Concepts in Physics. Monday, October 5th

Size: px
Start display at page:

Download "Concepts in Physics. Monday, October 5th"

Transcription

1 Concepts in Physics Monday, October 5th

2 Notes Assignment #3 has been posted Today s tutorial will have two parts first 15 min: problem solving strategies and than assignment #2 will be discussed in detail Assignment #2 will be available Wednesday for pick-up (after class)

3 From last time... Definition of Impulse: The impulse J of a force is the product of the average force Favg and the time interval t during which the force acts: J = Favg * t impulse J = area under the force curve. Definition of Momentum: The linear momentum p of an object is the product of the object s mass m and velocity p = m * v momentum p is a vector quantity and the unit is kg m/s Impuls = change in Momentum Favg t = pf - pi Note: this was how Newton formulated his second law

4 Conservation of linear momentum Principle of conservation of linear momentum The total linear momentum of an isolated system remains constant (is conserved). An isolated system is one for which the vector sum of the average external forces acting on the system is zero. This principle applies to a system containing any number of objects, regardless of the internal forces, provided the system is isolated. Whether the system is isolated depends on whether the vector sum of the external forces is zero. Judging whether a force is internal or external depends on which objects are included in the system. Internal forces - Forces that the objects within the system exert on each other. External forces - Forces exerted on the objects by agents external to the system. Earlier we learned about energy conservation. Conservation of Impuls is equally important and used in many area s of physics.

5 Deriving conservation of linear momentum example: collision of two masses m1 and m2: m1 v01 F12 vf2 m2 v02 Before: t = t0 F21 During: t = tc After: t = tf vf1 During the collision (t = tc) the forces F12 (force exerted on object 1 by object 2) and F21 (force exerted by object 2 on object 1) are action - reaction forces and therefore equal in magnitude and opposite in direction (Newton s third law). They are also internal forces, since they are forces that the two object exert on each other inside the system. Since the objects have wights (W1 and W2) due to the force of gravity, we also have external forces acting. Other external force would be air resistance and friction - we will ignore them for simplicity reasons in this example. We apply the impuls - momentum theorem on every object and obtain: Object 1: Object 2: (W1 + F12) Δt = m1 vf1 - m1 v01 (W2 + F21) Δt = m2 vf2 - m2 v02 We add these equation to produce a single result for the system as a whole and obtain: (W1 + W2 + F12 + F21) Δt = (m1 vf1 + m2 vf2) - (m1 v01 + m2 v02) { { { { External forces Internal forces total final momentum pf total initial momentum p0

6 (W1 + W2 + F12 + F21) Δt = (m1 vf1 + m2 vf2) - (m1 v01 + m2 v02) { { { { External forces Internal forces total final momentum pf We can write that in words: total initial momentum p0 (Sum of average external forces + Sum of average internal forces) * elapsed time = Difference between final momentum and initial momentum We know that the sum of internal forces is zero, so we can leave them out and write: (Sum of average external forces) Δt = pf - pi Suppose the sum of external forces is zero, which is true for every isolated system, then: 0 = pf - pi or pf = pi We obtained the principle of conservation of linear momentum!!

7 Example: Imagine to balls colliding on a billiard table that is friction free. Use the momentum conservation principle in answering the following questions. (a) Is the total momentum of the two-ball system the same before and after the collision? (b) Does this change if the system contains only one of the two balls? (a) Let s collect all external forces involved into this two-ball system: Weights W1 and W2 of the balls Normal forces (upward) on each ball FN1 and FN2 Since the balls do not accelerate in the vertical direction, the normal forces must balance the weights, so that the vector sum of the four external forces is zero. We defined the table as friction free. Therefore we don t have a net external force to change the total momentum of the two-ball system. The total momentum of this two-ball system is conserved. (b) YOUR TURN

8 Example: Starting from rest, two skaters push off against each other on a smooth level ice, where friction is negligible. One is a woman (m1 = 54 kg), and the other one is a man (m2 = 88 kg). The woman moves away with a velocity of vf1 = +2.5 m/s. What is the final velocity of the man? (Also called recoil velocity) For a system consisting of the two skaters on level ice, the sum of external forces is zero. Thus, we can use the principle of conservation of linear momentum to determine the man s recoil velocity. The man has a larger mass, therefore (according to Newton s second law) the acceleration he experience will be smaller and thus a smaller recoil velocity. The total momentum after the push off must be equal to before. When the skaters start, they are at rest, therefore their total momentum is zero. m1 vf1 + m2 vf2 = 0 m1 vf1 = - m2 vf2 vf2 = -(m1/m2) vf1 = -(54 kg/88 kg) 2.5 m/s = -1.5 m/s As expected the recoil velocity of the man is smaller. Note! The total linear momentum is conserved, even when the kinetic energy of the individual parts of a system changes. Kinetic energy changes because work is done by the internal forces.

9 YOUR TURN: A freight train is being assembles in a switching yard. Let s look at two boxcars. Car 1 has a mass of m1 = 65 x 10 3 kg and moves at a velocity of v01 = 0.80 m/s. Car 2 has a mass of m2 = 92 x 10 3 kg and a velocity of v02 = 1.30 m/s. It is faster, overtakes car 1 and couples to it. Neglecting friction, find the common velocity vf of the car after they become coupled. v02 v01 vf

10 YOUR TURN: A freight train is being assembles in a switching yard. Let s look at two boxcars. Car 1 has a mass of m1 = 65 x 10 3 kg and moves at a velocity of v01 = 0.80 m/s. Car 2 has a mass of m2 = 92 x 10 3 kg and a velocity of v02 = 1.30 m/s. It is faster, overtakes car 1 and couples to it. Neglecting friction, find the common velocity vf of the car after they become coupled. v02 v01 vf before after The boxcars form a system. The sum of external forces acting on the system is zero. So, we can use the linear momentum conservation principle. (m1 + m2) vf = m1 v01 + m2 v02 vf = (m1 v01 + m2 v02)/(m1 + m2) vf = {(65 x 10 3 kg)(0.80 m/s) + (92 x 10 3 kg)(1.30 m/s)}/(157 x 10 3 kg) = 1.1 m/s Note! The value for the final velocity is between the two given initial velocities

11 YOUR TURN: from last time The diagram below depicts the before- and after-collision speeds of a car which undergoes a head-on-collision with a wall. In Case A, the car bounces off the wall. In Case B, the car crumples up and sticks to the wall. a. In which case (A or B) is the change in velocity the greatest? Explain. b. In which case (A or B) is the change in momentum the greatest? Explain. c. In which case (A or B) is the impulse the greatest? Explain. d. In which case (A or B) is the force which acts upon the car the greatest (assume contact times are the same in both cases)? Explain.

12 The diagram below depicts the before- and after-collision speeds of a car which undergoes a head-on-collision with a wall. In Case A, the car bounces off the wall. In Case B, the car crumples up and sticks to the wall. a. In which case (A or B) is the change in velocity the greatest? Explain. b. In which case (A or B) is the change in momentum the greatest? Explain. c. In which case (A or B) is the impulse the greatest? Explain. d. In which case (A or B) is the force which acts upon the car the greatest (assume contact times are the same in both cases)? Explain. Case A has the greatest velocity change. The velocity change is -9 m/s in case A and only -5 m/s in case B. Case A has the greatest momentum change. The momentum change is dependent upon the velocity change; the object with the greatest velocity change has the greatest momentum change. The impulse is greatest for Car A. The impulse equals the momentum change. If the momentum change is greatest for Car A, then so must be the impulse. The impulse is greatest for Car A. The force is related to the impulse (I=F*t). The bigger impulse for Car A is attributed to the greater force upon Car A. Recall that the rebound effect is characterized by larger forces; car A is the car which rebounds.

13 Collisions in one dimension We know, that the total linear momentum is conserved when two object collide, provided they constitute an isolated system. When object are atoms or subatomic particles, the total kinetic energy of the system is often conserved as well. So, the kinetic energy gained by one particle is lost by the other (in case of a two object system). In contrast, when macroscopic objects collide (like cars), the total kinetic energy after the collision is generally less than that before the collision. The kinetic energy is mainly lost in two ways: (1) it can be converted into heat because of friction (2) it is spent in creating permanent distortion or damage (deformation of the objects) - very hard objects suffer less permanent distortion than softer objects. Therefore softer object loose more kinetic energy. Collisions are often classified according to wether the total kinetic energy changes during the collision: 1.) Elastic collision - total kinetic energy of the system after the collision is equal to the total kinetic energy before the collision 2.) Inelastic collision - total kinetic energy of the system after the collision is not the same than before the collision; if object stick together after colliding, the collision is called completely inelastic The boxcars were an example for a completely inelastic collision.

14 Example A ball of mass m1 = kg and velocity v01 = 5.00 m/s collides head-on with a ball of mass m2 = kg that is initially at rest (v02 = 0 m/s). No external forces act on the balls. Assume the collision is elastic, what are the velocities of the balls after the collision? No external forces, therefore the total linear momentum of the two-ball system is conserved. (This is true no matter if the collision is elastic or not) m1 vf1 + m2 vf2 = m1 v Since the collision is elastic, we also know that the total kinetic energy before and after the collision is the same. 1/2 (m1 vf1 2 + m2 vf2 2 ) = 1/2 m1 v > m1 vf1 2 + m2 vf2 2 - m1 v01 2 = 0 We have two equations and two unknowns, which means we can solve the problem. Use the first equation and re-arrange to find vf2 vf2 = (m1 v01 - m1 vf1)/m2 = (v01 - vf1)*(m1/m2) Substitute this in second equation: m1 vf1 2 + m2 [(v01 - vf1)*(m1/m2)] 2 - m1 v01 2 after simplification (your home work) we get: vf1 = {(m1-m2)/(m1+m2)} v01 vf2 = {(2m1)/(m1+m2)} v01 And putting in numbers: vf1 = m/s and vf2 = 2.38 m/s

15 Collisions in two dimensions A head-on collision is one-dimensional, because the velocities of the objects all point along a single line before and after contact. However in reality collisions occur in two of three dimensions. We will take a look at a two-dimensional case. Assume a system of two balls on a billiard table - we don t have to deal with external forces (each weight is balance by a normal force, the sum is zero) and we neglect friction. Momentum is a vector quantity and as for forces we can treat the x and y components separately. This means the components (x and y) of the total momentum are conserved separately. So we can write: x Component: pfx = p0x y Component: pfy = p0y

16 m1 = kg v01 = m/s y YOUR TURN: vf1 =? 50 Θ m2 = kg v02 = m/s 35 x vf2 = m/s Use momentum conservation to determine the magnitude and direction of the final velocity of ball 1 after collision.

17 The magnitude and direction of the final velocity of ball 1 can be obtained one the components vf1x and vf1y are known. The momentum conservation principle can be used. (linear momentum for each component) m1 = kg v01 = m/s m2 = kg v02 = m/s vf2 = m/s 50 degrees to vertical incoming (ball 1) 35 degrees before and down from horizontal for ball 2 after x Component: pfx = p0x y Component: pfy = p0y p = mv put in numbers: v1fx = 0.63 m/s and vf1y = 0.12 m/s v1fy v1fx Θ vf1 = sqrt(vf1x 2 + vf1y 2 ) = 0.64 m/s direction given by Θ = tan -1 ((vfly/vf1x)) = 11

18 Basic geometry Let s look at plane geometry - 2 dimensions In this document lowercase letters a, b, c,... denote the sides of a polygon and uppercase letters A, B, C denote the vertices of a polygon. A polygon here is any geometric form with sides and vertices that can be made out of linear functions (for example: triangle, square, rectangular,...) Lowercase greek letters α, β, γ,... are uses for angles. Sum of angles: α + β + γ = 180 = π Perimeter: a + b + c Area: 1/2*h*a (h height to vertex A, note the right angle 90 between h and a) Right triangle 90 at C (or π/2 radians) between h and a) Area: 1/2*a*b (b=h) Perimeter: a + b + c Pythagorean theorem: c 2 = a 2 + b 2 Two triangles are called similar, when the corresponding angles are equal.

19 Rectangle with sides a and b and Square, where a = b Perimeter: 2a + 2b = 2(a+b) Area: a*b Diagonal: d = a 2 +b 2 Perimeter: 2a + 2a = 4a Area: a*a = a2 Diagonal: d = a 2 +a 2 = 2 a Note the diagonal divides the rectangle into two triangles, for each one the area is given by 1/2 * a * b (where b = h). To get the area of the diagonal, we have to add the area of the two triangles: 2*(1/2*a*b) = a*b. We have just shown that the area of a right angle triangle and a rectangle are connected! As a consequence knowing one of them also means knowing the other. This is the case with many relations in physics as well - sometime it is not quite as obvious, but it is always worth thinking about it and finding them. It will deepen your understanding and safe you from learning multiple formulas for the same thing. Sum of angles in any polygone with four sides is 360 or 2π radians.

20 Trapezoid with sides a, b, c and d and height h. Sides a and c are parallel Perimeter: a + b + c + d Area: 1/2(a+c)h h a1 a2 Let s show how this formula can be derived from starting off with trianglars and a rectangle: rectangle: c*h triangle left: 1/2*h*a1 triangle right: 1/2*h*a2 Now add them all up: 1/2*h(2c+a1+a2) At the end we don t want to use a1 and a2, so express them through a and c: a1 + a2 = a - c and substitute above: Area: 1/2*h(2c+a-c) = 1/2(a+c)h The sum of angles in a polygon with n sides is given by (n-2)π radians or (n-2)180 degrees, so 180 (or π) in a triangle, 360 (or 2π) in square, rectangle, parallelogram, trapezoid, 540 (or 3π) in a pentagon, etc.

21 Now circles and ellipse: knowing the radius of a circle determines circumference and area as well. diameter: d = 2 r circumference: 2πr area: πr 2 Shaded area between two circles r1 < r2 area: πr2 2 - πr1 2 = π(r2 2 - r1 2 ) Ellipse with semi-axis a and b and centre C. area: πab

22 Assume three lines, a and b are parallel and c intersects both of them α = β and α = α and β = β

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions

Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Ch 7 Impulse-Momentum Theorem, Conservation of Momentum, and Collisions Momentum and its relation to force Momentum describes an object s motion. Linear momentum is the product of an object s mass and

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse

More information

Impulse and Momentum continued

Impulse and Momentum continued Chapter 7 Impulse and Momentum continued 7.2 The Principle of Conservation of Linear Momentum External forces Forces exerted on the objects by agents external to the system. Net force changes the velocity

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum Chaper 6 Review: Work and Energy Forces and Displacements Effect of forces acting over a displacement Work W = (F cos)s Work changes the Kinetic Energy of a mass Kinetic

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 7.1 The Impulse-Momentum Theorem There are many situations when the force on an object is not constant. 7.1 The Impulse-Momentum Theorem DEFINITION OF IMPULSE The impulse

More information

Chapter 7- Linear Momentum

Chapter 7- Linear Momentum Chapter 7- Linear Momentum Old assignments and midterm exams (solutions have been posted on the web) can be picked up in my office (LB-212) All marks, including assignments, have been posted on the web.

More information

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum.

Notes Momentum. Momentum and Impulse. - The product (multiplication) of an objects mass and velocity is called momentum. Notes Momentum Momentum and Impulse - The product (multiplication) of an objects mass and velocity is called momentum. Momentum is the energy of motion of an object. Momentum is represented by the letter.

More information

Momentum and impulse Book page 73-79

Momentum and impulse Book page 73-79 Momentum and impulse Book page 73-79 Definition The rate of change of linear momentum is directly proportional to the resultant force acting upon it and takes place in the direction of the resultant force

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv.

1 kg. 10,000 kg. 1 Page. Momentum is a vector so it has a magnitude and a velocity. Its magnitude is the product of its mass and velocity, p = mv. Momentum The momentum of a single object is simply equal to the product of its mass and its velocity. The symbol for momentum is p. Since mass is a scalar and velocity is a vector, momentum is also a vector.

More information

LINEAR MOMENTUM AND COLLISIONS

LINEAR MOMENTUM AND COLLISIONS LINEAR MOMENTUM AND COLLISIONS Chapter 9 Units of Chapter 9 Linear Momentum Momentum and Newton s Second Law Impulse Conservation of Linear Momentum Inelastic Collisions Elastic Collisions Center of Mass

More information

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true?

Mechanics II. Which of the following relations among the forces W, k, N, and F must be true? Mechanics II 1. By applying a force F on a block, a person pulls a block along a rough surface at constant velocity v (see Figure below; directions, but not necessarily magnitudes, are indicated). Which

More information

When particle with mass m moves with velocity v, we define its Linear Momentum p as product of its mass m and its velocity v:

When particle with mass m moves with velocity v, we define its Linear Momentum p as product of its mass m and its velocity v: 8. LINEAR MOMENTUM. Key words: Linear Momentum, Law of Conservation of Momentum, Collisions, Elastic Collisions, Inelastic Collisions, Completely Inelastic Collision, Impulse, Impulse Momentum Theorem.

More information

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution

Name: Class: Date: p 1 = p 2. Given m = 0.15 kg v i = 5.0 m/s v f = 3.0 m/s Solution Assessment Chapter Test A Teacher Notes and Answers Momentum and Collisions CHAPTER TEST A (GENERAL) 1. c 2. c 3. b 4. c 5. a p i = 4.0 kg m/s p f = 4.0 kg m/s p = p f p i = ( 4.0 kg m/s) 4.0 kg m/s =

More information

Physics 231 Lecture 14

Physics 231 Lecture 14 Physics 231 Lecture 14 Impulses: forces that last a short time Momentum: p = mv Impulse-Momentum theorem: FΔt = Δp = mδv = m( v f v i ) Momentum conservation: p tot,f p 1,f + p 2,f = p 1,i + p 2,i p tot,i

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4

CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 1 / 38 CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.2 4 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, October 16, 2012 2 / 38 PRINCIPLE

More information

Impulse & Linear Momentum

Impulse & Linear Momentum Name: Per: Date: Los Altos High School Physics Impulse & Linear Momentum r F ave t r = P r r P ox = P fx r r P o = P f r r P oy = P fy r r P = mv Mr. Randall Room 705 adam.randall@mvla.net www.laphysics.com

More information

Center of Mass & Linear Momentum

Center of Mass & Linear Momentum PHYS 101 Previous Exam Problems CHAPTER 9 Center of Mass & Linear Momentum Center of mass Momentum of a particle Momentum of a system Impulse Conservation of momentum Elastic collisions Inelastic collisions

More information

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity?

Momentum Conceptual Questions. 1. Which variable has more impact on an object s motion? Its mass or its velocity? AP Physics I Momentum Conceptual Questions 1. Which variable has more impact on an object s motion? Its mass or its velocity? 2. Is momentum a vector or a scalar? Explain. 3. How does changing the duration

More information

Concepts in Physics. Friday, October 16th

Concepts in Physics. Friday, October 16th 1206 - Concepts in Physics Friday, October 16th Notes Assignment #4 due Wednesday, October 21 st in class (no later than noon) There are still assignments #1 and #2 in my office to be picked up... If you

More information

PS113 Chapter 7. Impulse and Momentum

PS113 Chapter 7. Impulse and Momentum PS113 Chapter 7 Impulse and Momentum 1 The impulse-momentum theorem There are many situations in which the force acting on a object is not constant, but varies with time. The resulting motion can be simply

More information

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other.

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. Newton s Third Law Action and Reaction Forces The force your bumper car exerts

More information

Momentum is conserved for all collisions as long as external forces don t interfere.

Momentum is conserved for all collisions as long as external forces don t interfere. Momentum is conserved for all collisions as long as external forces don t interfere. Objectives: Identify the factors that affect an object s momentum Identify the factors that affect how much an object

More information

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other.

When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. When this bumper car collides with another car, two forces are exerted. Each car in the collision exerts a force on the other. Newton s Third Law What is Newton s third law of motion? According to Newton

More information

Physics-MC Page 1 of 29 Inertia, Force and Motion 1.

Physics-MC Page 1 of 29 Inertia, Force and Motion 1. Physics-MC 2006-7 Page 1 of 29 Inertia, Force and Motion 1. 3. 2. Three blocks of equal mass are placed on a smooth horizontal surface as shown in the figure above. A constant force F is applied to block

More information

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company

Section 1 Momentum and Impulse. Chapter 6. Preview. Objectives Linear Momentum. Houghton Mifflin Harcourt Publishing Company Section 1 Momentum and Impulse Preview Objectives Linear Momentum Section 1 Momentum and Impulse Objectives Compare the momentum of different moving objects. Compare the momentum of the same object moving

More information

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v.

Impulse simply refers to a change in momentum, and is usually caused by a change in velocity, as described by p = m v. 1 Impulse and Momentum Recall from Newton s 1 st Law: inertia is the tendency of an object to keep on doing what its already doing, that is: either remaining stationary, or: travelling at a constant velocity.

More information

Momentum is a property of moving matter. Momentum describes the tendency of objects to keep going in the same direction with the same speed.

Momentum is a property of moving matter. Momentum describes the tendency of objects to keep going in the same direction with the same speed. Warm-up A mosquito collides head-on with a car traveling 60 mph. How do you think the size of the force that car exerts on the mosquito compares to the size of the force that mosquito exerts on car? 12.1

More information

Physics 2514 Lecture 26

Physics 2514 Lecture 26 Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

More information

(k = force constant of the spring)

(k = force constant of the spring) Lecture 10: Potential Energy, Momentum and Collisions 1 Chapter 7: Conservation of Mechanical Energy in Spring Problems The principle of conservation of Mechanical Energy can also be applied to systems

More information

Physics 131: Lecture 15. Today s Agenda

Physics 131: Lecture 15. Today s Agenda Physics 131: Lecture 15 Today s Agenda Impulse and Momentum (or the chapter where physicists run out of letters) Non-constant t forces Impulse-momentum thm Conservation of Linear momentum External/Internal

More information

AP Physics 1 Momentum and Impulse Practice Test Name

AP Physics 1 Momentum and Impulse Practice Test Name AP Physics 1 Momentum and Impulse Practice Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A rubber ball and a lump of clay have equal

More information

Unit 5: Momentum. Vocabulary: momentum, impulse, center of mass, conservation of momentum, elastic collision, inelastic collision.

Unit 5: Momentum. Vocabulary: momentum, impulse, center of mass, conservation of momentum, elastic collision, inelastic collision. Text: Chapter 9 Unit 5: Momentum NAME: Problems (p. 229-240) #1: 18, 20, 27, 31, 37 (momentum & impulse) #2: 40, 42, 45, 46, 100 (conservation of momentum) #3: 49, 103, 123, 129 (collisions) Vocabulary:

More information

Momentum_P2 1 NA 2NA. 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed.

Momentum_P2 1 NA 2NA. 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed. Momentum_P2 1 NA 2NA 3a. [2 marks] A girl on a sledge is moving down a snow slope at a uniform speed. Draw the free-body diagram for the sledge at the position shown on the snow slope. 3b. [3 marks] 1

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE

More information

Physics 100. Today. Finish Chapter 5: Newton s 3 rd Law. Chapter 6: Momentum

Physics 100. Today. Finish Chapter 5: Newton s 3 rd Law. Chapter 6: Momentum Physics 100 Today Finish Chapter 5: Newton s 3 rd Law Chapter 6: Momentum Momentum = inertia in motion Specifically, momentum = mass x velocity = m v Eg. Just as a truck and a roller skate have different

More information

Lecture Notes (Momentum & Impulse)

Lecture Notes (Momentum & Impulse) Lecture Notes (Momentum & Impulse) Intro: - earlier in the year, we introduced Galileo's Principle of Inertia and we talked how Newton used this idea to formulate his first law of motion - Newton discussed

More information

PH105 Exam 1 Solution

PH105 Exam 1 Solution PH105 Exam 1 Solution 1. The graph in the figure shows the position of an object as a function of time. The letters A-E represent particular moments of time. At which moment shown (A, B, etc.) is the speed

More information

IMPACT Today s Objectives: In-Class Activities:

IMPACT Today s Objectives: In-Class Activities: Today s Objectives: Students will be able to: 1. Understand and analyze the mechanics of impact. 2. Analyze the motion of bodies undergoing a collision, in both central and oblique cases of impact. IMPACT

More information

Chapter 9 Linear Momentum and Collisions

Chapter 9 Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions The Center of Mass The center of mass of a system of particles is the point that moves as though (1) all of the system s mass were concentrated there and (2) all

More information

Force, Friction & Gravity Notes

Force, Friction & Gravity Notes Force, Friction & Gravity Notes Key Terms to Know Speed: The distance traveled by an object within a certain amount of time. Speed = distance/time Velocity: Speed in a given direction Acceleration: The

More information

IMPACT (Section 15.4)

IMPACT (Section 15.4) IMPACT (Section 15.4) Today s Objectives: Students will be able to: a) Understand and analyze the mechanics of impact. b) Analyze the motion of bodies undergoing a collision, in both central and oblique

More information

Conservation of Momentum

Conservation of Momentum Conservation of Momentum Law of Conservation of Momentum The sum of the momenta before a collision equal the sum of the momenta after the collision in an isolated system (=no external forces acting).

More information

Momentum. A ball bounces off the floor as shown. The direction of the impulse on the ball, is... straight up straight down to the right to the left

Momentum. A ball bounces off the floor as shown. The direction of the impulse on the ball, is... straight up straight down to the right to the left Momentum A ball bounces off the floor as shown. The direction of the impulse on the ball,, is... A: B: C: D: straight up straight down to the right to the left This is also the direction of Momentum A

More information

System of objects (particles)

System of objects (particles) Today Ch 6, Momentum and Collisions System of particles Elastic vs. inelastic collision Elastic collision in 1D Collision in 2D Center of mass Motion of system of particles (Motion of center of mass) 1

More information

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4.

3. How long must a 100 N net force act to produce a change in momentum of 200 kg m/s? (A) 0.25 s (B) 0.50 s (C) 1.0 s (D) 2.0 s (E) 4. AP Physics Multiple Choice Practice Momentum and Impulse 1. A car of mass m, traveling at speed v, stops in time t when maximum braking force is applied. Assuming the braking force is independent of mass,

More information

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ

(A) 0 (B) mv (C) 2mv (D) 2mv sin θ (E) 2mv cos θ Physics 1 Lesson 8 Forces and Momentum Homework Outcomes 1. Define linear momentum. 2. Determine the total linear momentum of a system. 3. Apply the Law of Conservation of Momentum to solve problems. 4.

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Momentum Analysis Models Force and acceleration are related by Newton s second law. When force and acceleration vary by time, the situation can be very complicated.

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object.

Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an object. HOLT CH 6 notes Objectives :Compare the momentum of different moving objects. Compare the momentum of the same object moving with different velocities. Identify examples of change in the momentum of an

More information

General Physics I Momentum

General Physics I Momentum General Physics I Momentum Linear Momentum: Definition: For a single particle, the momentum p is defined as: p = mv (p is a vector since v is a vector). So p x = mv x etc. Units of linear momentum are

More information

PHYS 1441 Section 002 Lecture #17

PHYS 1441 Section 002 Lecture #17 PHYS 1441 Section 002 Lecture #17 Monday, April 1, 2013 Linear Momentum Linear Momentum and Impulse Linear Momentum and Forces Linear Momentum Conservation Linear Momentum Conservation in a Two - body

More information

An Introduction to Momentum (Doodle Science)

An Introduction to Momentum (Doodle Science) Momentum An Introduction to Momentum (Doodle Science) Intro to Momentum part one Momentum Momentum is a way of describing the inertia of an object in motion. Momentum = Mass x Velocity P = m v When direction

More information

Extra Circular Motion Questions

Extra Circular Motion Questions Extra Circular Motion Questions Elissa is at an amusement park and is driving a go-cart around a challenging track. Not being the best driver in the world, Elissa spends the first 10 minutes of her go-cart

More information

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v.

1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. 1. A tennis ball of mass m moving horizontally with speed u strikes a vertical tennis racket. The ball bounces back with a horizontal speed v. The magnitude of the change in momentum of the ball is A.

More information

Momentum and Impulse Concept Tests

Momentum and Impulse Concept Tests Momentum and Impulse Concept Tests Question 1 Consider two carts, of masses m and 2m, at rest on an air track. If you push first one cart for 3 s and then the other for the same length of time, exerting

More information

Chapters 5 & 6 More Third Law Vectors at Angles Momentum Conservation of Momentum

Chapters 5 & 6 More Third Law Vectors at Angles Momentum Conservation of Momentum Lecture 6 Chapters 5 & 6 More Third Law Vectors at Angles Momentum Conservation of Momentum Help sessions Announcements M 1600-1700 in TH116 (A. Kelly) M 1700-1900 in TH116 (D. Lim) T 1600-1700 in TH118

More information

8.1 Momentum. Momentum is conserved for all. forces don t interfere.

8.1 Momentum. Momentum is conserved for all. forces don t interfere. Momentum is conserved for all collisions as long as external forces don t interfere. The concept of inertia was introduced and developed both in terms of objects at rest and objects in motion. In this

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 1

Physics 12. Unit 5 Circular Motion and Gravitation Part 1 Physics 12 Unit 5 Circular Motion and Gravitation Part 1 1. Nonlinear motions According to the Newton s first law, an object remains its tendency of motion as long as there is no external force acting

More information

Impulse/Momentum And Its Conservation

Impulse/Momentum And Its Conservation Impulse/Momentum And Its Conservation Which is easier to stop? Truck, car, bowling ball, or baseball all moving at 30 mph. Baseball -it is the least massive. Baseball at 30 mph or a baseball at 90 mph.

More information

October 24. Linear Momentum: - It is a vector which may require breaking it into components

October 24. Linear Momentum: - It is a vector which may require breaking it into components October 24 Linear Momentum: - It is a vector which may require breaking it into components Newton s First Law: A body continues with Constant Linear Momentum unless it is acted upon by a Net External Force.

More information

CHAPTER 4. Impulse and momentum. CHAPTER s Objectives

CHAPTER 4. Impulse and momentum. CHAPTER s Objectives 60 CHAPTER 4 Impulse and momentum CHAPTER s Objectives To understand the interaction between objects through the impulse and momentum concepts To introduce the law o conservation o momentum, and apply

More information

Name: Class: Date: d. none of the above

Name: Class: Date: d. none of the above Name: Class: Date: H Phys quiz Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following is the cause of an acceleration? a. speed b. inertia

More information

Physics 111. ConcepTest. Lecture 19 (Walker: 9.4-7) Momentum Conservation Collisions Center of Mass Oct. 16, r (80 kg)

Physics 111. ConcepTest. Lecture 19 (Walker: 9.4-7) Momentum Conservation Collisions Center of Mass Oct. 16, r (80 kg) Physics 111 Lecture 19 (Walker: 9.4-7) Momentum Conservation Collisions Oct. 16, 2009 Conservation of (System) Momentum When no external forces do work on a system consisting of objects that interact with

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Impulse and Momentum 1) Linear momentum p = mv (units: kg m / s) 2) Impulse (produces a finite change in momentum) (a) Constant force: J = FΔt From the 2nd law, F = Δ(m v) Δt = Δ p Δt, so J =

More information

Physics 100. Today. Finish Chapter 5: Newton s 3 rd Law. Chapter 6: Momentum

Physics 100. Today. Finish Chapter 5: Newton s 3 rd Law. Chapter 6: Momentum Physics 100 Today Finish Chapter 5: Newton s 3 rd Law Chapter 6: Momentum Momentum = inertia in motion Specifically, momentum = mass x velocity = m v Eg. Just as a truck and a roller skate have different

More information

No Brain Too Small PHYSICS

No Brain Too Small PHYSICS Level Physics: Mechanics Newton s Laws, Momentum and Energy Answers The Mess that is NCEA Assessment Schedules. Level Physics: AS 97 replaced AS 9055. In 9055, from 003 to 0, there was an Evidence column

More information

Study Questions/Problems Week 6

Study Questions/Problems Week 6 Study Questions/Problems Week 6 Chapters 9 explores further elaborations on Newton s laws that lead to another conservation principle conservation of linear momentum. These problems will help you appreciate

More information

Momentum in 2 Dimensions. Unit 1B

Momentum in 2 Dimensions. Unit 1B Momentum in 2 Dimensions Unit 1B You were introduced to momentum and momentum calculations, including 1D collisions, in Physics 2204. In this part of unit 1 we will study: 2D collisions Explosions where

More information

Physics Lecture 12 Momentum & Collisions

Physics Lecture 12 Momentum & Collisions Physics 101 - Lecture 12 Momentum & Collisions Momentum is another quantity (like energy) that is tremendously useful because it s often conserved. In fact, there are two conserved quantities that we can

More information

7.1 Momentum. Can you have inertia sitting in your seat? Do you have momentum (relative to the room) sitting in your seat? What is momentum?

7.1 Momentum. Can you have inertia sitting in your seat? Do you have momentum (relative to the room) sitting in your seat? What is momentum? Impulse & Momentum 7.1 Momentum Can you have inertia sitting in your seat? Do you have momentum (relative to the room) sitting in your seat? What is momentum? 2 7.1 Momentum Which is harder to stop a truck

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 15, 2001 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

More information

Chapter 4 Conservation Laws

Chapter 4 Conservation Laws Conceptual Physics/ PEP Name: Date: Chapter 4 Conservation Laws Section Review 4.1 1. List three action and reaction pairs in the picture at right, on page 82 in text. a. Force of paddle on water, and

More information

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car?

1 A freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? Slide 1 / 26 1 freight car of mass 20,000 kg moves along a frictionless level railroad track with a constant speed of 15 m/s. What is the momentum of the car? 30,000 kg m/s 3,000 kg m/s 300,000 kg m/s

More information

CHAPTER 9 LINEAR MOMENTUM AND COLLISION

CHAPTER 9 LINEAR MOMENTUM AND COLLISION CHAPTER 9 LINEAR MOMENTUM AND COLLISION Couse Outline : Linear momentum and its conservation Impulse and Momentum Collisions in one dimension Collisions in two dimension The center of mass (CM) 9.1 Linear

More information

Topic 2. Topic 1 The Killers LEARNING OBJECTIVES. Mechanics. 1. Percentage Uncertainties 2. Plotting graphs 3. Vector addition and subtraction

Topic 2. Topic 1 The Killers LEARNING OBJECTIVES. Mechanics. 1. Percentage Uncertainties 2. Plotting graphs 3. Vector addition and subtraction Topic 1 The Killers 1. Percentage Uncertainties 2. Plotting graphs 3. Vector addition and subtraction ROOKIE MISTAKE: Don t underestimate the importance of this topic. It makes up 5-7% of your final IB

More information

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics. Bell Ringer: Define Kinetic Energy, Potential Energy, and Work. What are two forms of Potential Energy that we commonly use? Explain Conservation of Energy and how we utilize it for problem-solving technics.

More information

The SI units of mass are kilograms (kg) and of velocity are meters / second (m/s). Therefore, the units of momentum are kg m/s.

The SI units of mass are kilograms (kg) and of velocity are meters / second (m/s). Therefore, the units of momentum are kg m/s. Momentum Introduction As was pointed out in the previous chapter, some of the most powerful tools in physics are based on conservation principles. The idea behind a conservation principle is that there

More information

Physics 1501 Lecture 17

Physics 1501 Lecture 17 Physics 50: Lecture 7 Today s Agenda Homework #6: due Friday Midterm I: Friday only Topics Chapter 9» Momentum» Introduce Collisions Physics 50: Lecture 7, Pg Newton s nd Law: Chapter 9 Linear Momentum

More information

If there is now a constant air resistance force of 35 N, what is the new maximum height the ball attains?

If there is now a constant air resistance force of 35 N, what is the new maximum height the ball attains? A 1kg ball is launched straight up into the air with an initial speed of 64 m/s. Using only energy considerations, determine the maximum height the ball attains assuming there is no air resistance. If

More information

Chapter 7. Impulse and Momentum

Chapter 7. Impulse and Momentum Chapter 7 Ipulse and Moentu 7. The Ipulse-Moentu Theore There are any situations when the force on an object is not constant. 7. The Ipulse-Moentu Theore DEFINITION OF IMPULSE The ipulse of a force is

More information

Phys101 Lectures 14, 15, 16 Momentum and Collisions

Phys101 Lectures 14, 15, 16 Momentum and Collisions Phys101 Lectures 14, 15, 16 Momentum and Collisions Key points: Momentum and impulse Condition for conservation of momentum and why How to solve collision problems Centre of mass Ref: 9-1,2,3,4,5,6,7,8,9.

More information

p p I p p p I p I p p

p p I p p p I p I p p Net momentum conservation for collision on frictionless horizontal surface v1i v2i Before collision m1 F on m1 from m2 During collision for t v1f m2 F on m2 from m1 v2f +x direction After collision F F

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ

APPLICATIONS. CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7. IMPACT (Section 15.4) APPLICATIONS (continued) IMPACT READING QUIZ APPLICATIONS CEE 271: Applied Mechanics II, Dynamics Lecture 17: Ch.15, Sec.4 7 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: The quality of a tennis ball

More information

Physical Science (SCI101) Final Exam

Physical Science (SCI101) Final Exam Department of Mathematics and General Sciences Final Exam Second Semester, Term 132 Date: Wednesday 28/5/2014 Name: ID number: Section number or time: Instructor s name: Important instructions: 1. Examination

More information

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard.

MOMENTUM. The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard. MOMENTUM The world is wide, and I will not waste my life in friction when it could be turned into momentum. Frances E. Willard Honors Physics CONSERVATION OF Energy Linear Momentum Angular Momentum Electric

More information

Momentum and Collisions

Momentum and Collisions Momentum and Collisions Vocabulary linear momemtum second law of motion isolated system elastic collision inelastic collision completly inelastic center of mass center of gravity 9-1 Momentum and Its Relation

More information

Collisions in Two Dimensions

Collisions in Two Dimensions Collisions in Two Dimensions Why physicists are so awesome at pool, and How to reconstruct car accidents! Practice: 6.31, 6.33, 6.39, 6.41, 6.43, 6.45, 6.47, 6.49, 6.51, 6.53, 6.55, 6.63, 6.73 I hope you

More information

Momentum and Collisions

Momentum and Collisions Physics in Action Soccer players must consider an enormous amount of information every time they set the ball = or themselves into motion. Once a player knows where the ball should go, the player has to

More information

Conservation of Momentum. The total momentum of a closed, isolated system does not change.

Conservation of Momentum. The total momentum of a closed, isolated system does not change. Conservation of Momentum In the 17 th century, Newton and others had measured the momentum of colliding objects before and after collision, and had discovered a strange phenomenon: the total momentum of

More information

Lesson 4 Momentum and Energy

Lesson 4 Momentum and Energy Lesson 4 Momentum and Energy Introduction: Connecting Your Learning The previous lessons concentrated on the forces that cause objects to change motion. Lesson 4 will introduce momentum and energy, as

More information

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2.

A) 4.0 m/s B) 5.0 m/s C) 0 m/s D) 3.0 m/s E) 2.0 m/s. Ans: Q2. Coordinator: Dr. W. Al-Basheer Thursday, July 30, 2015 Page: 1 Q1. A constant force F ( 7.0ˆ i 2.0 ˆj ) N acts on a 2.0 kg block, initially at rest, on a frictionless horizontal surface. If the force causes

More information

Energy& Momentum ~Learning Guide Name:

Energy& Momentum ~Learning Guide Name: Energy& Momentum ~Learning Guide Name: Instructions: Using a pencil, answer the following questions. The Pre-Reading is marked, based on effort, completeness, and neatness (not accuracy). The rest of the

More information

2016 PHYSICS FINAL REVIEW PACKET

2016 PHYSICS FINAL REVIEW PACKET 2016 PHYSICS FINAL REVIEW PACKET EXAM BREAKDOWN CHAPTER TOPIC # OF QUESTIONS 6 CONSERVATION OF ENERGY 22 7 MOMENTUM/COLLISIONS 17 5 CIRCULAR MOTION GRAVITY/SATELLITE MOTION 30 11 WAVES 24 - ELECTROMAGNETISM/MISC./LABS

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

Linear momentum conservation

Linear momentum conservation Linear momentum conservation Bullet +head Low speed High mass Bullet High speed Low mass Momentum = mv Fluid, brain Low speed, low mass CONSERVATION OF MOMENTUM COMES FROM NEWTON S THIRD LAW = ACTION =

More information

Sometimes (like on AP test) you will see the equation like this:

Sometimes (like on AP test) you will see the equation like this: Work, Energy & Momentum Notes Chapter 5 & 6 The two types of energy we will be working with in this unit are: (K in book KE): Energy associated with of an object. (U in book PE): Energy associated with

More information

TEACHER BACKGROUND INFORMATION FORCE

TEACHER BACKGROUND INFORMATION FORCE TEACHER BACKGROUND INFORMATION FORCE WHAT IS FORCE? Force is anything that can change the state of motion of a body. In simpler terms, force is a push or a pull. For example, wind pushing on a flag is

More information