

8 Baire Category Theorem and Uniform Boundedness

8 Baire Category Theorem and Uniform Boundedness 8 Bae Categoy Theoem and Unfom Boundedness Pncple 8.1 Bae s Categoy Theoem Valdty of many esults n analyss depends on the completeness popety. Ths popety addesses the nadequacy of the system of atonal

More information

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function

(,,, ) (,,, ). In addition, there are three other consumers, -2, -1, and 0. Consumer -2 has the utility function MACROECONOMIC THEORY T J KEHOE ECON 87 SPRING 5 PROBLEM SET # Conder an overlappng generaon economy le ha n queon 5 on problem e n whch conumer lve for perod The uly funcon of he conumer born n perod,

More information

Field due to a collection of N discrete point charges: r is in the direction from

Field due to a collection of N discrete point charges: r is in the direction from Physcs 46 Fomula Shee Exam Coulomb s Law qq Felec = k ˆ (Fo example, f F s he elecc foce ha q exes on q, hen ˆ s a un veco n he decon fom q o q.) Elecc Feld elaed o he elecc foce by: Felec = qe (elecc

More information

Chapter 6 Plane Motion of Rigid Bodies

Chapter 6 Plane Motion of Rigid Bodies Chpe 6 Pne oon of Rd ode 6. Equon of oon fo Rd bod. 6., 6., 6.3 Conde d bod ced upon b ee een foce,, 3,. We cn ume h he bod mde of e numbe n of pce of m Δm (,,, n). Conden f he moon of he m cene of he

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Parts Manual. EPIC II Critical Care Bed REF 2031

Parts Manual. EPIC II Critical Care Bed REF 2031 EPIC II Critical Care Bed REF 2031 Parts Manual For parts or technical assistance call: USA: 1-800-327-0770 2013/05 B.0 2031-109-006 REV B www.stryker.com Table of Contents English Product Labels... 4

More information

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland

The Unique Solution of Stochastic Differential Equations. Dietrich Ryter. Midartweg 3 CH-4500 Solothurn Switzerland The Unque Soluon of Sochasc Dffeenal Equaons Dech Rye RyeDM@gawne.ch Mdaweg 3 CH-4500 Solohun Swzeland Phone +4132 621 13 07 Tme evesal n sysems whou an exenal df sngles ou he an-iô negal. Key wods: Sochasc

More information

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr.

Modern Energy Functional for Nuclei and Nuclear Matter. By: Alberto Hinojosa, Texas A&M University REU Cyclotron 2008 Mentor: Dr. Moden Enegy Funconal fo Nucle and Nuclea Mae By: lbeo noosa Teas &M Unvesy REU Cycloon 008 Meno: D. Shalom Shlomo Oulne. Inoducon.. The many-body poblem and he aee-fock mehod. 3. Skyme neacon. 4. aee-fock

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim

GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS. Youngwoo Ahn and Kitae Kim Korean J. Mah. 19 (2011), No. 3, pp. 263 272 GENERATING CERTAIN QUINTIC IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS Youngwoo Ahn and Kae Km Absrac. In he paper [1], an explc correspondence beween ceran

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

1 Constant Real Rate C 1

1 Constant Real Rate C 1 Consan Real Rae. Real Rae of Inees Suppose you ae equally happy wh uns of he consumpon good oday o 5 uns of he consumpon good n peod s me. C 5 Tha means you ll be pepaed o gve up uns oday n eun fo 5 uns

More information

Chapter 3: Vectors and Two-Dimensional Motion

Chapter 3: Vectors and Two-Dimensional Motion Chape 3: Vecos and Two-Dmensonal Moon Vecos: magnude and decon Negae o a eco: eese s decon Mulplng o ddng a eco b a scala Vecos n he same decon (eaed lke numbes) Geneal Veco Addon: Tangle mehod o addon

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

H = d d q 1 d d q N d d p 1 d d p N exp

H = d d q 1 d d q N d d p 1 d d p N exp 8333: Sacal Mechanc I roblem Se # 7 Soluon Fall 3 Canoncal Enemble Non-harmonc Ga: The Hamlonan for a ga of N non neracng parcle n a d dmenonal box ha he form H A p a The paron funcon gven by ZN T d d

More information

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3

L4:4. motion from the accelerometer. to recover the simple flutter. Later, we will work out how. readings L4:3 elave moon L4:1 To appl Newon's laws we need measuemens made fom a 'fed,' neal efeence fame (unacceleaed, non-oang) n man applcaons, measuemens ae made moe smpl fom movng efeence fames We hen need a wa

More information

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs)

Numerical Study of Large-area Anti-Resonant Reflecting Optical Waveguide (ARROW) Vertical-Cavity Semiconductor Optical Amplifiers (VCSOAs) USOD 005 uecal Sudy of Lage-aea An-Reonan Reflecng Opcal Wavegude (ARROW Vecal-Cavy Seconduco Opcal Aplfe (VCSOA anhu Chen Su Fung Yu School of Eleccal and Eleconc Engneeng Conen Inoducon Vecal Cavy Seconduco

More information

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f

336 ERIDANI kfk Lp = sup jf(y) ; f () jj j p p whee he supemum is aken ove all open balls = (a ) inr n, jj is he Lebesgue measue of in R n, () =(), f TAMKANG JOURNAL OF MATHEMATIS Volume 33, Numbe 4, Wine 2002 ON THE OUNDEDNESS OF A GENERALIED FRATIONAL INTEGRAL ON GENERALIED MORREY SPAES ERIDANI Absac. In his pape we exend Nakai's esul on he boundedness

More information

Research Article A Two-Mode Mean-Field Optimal Switching Problem for the Full Balance Sheet

Research Article A Two-Mode Mean-Field Optimal Switching Problem for the Full Balance Sheet Hndaw Publhng Corporaon Inernaonal Journal of Sochac Analy Volume 14 Arcle ID 159519 16 page hp://dx.do.org/1.1155/14/159519 Reearch Arcle A wo-mode Mean-Feld Opmal Swchng Problem for he Full Balance Shee

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

On the quadratic support of strongly convex functions

On the quadratic support of strongly convex functions Int. J. Nonlinea Anal. Appl. 7 2016 No. 1, 15-20 ISSN: 2008-6822 electonic http://dx.doi.og/10.22075/ijnaa.2015.273 On the quadatic uppot of tongly convex function S. Abbazadeh a,b,, M. Ehaghi Godji a

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION HAPER : LINEAR DISRIMINAION Dscmnan-based lassfcaon 3 In classfcaon h K classes ( k ) We defned dsmnan funcon g () = K hen gven an es eample e chose (pedced) s class label as f g () as he mamum among g

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

A. Inventory model. Why are we interested in it? What do we really study in such cases.

A. Inventory model. Why are we interested in it? What do we really study in such cases. Some general yem model.. Inenory model. Why are we nereed n? Wha do we really udy n uch cae. General raegy of machng wo dmlar procee, ay, machng a fa proce wh a low one. We need an nenory or a buffer or

More information

( ) () we define the interaction representation by the unitary transformation () = ()

( ) () we define the interaction representation by the unitary transformation () = () Hgher Order Perurbaon Theory Mchael Fowler 3/7/6 The neracon Represenaon Recall ha n he frs par of hs course sequence, we dscussed he chrödnger and Hesenberg represenaons of quanum mechancs here n he chrödnger

More information

Detection and Estimation Theory

Detection and Estimation Theory ESE 54 Detecton and Etmaton Theoy Joeph A. O Sullvan Samuel C. Sach Pofeo Electonc Sytem and Sgnal Reeach Laboatoy Electcal and Sytem Engneeng Wahngton Unvety 411 Jolley Hall 314-935-4173 (Lnda anwe) jao@wutl.edu

More information

Control Systems. Mathematical Modeling of Control Systems.

Control Systems. Mathematical Modeling of Control Systems. Conrol Syem Mahemacal Modelng of Conrol Syem chbum@eoulech.ac.kr Oulne Mahemacal model and model ype. Tranfer funcon model Syem pole and zero Chbum Lee -Seoulech Conrol Syem Mahemacal Model Model are key

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Improvement on Warng Problem L An-Png Bejng, PR Chna apl@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th paper, we wll gve ome mprovement for Warng problem Keyword: Warng Problem,

More information

Physics 201 Lecture 15

Physics 201 Lecture 15 Phscs 0 Lecue 5 l Goals Lecue 5 v Elo consevaon of oenu n D & D v Inouce oenu an Iulse Coens on oenu Consevaon l oe geneal han consevaon of echancal eneg l oenu Consevaon occus n sses wh no ne eenal foces

More information

! -., THIS PAGE DECLASSIFIED IAW EQ t Fr ra _ ce, _., I B T 1CC33ti3HI QI L '14 D? 0. l d! .; ' D. o.. r l y. - - PR Pi B nt 8, HZ5 0 QL

! -., THIS PAGE DECLASSIFIED IAW EQ t Fr ra _ ce, _., I B T 1CC33ti3HI QI L '14 D? 0. l d! .; ' D. o.. r l y. - - PR Pi B nt 8, HZ5 0 QL H PAGE DECAFED AW E0 2958 UAF HORCA UD & D m \ Z c PREMNAR D FGHER BOMBER ARC o v N C o m p R C DECEMBER 956 PREPARED B HE UAF HORCA DVO N HRO UGH HE COOPERAON O F HE HORCA DVON HEADQUARER UAREUR DEPARMEN

More information

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation

Existence and Uniqueness Results for Random Impulsive Integro-Differential Equation Global Journal of Pure and Appled Mahemacs. ISSN 973-768 Volume 4, Number 6 (8), pp. 89-87 Research Inda Publcaons hp://www.rpublcaon.com Exsence and Unqueness Resuls for Random Impulsve Inegro-Dfferenal

More information

SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS

SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS Fixed Point Theoy, Volume 5, No. 1, 2004, 71-80 http://www.math.ubbcluj.o/ nodeacj/sfptcj.htm SOME SOLVABILITY THEOREMS FOR NONLINEAR EQUATIONS G. ISAC 1 AND C. AVRAMESCU 2 1 Depatment of Mathematics Royal

More information

PHY2053 Summer C 2013 Exam 1 Solutions

PHY2053 Summer C 2013 Exam 1 Solutions PHY053 Sue C 03 E Soluon. The foce G on o G G The onl cobnon h e '/ = doubln.. The peed of lh le 8fulon c 86,8 le 60 n 60n h 4h d 4d fonh.80 fulon/ fonh 3. The dnce eled fo he ene p,, 36 (75n h 45 The

More information

A note on characterization related to distributional properties of random translation, contraction and dilation of generalized order statistics

A note on characterization related to distributional properties of random translation, contraction and dilation of generalized order statistics PobSa Foum, Volume 6, July 213, Pages 35 41 ISSN 974-3235 PobSa Foum is an e-jounal. Fo eails please visi www.pobsa.og.in A noe on chaaceizaion elae o isibuional popeies of anom anslaion, conacion an ilaion

More information

MATRIX COMPUTATIONS ON PROJECTIVE MODULES USING NONCOMMUTATIVE GRÖBNER BASES

MATRIX COMPUTATIONS ON PROJECTIVE MODULES USING NONCOMMUTATIVE GRÖBNER BASES Jounal of lgeba Numbe heo: dance and pplcaon Volume 5 Numbe 6 Page -9 alable a hp://cenfcadance.co.n DOI: hp://d.do.og/.86/janaa_7686 MRIX COMPUIONS ON PROJCIV MODULS USING NONCOMMUIV GRÖBNR BSS CLUDI

More information

On the Quasi-Hyperbolic Kac-Moody Algebra QHA7 (2)

On the Quasi-Hyperbolic Kac-Moody Algebra QHA7 (2) Ieaoal Reeach Joual of Egeeg ad Techology (IRJET) e-issn: 9 - Volume: Iue: May- www.e.e -ISSN: 9-7 O he Qua-Hyebolc Kac-Moody lgeba QH7 () Uma Mahewa., Khave. S Deame of Mahemac Quad-E-Mllah Goveme College

More information

Optimal Switching of One-Dimensional Reflected BSDEs, and Associated Multi-Dimensional BSDEs with Oblique Reflection

Optimal Switching of One-Dimensional Reflected BSDEs, and Associated Multi-Dimensional BSDEs with Oblique Reflection arxv:81.3176v1 [mah.pr] 17 Oc 28 Opmal Swchng of One-Dmenonal Refleced BSDE, and Aocaed Mul-Dmenonal BSDE wh Oblque Reflecon Shanjan Tang We Zhong Ocober 17, 28 Abrac In h paper, he opmal wchng problem

More information

Chapter Finite Difference Method for Ordinary Differential Equations

Chapter Finite Difference Method for Ordinary Differential Equations Chape 8.7 Fne Dffeence Mehod fo Odnay Dffeenal Eqaons Afe eadng hs chape, yo shold be able o. Undesand wha he fne dffeence mehod s and how o se o solve poblems. Wha s he fne dffeence mehod? The fne dffeence

More information

Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) =

Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) = 8.35 Fall 24/5 Solution to Aignment 5: The Stationay Phae Method Povided by Mutafa Sabi Kilic. Find the leading tem fo each of the integal below fo λ >>. (a) R eiλt3 dt (b) R e iλt2 dt (c) R eiλ co t dt

More information

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max

, the. L and the L. x x. max. i n. It is easy to show that these two norms satisfy the following relation: x x n x = (17.3) max ecure 8 7. Sabiliy Analyi For an n dimenional vecor R n, he and he vecor norm are defined a: = T = i n i (7.) I i eay o how ha hee wo norm aify he following relaion: n (7.) If a vecor i ime-dependen, hen

More information

The Backpropagation Algorithm

The Backpropagation Algorithm The Backpopagaton Algothm Achtectue of Feedfowad Netwok Sgmodal Thehold Functon Contuctng an Obectve Functon Tanng a one-laye netwok by teepet decent Tanng a two-laye netwok by teepet decent Copyght Robet

More information

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle

PHYS 705: Classical Mechanics. Derivation of Lagrange Equations from D Alembert s Principle 1 PHYS 705: Classcal Mechancs Devaton of Lagange Equatons fom D Alembet s Pncple 2 D Alembet s Pncple Followng a smla agument fo the vtual dsplacement to be consstent wth constants,.e, (no vtual wok fo

More information

A Weak Dynamic Programming Principle for Zero-Sum Stochastic Differential Games with Unbounded Controls

A Weak Dynamic Programming Principle for Zero-Sum Stochastic Differential Games with Unbounded Controls A Weak Dynac Prograng Prncple for Zero-Su Sochac Dfferenal Gae wh Unbounded Conrol rhan Bayrakar, Song Yao Abrac We analyze a zero-u ochac dfferenal gae beween wo copeng player who can chooe unbounded

More information

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED)

FIRMS IN THE TWO-PERIOD FRAMEWORK (CONTINUED) FIRMS IN THE TWO-ERIO FRAMEWORK (CONTINUE) OCTOBER 26, 2 Model Sucue BASICS Tmelne of evens Sa of economc plannng hozon End of economc plannng hozon Noaon : capal used fo poducon n peod (decded upon n

More information

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading Onlne Supplemen for Dynamc Mul-Technology Producon-Invenory Problem wh Emssons Tradng by We Zhang Zhongsheng Hua Yu Xa and Baofeng Huo Proof of Lemma For any ( qr ) Θ s easy o verfy ha he lnear programmng

More information

CS286.2 Lecture 14: Quantum de Finetti Theorems II

CS286.2 Lecture 14: Quantum de Finetti Theorems II CS286.2 Lecure 14: Quanum de Fne Theorems II Scrbe: Mara Okounkova 1 Saemen of he heorem Recall he las saemen of he quanum de Fne heorem from he prevous lecure. Theorem 1 Quanum de Fne). Le ρ Dens C 2

More information

Chebyshev Polynomial Solution of Nonlinear Fredholm-Volterra Integro- Differential Equations

Chebyshev Polynomial Solution of Nonlinear Fredholm-Volterra Integro- Differential Equations Çny Ünvee Fen-Edeby Füle Jounl of A nd Scence Sy : 5 y 6 Chebyhev Polynol Soluon of onlne Fedhol-Vole Inego- Dffeenl Equon Hndn ÇERDİK-YASA nd Ayşegül AKYÜZ-DAŞCIOĞU Abc In h ppe Chebyhev collocon ehod

More information

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8 Molecula Evoluion and hylogeny Baed on: Dubin e al Chape 8. hylogeneic Tee umpion banch inenal node leaf Topology T : bifucaing Leave - N Inenal node N+ N- Lengh { i } fo each banch hylogeneic ee Topology

More information

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS

APPLICATIONS OF SEMIGENERALIZED -CLOSED SETS Intenatonal Jounal of Mathematcal Engneeng Scence ISSN : 22776982 Volume Issue 4 (Apl 202) http://www.mes.com/ https://stes.google.com/ste/mesounal/ APPLICATIONS OF SEMIGENERALIZED CLOSED SETS G.SHANMUGAM,

More information

Chapter Fifiteen. Surfaces Revisited

Chapter Fifiteen. Surfaces Revisited Chapte Ffteen ufaces Revsted 15.1 Vecto Descpton of ufaces We look now at the vey specal case of functons : D R 3, whee D R s a nce subset of the plane. We suppose s a nce functon. As the pont ( s, t)

More information

Lecture 5. Plane Wave Reflection and Transmission

Lecture 5. Plane Wave Reflection and Transmission Lecue 5 Plane Wave Reflecon and Tansmsson Incden wave: 1z E ( z) xˆ E (0) e 1 H ( z) yˆ E (0) e 1 Nomal Incdence (Revew) z 1 (,, ) E H S y (,, ) 1 1 1 Refleced wave: 1z E ( z) xˆ E E (0) e S H 1 1z H (

More information

8.5 Circles and Lengths of Segments

8.5 Circles and Lengths of Segments LenghofSegmen20052006.nb 1 8.5 Cicle and Lengh of Segmen In hi ecion we will how (and in ome cae pove) ha lengh of chod, ecan, and angen ae elaed in ome nal way. We will look a hee heoem ha ae hee elaionhip

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon Alernae approach o second order specra: ask abou x magnezaon nsead of energes and ranson probables. If we say wh one bass se, properes vary

More information

On the Poisson Approximation to the Negative Hypergeometric Distribution

On the Poisson Approximation to the Negative Hypergeometric Distribution BULLETIN of the Malaysian Mathematical Sciences Society http://mathusmmy/bulletin Bull Malays Math Sci Soc (2) 34(2) (2011), 331 336 On the Poisson Appoximation to the Negative Hypegeometic Distibution

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

Density Matrix Description of NMR BCMB/CHEM 8190

Density Matrix Description of NMR BCMB/CHEM 8190 Densy Marx Descrpon of NMR BCMBCHEM 89 Operaors n Marx Noaon If we say wh one bass se, properes vary only because of changes n he coeffcens weghng each bass se funcon x = h< Ix > - hs s how we calculae

More information

Rotations.

Rotations. oons j.lbb@phscs.o.c.uk To s summ Fmes of efeence Invnce une nsfomons oon of wve funcon: -funcons Eule s ngles Emple: e e - - Angul momenum s oon geneo Genec nslons n Noehe s heoem Fmes of efeence Conse

More information

f h = u, h g = v, we have u + v = f g. So, we wish

f h = u, h g = v, we have u + v = f g. So, we wish Answes to Homewok 4, Math 4111 (1) Pove that the following examples fom class ae indeed metic spaces. You only need to veify the tiangle inequality. (a) Let C be the set of continuous functions fom [0,

More information

1. Review of Probability.

1. Review of Probability. 1. Review of Pobability. What is pobability? Pefom an expeiment. The esult is not pedictable. One of finitely many possibilities R 1, R 2,, R k can occu. Some ae pehaps moe likely than othes. We assign

More information

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts

Online Appendix for. Strategic safety stocks in supply chains with evolving forecasts Onlne Appendx for Sraegc safey socs n supply chans wh evolvng forecass Tor Schoenmeyr Sephen C. Graves Opsolar, Inc. 332 Hunwood Avenue Hayward, CA 94544 A. P. Sloan School of Managemen Massachuses Insue

More information

BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS. Loukas Grafakos and Stephen Montgomery-Smith University of Missouri, Columbia

BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS. Loukas Grafakos and Stephen Montgomery-Smith University of Missouri, Columbia BEST CONSTANTS FOR UNCENTERED MAXIMAL FUNCTIONS Loukas Gafakos and Stehen Montgomey-Smith Univesity of Missoui, Columbia Abstact. We ecisely evaluate the oeato nom of the uncenteed Hady-Littlewood maximal

More information

On the Quasi-inverse of a Non-square Matrix: An Infinite Solution

On the Quasi-inverse of a Non-square Matrix: An Infinite Solution Applied Mathematical Sciences, Vol 11, 2017, no 27, 1337-1351 HIKARI Ltd, wwwm-hikaicom https://doiog/1012988/ams20177273 On the Quasi-invese of a Non-squae Matix: An Infinite Solution Ruben D Codeo J

More information

Cooling of a hot metal forging. , dt dt

Cooling of a hot metal forging. , dt dt Tranen Conducon Uneady Analy - Lumped Thermal Capacy Model Performed when; Hea ranfer whn a yem produced a unform emperaure drbuon n he yem (mall emperaure graden). The emperaure change whn he yem condered

More information

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany

John Geweke a and Gianni Amisano b a Departments of Economics and Statistics, University of Iowa, USA b European Central Bank, Frankfurt, Germany Herarchcal Markov Normal Mxure models wh Applcaons o Fnancal Asse Reurns Appendx: Proofs of Theorems and Condonal Poseror Dsrbuons John Geweke a and Gann Amsano b a Deparmens of Economcs and Sascs, Unversy

More information

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain

Lecture-V Stochastic Processes and the Basic Term-Structure Equation 1 Stochastic Processes Any variable whose value changes over time in an uncertain Lecue-V Sochasic Pocesses and he Basic Tem-Sucue Equaion 1 Sochasic Pocesses Any vaiable whose value changes ove ime in an unceain way is called a Sochasic Pocess. Sochasic Pocesses can be classied as

More information

Physics 120 Spring 2007 Exam #1 April 20, Name

Physics 120 Spring 2007 Exam #1 April 20, Name Phc 0 Spng 007 E # pl 0, 007 Ne P Mulple Choce / 0 Poble # / 0 Poble # / 0 Poble # / 0 ol / 00 In eepng wh he Unon College polc on cdec hone, ued h ou wll nehe ccep no pode unuhozed nce n he copleon o

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS

V.Abramov - FURTHER ANALYSIS OF CONFIDENCE INTERVALS FOR LARGE CLIENT/SERVER COMPUTER NETWORKS R&RATA # Vol.) 8, March FURTHER AALYSIS OF COFIDECE ITERVALS FOR LARGE CLIET/SERVER COMPUTER ETWORKS Vyacheslav Abramov School of Mahemacal Scences, Monash Unversy, Buldng 8, Level 4, Clayon Campus, Wellngon

More information

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005.

Technical Appendix for Inventory Management for an Assembly System with Product or Component Returns, DeCroix and Zipkin, Management Science 2005. Techc Appedx fo Iveoy geme fo Assemy Sysem wh Poduc o Compoe eus ecox d Zp geme Scece 2005 Lemm µ µ s c Poof If J d µ > µ he ˆ 0 µ µ µ µ µ µ µ µ Sm gumes essh he esu f µ ˆ > µ > µ > µ o K ˆ If J he so

More information

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS Jounal of Applied Analysis Vol. 14, No. 1 2008), pp. 43 52 KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS L. KOCZAN and P. ZAPRAWA Received Mach 12, 2007 and, in evised fom,

More information

Variability Aware Network Utility Maximization

Variability Aware Network Utility Maximization aably Awae Newok ly Maxmzaon nay Joseph and Gusavo de ecana Depamen of Eleccal and Compue Engneeng, he nvesy of exas a Ausn axv:378v3 [cssy] 3 Ap 0 Absac Newok ly Maxmzaon NM povdes he key concepual famewok

More information

Navier Stokes equations and forward backward SDEs on the group of diffeomorphisms of a torus

Navier Stokes equations and forward backward SDEs on the group of diffeomorphisms of a torus Sochaic Pocee and hei Applicaion 9 (9) 434 46 www.elevie.com/locae/pa Navie Soke equaion and fowad backwad SDE on he goup of diffeomophim of a ou Ana Bela Cuzeio a,b,, Evelina Shamaova b,c a Dep. de Maemáica,

More information

RESEARCH ON OPEN-ARCHITECTURE INTEGRATED EXPERIMENTAL PLATFORM WITH INTELLIGENT MONITORING IN SUGAR BOILING PROCESS

RESEARCH ON OPEN-ARCHITECTURE INTEGRATED EXPERIMENTAL PLATFORM WITH INTELLIGENT MONITORING IN SUGAR BOILING PROCESS J f Th A If Thy 10 h My 2013.. 51 N.1 2005-2013 JATIT & LL. A h v. IN: 1992-8645 www.j. E-IN: 1817-3195 REEARCH ON OPEN-ARCHITECTURE INTEGRATED EXPERIMENTAL PLATFORM WITH INTELLIGENT MONITORING IN UGAR

More information

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions:

( ) ( )) ' j, k. These restrictions in turn imply a corresponding set of sample moment conditions: esng he Random Walk Hypohess If changes n a sees P ae uncoelaed, hen he followng escons hold: va + va ( cov, 0 k 0 whee P P. k hese escons n un mply a coespondng se of sample momen condons: g µ + µ (,,

More information

". :'=: "t',.4 :; :::-':7'- --,r. "c:"" --; : I :. \ 1 :;,'I ~,:-._._'.:.:1... ~~ \..,i ... ~.. ~--~ ( L ;...3L-. ' f.':... I. -.1;':'.

. :'=: t',.4 :; :::-':7'- --,r. c: --; : I :. \ 1 :;,'I ~,:-._._'.:.:1... ~~ \..,i ... ~.. ~--~ ( L ;...3L-. ' f.':... I. -.1;':'. = 47 \ \ L 3L f \ / \ L \ \ j \ \ 6! \ j \ / w j / \ \ 4 / N L5 Dm94 O6zq 9 qmn j!!! j 3DLLE N f 3LLE Of ADL!N RALROAD ORAL OR AL AOAON N 5 5 D D 9 94 4 E ROL 2LL RLLAY RL AY 3 ER OLLL 832 876 8 76 L A

More information

6 Matrix Concentration Bounds

6 Matrix Concentration Bounds 6 Matix Concentation Bounds Concentation bounds ae inequalities that bound pobabilities of deviations by a andom vaiable fom some value, often its mean. Infomally, they show the pobability that a andom

More information

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3 - - - - ff ff - - - - - - B B BB f f f f f f f 6 96 f f f f f f f 6 f LF LZ f 6 MM f 9 P D RR DD M6 M6 M6 M. M. M. M. M. SL. E 6 6 9 ZB Z EE RC/ RC/ RC/ RC/ RC/ ZM 6 F FP 6 K KK M. M. M. M. M M M M f f

More information

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s

k. s k=1 Part of the significance of the Riemann zeta-function stems from Theorem 9.2. If s > 1 then 1 p s 9 Pimes in aithmetic ogession Definition 9 The Riemann zeta-function ζs) is the function which assigns to a eal numbe s > the convegent seies k s k Pat of the significance of the Riemann zeta-function

More information

Lecture 28: Convergence of Random Variables and Related Theorems

Lecture 28: Convergence of Random Variables and Related Theorems EE50: Pobability Foundations fo Electical Enginees July-Novembe 205 Lectue 28: Convegence of Random Vaiables and Related Theoems Lectue:. Kishna Jagannathan Scibe: Gopal, Sudhasan, Ajay, Swamy, Kolla An

More information

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings. T H S PA G E D E CLA SSFED AW E O 2958 RS u blc Recod Key fo maon Ma n AR MATEREL COMM ND D cumen Type Call N u b e 03 V 7 Rcvd Rel 98 / 0 ndexe D 38 Eneed Dae RS l umbe 0 0 4 2 3 5 6 C D QC d Dac A cesson

More information

Brief summary of functional analysis APPM 5440 Fall 2014 Applied Analysis

Brief summary of functional analysis APPM 5440 Fall 2014 Applied Analysis Bief summay of functional analysis APPM 5440 Fall 014 Applied Analysis Stephen Becke, stephen.becke@coloado.edu Standad theoems. When necessay, I used Royden s and Keyzsig s books as a efeence. Vesion

More information

Chapter 3: Theory of Modular Arithmetic 38

Chapter 3: Theory of Modular Arithmetic 38 Chapte 3: Theoy of Modula Aithmetic 38 Section D Chinese Remainde Theoem By the end of this section you will be able to pove the Chinese Remainde Theoem apply this theoem to solve simultaneous linea conguences

More information