Joint Bayesian Compressed Sensing with Prior Estimate

Size: px
Start display at page:

Download "Joint Bayesian Compressed Sensing with Prior Estimate"

Transcription

1 Joint Bayesian Compressed Sensing with Prior Estimate Berkin Bilgic 1, Tobias Kober 2,3, Gunnar Krueger 2,3, Elfar Adalsteinsson 1,4 1 Electrical Engineering and Computer Science, MIT 2 Laboratory for Functional and Metabolic Imaging, EPFL 3 Siemens Schweiz AG 4 Harvard-MIT Division of Health Sciences and Technology

2 ISMRM 20 th ANNUAL MEETING & EXHIBITION Adapting MR in a Changing World Declaration of Relevant Financial Interests or Relationships Speaker Name: Berkin Bilgic I have no relevant financial interest or relationship to disclose with regard to the subject matter of this presentation.

3 Multi-contrast Acquisition Clinical MRI: acquiring multiple contrast preparations increases the diagnostic power, but also the total scan time

4 Multi-contrast Acquisition Clinical MRI: acquiring multiple contrast preparations increases the diagnostic power, but also the total scan time Proton density T2 weighted T1 weighted contrast SRI24 atlas 1 [1] Rohlfing et al. Hum Brain Map, 2010

5 Multi-contrast Acquisition Clinical MRI: acquiring multiple contrast preparations increases the diagnostic power, but also the total scan time Proton density T2 weighted T1 weighted contrast Joint reconstruction from undersampled acquisitions substantially improves reconstruction quality 1 [1] Bilgic et al. MRM, 2011

6 Multi-contrast Acquisition Clinical MRI: acquiring multiple contrast preparations increases the diagnostic power, but also the total scan time Proton density T2 weighted T1 weighted contrast Suppose that one of the contrasts can be acquired much faster than the others (e.g. AutoAlign)

7 Multi-contrast Acquisition Clinical MRI: acquiring multiple contrast preparations increases the diagnostic power, but also the total scan time Proton density T2 weighted T1 weighted contrast Suppose that one of the contrasts can be acquired much faster than the others (e.g. AutoAlign) If we fully-sample the fast contrast, can we use it to help reconstruct the others?

8 Observation model F x = y F: partial Fourier transform x: image to be estimated y: undersampled k-space data

9 Observation model sparse representation V F x = V y V = (1 e 2πjω/n )

10 Observation model sparse representation F δ = y δ: image gradient to be estimated y: modified k-space data

11 Observation model sparse representation F δ = y δ: image gradient to be estimated y: modified k-space data x δ V

12 Data likelihood Assuming that the k-space data is corrupted by complexvalued Gaussian noise with σ 2 variance, p y δ, σ 2 N(Fδ y, σ 2 ) Gaussian likelihood

13 Prior distribution on gradient coefficients Bayesian CS places hyperparameters γ on each pixel, p δ i γ i N(0, γ i ) Gaussian prior So that i th pixel is a zero-mean Gaussian with variance γ i

14 Prior distribution on gradient coefficients Bayesian CS places hyperparameters γ on each pixel, p δ i γ i N(0, γ i ) Gaussian prior So that i th pixel is a zero-mean Gaussian with variance γ i Multiplicative combination of all pixels give the full prior distribution, p δ γ N(0, γ i ) i

15 Posterior distribution for gradient coefficients Using the likelihood and the prior, we invoke Bayes Rule to arrive at the posterior, p δ y, γ p δ γ p y δ

16 Posterior distribution for gradient coefficients Using the likelihood and the prior, we invoke Bayes Rule to arrive at the posterior, p δ y, γ p δ γ p y δ Gaussian posterior Gaussian prior Gaussian likelihood

17 Posterior distribution for gradient coefficients Using the likelihood and the prior, we invoke Bayes Rule to arrive at the posterior, p δ y, γ p δ γ p y δ N(μ, Σ) μ = ΓF H A 1 y Σ = Γ ΓF H A 1 FΓ

18 Posterior distribution for gradient coefficients Using the likelihood and the prior, we invoke Bayes Rule to arrive at the posterior, p δ y, γ p δ γ p y δ N(μ, Σ) μ = ΓF H A 1 y Σ = Γ ΓF H A 1 FΓ Γ = diag(γ) A 1 = (σ 2 I + FΓF H ) 1 Inversion using Lanczos algorithm 1 [1] Seeger et al. MRM, 2010

19 EM algorithm for optimization Expectation-maximization algorithm 1 is used to estimate the hyperparameters and the posterior iteratively, Expectation step: μ = ΓF H A 1 y Σ = Γ ΓF H A 1 FΓ Maximization step: γ i = μ i 2 /(1 Σ ii /γ i ) [1] Wipf et al. IEEE Trans Signal Process, 2007

20 EM algorithm for optimization Expectation-maximization algorithm 1 is used to estimate the hyperparameters and the posterior iteratively, Expectation step: μ = ΓF H A 1 y Σ = Γ ΓF H A 1 FΓ Maximization step: γ i = μ i 2 /(1 Σ ii /γ i ) [1] Wipf et al. IEEE Trans Signal Process, 2007

21 EM algorithm for optimization Expectation-maximization algorithm 1 is used to estimate the hyperparameters and the posterior iteratively, Expectation step: μ = ΓF H A 1 y Σ = Γ ΓF H A 1 FΓ Maximization step: γ i = μ i 2 /(1 Σ ii /γ i ) [1] Wipf et al. IEEE Trans Signal Process, 2007

22 Using fully-sampled prior image If we run EM iterations on the fully sampled image δ prior Expectation step: μ prior = δ prior Σ prior = 0 Maximization step: γ prior = μ prior 2

23 Using fully-sampled prior image If we run EM iterations on the fully sampled image δ prior Expectation step: μ prior = δ prior Σ prior = 0 Iterations do not alter fully-sampled prior image Maximization step: γ prior = μ prior 2

24 Using fully-sampled prior image If we run EM iterations on the fully sampled image δ prior Expectation step: μ prior = δ prior Σ prior = 0 Maximization step: γ prior = μ prior 2 Iterations do not alter fully-sampled prior image Use γ prior to initialize the EM iterations for undersampled images

25 Extended Shepp-Logan Phantoms fully-sampled prior undersampled R = 4 sampling pattern

26 Extended Shepp-Logan Phantoms sparsemri 1 : Total Variation 20.1% RMSE sparsemri: 20.1% RMSE error: scaled 10 [1] Lustig et al. MRM, 2007

27 Extended Shepp-Logan Phantoms fully-sampled prior Bayesian CS w/ prior 3.0% RMSE sparsemri: BCS w/ prior: 20.1% RMSE 3.0% RMSE error: scaled 10

28 Turbo Spin Echo Late Echo fully-sampled prior Early Echo undersampled R = 4 sampling pattern

29 Turbo Spin Echo sparsemri 1 : Total Variation 9.3% RMSE sparsemri: 9.3% RMSE error: scaled 10 [1] Lustig et al. MRM, 2007

30 Turbo Spin Echo Late Echo fully-sampled prior Bayesian CS w/ prior 5.8% RMSE sparsemri: BCS w/ prior: 9.3% RMSE 5.8% RMSE error: scaled 10

31 SRI24 atlas proton density fully-sampled prior T2 weighted undersampled T1 weighted undersampled R = 4 sampling pattern

32 SRI24 atlas sparsemri 1 : Total Variation 9.5% RMSE sparsemri: 9.5% RMSE error: scaled 10 [1] Lustig et al. MRM, 2007

33 SRI24 atlas Joint Bayesian CS 1 4.9% RMSE sparsemri: Joint BCS: 9.5% RMSE 4.9% RMSE error: scaled 10 [1] Bilgic et al. MRM, 2011

34 SRI24 atlas proton density fully-sampled prior Joint Bayesian CS w/ prior 4.3% RMSE sparsemri: Joint BCS: BCS w/ prior: 9.5% RMSE 4.9% RMSE 4.3% RMSE error: scaled 10

35 Conclusion In a multi-contrast scan, one of the acquisitions may be much faster than the others (e.g. AutoAlign) When the fast contrast is fully-sampled, we use it as prior information to help recover the undersampled contrasts Our method uses the prior image only to initialize Bayesian CS iterations, hence imposes the prior in a soft manner

36 Conclusion In a multi-contrast scan, one of the acquisitions may be much faster than the others (e.g. AutoAlign) When the fast contrast is fully-sampled, we use it as prior information to help recover the undersampled contrasts Our method uses the prior image only to initialize Bayesian CS iterations, hence imposes the prior in a soft manner Acknowledgements: Siemens Healthcare, Siemens-MIT Alliance, CIMIT-MIT Medical Engineering Fellowship, R01 EB

Reconstruction Algorithms for MRI. Berkin Bilgic 17 December 2012

Reconstruction Algorithms for MRI. Berkin Bilgic 17 December 2012 Reconstruction Algorithms for MRI Berkin Bilgic 17 December 2012 Outline Magnetic Resonance Imaging (MRI) 2 Outline Magnetic Resonance Imaging (MRI) Non-invasive imaging, great versatility structural imaging

More information

Accelerated MRI Image Reconstruction

Accelerated MRI Image Reconstruction IMAGING DATA EVALUATION AND ANALYTICS LAB (IDEAL) CS5540: Computational Techniques for Analyzing Clinical Data Lecture 15: Accelerated MRI Image Reconstruction Ashish Raj, PhD Image Data Evaluation and

More information

Lecture 22: More On Compressed Sensing

Lecture 22: More On Compressed Sensing Lecture 22: More On Compressed Sensing Scribed by Eric Lee, Chengrun Yang, and Sebastian Ament Nov. 2, 207 Recap and Introduction Basis pursuit was the method of recovering the sparsest solution to an

More information

Motivation Sparse Signal Recovery is an interesting area with many potential applications. Methods developed for solving sparse signal recovery proble

Motivation Sparse Signal Recovery is an interesting area with many potential applications. Methods developed for solving sparse signal recovery proble Bayesian Methods for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Zhilin Zhang and Ritwik Giri Motivation Sparse Signal Recovery is an interesting

More information

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles

Compressed sensing. Or: the equation Ax = b, revisited. Terence Tao. Mahler Lecture Series. University of California, Los Angeles Or: the equation Ax = b, revisited University of California, Los Angeles Mahler Lecture Series Acquiring signals Many types of real-world signals (e.g. sound, images, video) can be viewed as an n-dimensional

More information

Introduction to Biomedical Imaging

Introduction to Biomedical Imaging Alejandro Frangi, PhD Computational Imaging Lab Department of Information & Communication Technology Pompeu Fabra University www.cilab.upf.edu MRI advantages Superior soft-tissue contrast Depends on among

More information

Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing

Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing Efficient Variational Inference in Large-Scale Bayesian Compressed Sensing George Papandreou and Alan Yuille Department of Statistics University of California, Los Angeles ICCV Workshop on Information

More information

Restoration of Missing Data in Limited Angle Tomography Based on Helgason- Ludwig Consistency Conditions

Restoration of Missing Data in Limited Angle Tomography Based on Helgason- Ludwig Consistency Conditions Restoration of Missing Data in Limited Angle Tomography Based on Helgason- Ludwig Consistency Conditions Yixing Huang, Oliver Taubmann, Xiaolin Huang, Guenter Lauritsch, Andreas Maier 26.01. 2017 Pattern

More information

Bayesian Nonparametric Dictionary Learning for Compressed Sensing MRI

Bayesian Nonparametric Dictionary Learning for Compressed Sensing MRI 1 Bayesian Nonparametric Dictionary Learning for Compressed Sensing MRI Yue Huang, John Paisley, Qin Lin, Xinghao Ding, Xueyang Fu and Xiao-ping Zhang arxiv:1302.2712v2 [cs.cv] 9 Oct 2013 Abstract We develop

More information

Bayesian Paradigm. Maximum A Posteriori Estimation

Bayesian Paradigm. Maximum A Posteriori Estimation Bayesian Paradigm Maximum A Posteriori Estimation Simple acquisition model noise + degradation Constraint minimization or Equivalent formulation Constraint minimization Lagrangian (unconstraint minimization)

More information

Compressive Imaging by Generalized Total Variation Minimization

Compressive Imaging by Generalized Total Variation Minimization 1 / 23 Compressive Imaging by Generalized Total Variation Minimization Jie Yan and Wu-Sheng Lu Department of Electrical and Computer Engineering University of Victoria, Victoria, BC, Canada APCCAS 2014,

More information

Sparsifying Transform Learning for Compressed Sensing MRI

Sparsifying Transform Learning for Compressed Sensing MRI Sparsifying Transform Learning for Compressed Sensing MRI Saiprasad Ravishankar and Yoram Bresler Department of Electrical and Computer Engineering and Coordinated Science Laborarory University of Illinois

More information

Pulse Sequences: RARE and Simulations

Pulse Sequences: RARE and Simulations Pulse Sequences: RARE and Simulations M229 Advanced Topics in MRI Holden H. Wu, Ph.D. 2018.04.19 Department of Radiological Sciences David Geffen School of Medicine at UCLA Class Business Final project

More information

Scale Mixture Modeling of Priors for Sparse Signal Recovery

Scale Mixture Modeling of Priors for Sparse Signal Recovery Scale Mixture Modeling of Priors for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Jason Palmer, Zhilin Zhang and Ritwik Giri Outline Outline Sparse

More information

Ordinary Least Squares and its applications

Ordinary Least Squares and its applications Ordinary Least Squares and its applications Dr. Mauro Zucchelli University Of Verona December 5, 2016 Dr. Mauro Zucchelli Ordinary Least Squares and its applications December 5, 2016 1 / 48 Contents 1

More information

Fast and Accurate HARDI and its Application to Neurological Diagnosis

Fast and Accurate HARDI and its Application to Neurological Diagnosis Fast and Accurate HARDI and its Application to Neurological Diagnosis Dr. Oleg Michailovich Department of Electrical and Computer Engineering University of Waterloo June 21, 2011 Outline 1 Diffusion imaging

More information

Physics of MR Image Acquisition

Physics of MR Image Acquisition Physics of MR Image Acquisition HST-583, Fall 2002 Review: -MRI: Overview - MRI: Spatial Encoding MRI Contrast: Basic sequences - Gradient Echo - Spin Echo - Inversion Recovery : Functional Magnetic Resonance

More information

Variational Bayesian Inference Techniques

Variational Bayesian Inference Techniques Advanced Signal Processing 2, SE Variational Bayesian Inference Techniques Johann Steiner 1 Outline Introduction Sparse Signal Reconstruction Sparsity Priors Benefits of Sparse Bayesian Inference Variational

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Rician Noise Removal in Diffusion Tensor MRI

Rician Noise Removal in Diffusion Tensor MRI Rician Noise Removal in Diffusion Tensor MRI Saurav Basu, Thomas Fletcher, and Ross Whitaker University of Utah, School of Computing, Salt Lake City, UT 84112, USA Abstract. Rician noise introduces a bias

More information

arxiv: v1 [cs.na] 29 Nov 2017

arxiv: v1 [cs.na] 29 Nov 2017 A fast nonconvex Compressed Sensing algorithm for highly low-sampled MR images reconstruction D. Lazzaro 1, E. Loli Piccolomini 1 and F. Zama 1 1 Department of Mathematics, University of Bologna, arxiv:1711.11075v1

More information

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging

ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging ELG7173 Topics in signal Processing II Computational Techniques in Medical Imaging Topic #1: Intro to medical imaging Medical Imaging Classifications n Measurement physics Send Energy into body Send stuff

More information

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm J. K. Pant, W.-S. Lu, and A. Antoniou University of Victoria August 25, 2011 Compressive Sensing 1 University

More information

An IDL Based Image Deconvolution Software Package

An IDL Based Image Deconvolution Software Package An IDL Based Image Deconvolution Software Package F. Városi and W. B. Landsman Hughes STX Co., Code 685, NASA/GSFC, Greenbelt, MD 20771 Abstract. Using the Interactive Data Language (IDL), we have implemented

More information

Compressive Sensing (CS)

Compressive Sensing (CS) Compressive Sensing (CS) Luminita Vese & Ming Yan lvese@math.ucla.edu yanm@math.ucla.edu Department of Mathematics University of California, Los Angeles The UCLA Advanced Neuroimaging Summer Program (2014)

More information

Mixture Models and EM

Mixture Models and EM Mixture Models and EM Goal: Introduction to probabilistic mixture models and the expectationmaximization (EM) algorithm. Motivation: simultaneous fitting of multiple model instances unsupervised clustering

More information

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior

Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Chalmers Machine Learning Summer School Approximate message passing and biomedicine Part 2: Multivariate fmri analysis using a sparsifying spatio-temporal prior Tom Heskes joint work with Marcel van Gerven

More information

Bayesian Methods for Sparse Signal Recovery

Bayesian Methods for Sparse Signal Recovery Bayesian Methods for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Jason Palmer, Zhilin Zhang and Ritwik Giri Motivation Motivation Sparse Signal Recovery

More information

Contrast Mechanisms in MRI. Michael Jay Schillaci

Contrast Mechanisms in MRI. Michael Jay Schillaci Contrast Mechanisms in MRI Michael Jay Schillaci Overview Image Acquisition Basic Pulse Sequences Unwrapping K-Space Image Optimization Contrast Mechanisms Static and Motion Contrasts T1 & T2 Weighting,

More information

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP

INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP INTRODUCTION TO BAYESIAN INFERENCE PART 2 CHRIS BISHOP Personal Healthcare Revolution Electronic health records (CFH) Personal genomics (DeCode, Navigenics, 23andMe) X-prize: first $10k human genome technology

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation.

Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a brief explanation. CS 189 Spring 2015 Introduction to Machine Learning Midterm You have 80 minutes for the exam. The exam is closed book, closed notes except your one-page crib sheet. No calculators or electronic items.

More information

Sparse Signal Recovery Using Markov Random Fields

Sparse Signal Recovery Using Markov Random Fields Sparse Signal Recovery Using Markov Random Fields Volkan Cevher Rice University volkan@rice.edu Chinmay Hegde Rice University chinmay@rice.edu Marco F. Duarte Rice University duarte@rice.edu Richard G.

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Biomedical Engineering Image Formation II

Biomedical Engineering Image Formation II Biomedical Engineering Image Formation II PD Dr. Frank G. Zöllner Computer Assisted Clinical Medicine Medical Faculty Mannheim Fourier Series - A Fourier series decomposes periodic functions or periodic

More information

Approximate Message Passing

Approximate Message Passing Approximate Message Passing Mohammad Emtiyaz Khan CS, UBC February 8, 2012 Abstract In this note, I summarize Sections 5.1 and 5.2 of Arian Maleki s PhD thesis. 1 Notation We denote scalars by small letters

More information

Tissue Parametric Mapping:

Tissue Parametric Mapping: Tissue Parametric Mapping: Contrast Mechanisms Using SSFP Sequences Jongho Lee Department of Radiology University of Pennsylvania Tissue Parametric Mapping: Contrast Mechanisms Using bssfp Sequences Jongho

More information

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles

CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles CoSaMP: Greedy Signal Recovery and Uniform Uncertainty Principles SIAM Student Research Conference Deanna Needell Joint work with Roman Vershynin and Joel Tropp UC Davis, May 2008 CoSaMP: Greedy Signal

More information

Automated Segmentation of Low Light Level Imagery using Poisson MAP- MRF Labelling

Automated Segmentation of Low Light Level Imagery using Poisson MAP- MRF Labelling Automated Segmentation of Low Light Level Imagery using Poisson MAP- MRF Labelling Abstract An automated unsupervised technique, based upon a Bayesian framework, for the segmentation of low light level

More information

TWO METHODS FOR ESTIMATING OVERCOMPLETE INDEPENDENT COMPONENT BASES. Mika Inki and Aapo Hyvärinen

TWO METHODS FOR ESTIMATING OVERCOMPLETE INDEPENDENT COMPONENT BASES. Mika Inki and Aapo Hyvärinen TWO METHODS FOR ESTIMATING OVERCOMPLETE INDEPENDENT COMPONENT BASES Mika Inki and Aapo Hyvärinen Neural Networks Research Centre Helsinki University of Technology P.O. Box 54, FIN-215 HUT, Finland ABSTRACT

More information

Statistical Image Recovery: A Message-Passing Perspective. Phil Schniter

Statistical Image Recovery: A Message-Passing Perspective. Phil Schniter Statistical Image Recovery: A Message-Passing Perspective Phil Schniter Collaborators: Sundeep Rangan (NYU) and Alyson Fletcher (UC Santa Cruz) Supported in part by NSF grants CCF-1018368 and NSF grant

More information

Introduction to the Mathematics of Medical Imaging

Introduction to the Mathematics of Medical Imaging Introduction to the Mathematics of Medical Imaging Second Edition Charles L. Epstein University of Pennsylvania Philadelphia, Pennsylvania EiaJTL Society for Industrial and Applied Mathematics Philadelphia

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 6, JUNE

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 6, JUNE IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 6, JUNE 2010 2935 Variance-Component Based Sparse Signal Reconstruction and Model Selection Kun Qiu, Student Member, IEEE, and Aleksandar Dogandzic,

More information

Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors

Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors Simultaneous Multi-frame MAP Super-Resolution Video Enhancement using Spatio-temporal Priors Sean Borman and Robert L. Stevenson Department of Electrical Engineering, University of Notre Dame Notre Dame,

More information

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011

First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 First Technical Course, European Centre for Soft Computing, Mieres, Spain. 4th July 2011 Linear Given probabilities p(a), p(b), and the joint probability p(a, B), we can write the conditional probabilities

More information

Relevance Vector Machines

Relevance Vector Machines LUT February 21, 2011 Support Vector Machines Model / Regression Marginal Likelihood Regression Relevance vector machines Exercise Support Vector Machines The relevance vector machine (RVM) is a bayesian

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Bayesian multi-tensor diffusion MRI and tractography

Bayesian multi-tensor diffusion MRI and tractography Bayesian multi-tensor diffusion MRI and tractography Diwei Zhou 1, Ian L. Dryden 1, Alexey Koloydenko 1, & Li Bai 2 1 School of Mathematical Sciences, Univ. of Nottingham 2 School of Computer Science and

More information

Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields

Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields Generalizing Diffusion Tensor Model Using Probabilistic Inference in Markov Random Fields Çağatay Demiralp and David H. Laidlaw Brown University Providence, RI, USA Abstract. We give a proof of concept

More information

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia

M R I Physics Course. Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Jerry Allison Ph.D., Chris Wright B.S., Tom Lavin B.S., Nathan Yanasak Ph.D. Department of Radiology Medical College of Georgia M R I Physics Course Spin Echo Imaging Hahn Spin Echo

More information

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1) HW 1 due today Parameter Estimation Biometrics CSE 190 Lecture 7 Today s lecture was on the blackboard. These slides are an alternative presentation of the material. CSE190, Winter10 CSE190, Winter10 Chapter

More information

Metal Artifact Reduction and Dose Efficiency Improvement on Photon Counting Detector CT using an Additional Tin Filter

Metal Artifact Reduction and Dose Efficiency Improvement on Photon Counting Detector CT using an Additional Tin Filter Metal Artifact Reduction and Dose Efficiency Improvement on Photon Counting Detector CT using an Additional Tin Filter Wei Zhou, Dilbar Abdurakhimova, Kishore Rajendran, Cynthia McCollough, Shuai Leng

More information

Bayesian Regression Linear and Logistic Regression

Bayesian Regression Linear and Logistic Regression When we want more than point estimates Bayesian Regression Linear and Logistic Regression Nicole Beckage Ordinary Least Squares Regression and Lasso Regression return only point estimates But what if we

More information

Expectation Maximization Deconvolution Algorithm

Expectation Maximization Deconvolution Algorithm Epectation Maimization Deconvolution Algorithm Miaomiao ZHANG March 30, 2011 Abstract In this paper, we use a general mathematical and eperimental methodology to analyze image deconvolution. The main procedure

More information

Gaussian process for nonstationary time series prediction

Gaussian process for nonstationary time series prediction Computational Statistics & Data Analysis 47 (2004) 705 712 www.elsevier.com/locate/csda Gaussian process for nonstationary time series prediction Soane Brahim-Belhouari, Amine Bermak EEE Department, Hong

More information

Principles of MRI EE225E / BIO265. Instructor: Miki Lustig UC Berkeley, EECS

Principles of MRI EE225E / BIO265. Instructor: Miki Lustig UC Berkeley, EECS Principles of MRI EE225E / BIO265 Instructor: Miki Lustig UC Berkeley, EECS Today... Administration http://inst.eecs.berkeley.edu/~ee225e/sp16/ Intro to Medical Imaging and MRI Medical Imaging (Before

More information

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS

HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS HST 583 FUNCTIONAL MAGNETIC RESONANCE IMAGING DATA ANALYSIS AND ACQUISITION A REVIEW OF STATISTICS FOR FMRI DATA ANALYSIS EMERY N. BROWN AND CHRIS LONG NEUROSCIENCE STATISTICS RESEARCH LABORATORY DEPARTMENT

More information

Multi-Task Compressive Sensing

Multi-Task Compressive Sensing Multi-Task Compressive Sensing 1 Shihao Ji, David Dunson, and Lawrence Carin Department of Electrical and Computer Engineering Institute of Statistics and Decision Sciences Duke University, Durham, NC

More information

Approximate Message Passing Algorithm for Complex Separable Compressed Imaging

Approximate Message Passing Algorithm for Complex Separable Compressed Imaging Approximate Message Passing Algorithm for Complex Separle Compressed Imaging Akira Hirayashi, Jumpei Sugimoto, and Kazushi Mimura College of Information Science and Engineering, Ritsumeikan University,

More information

BNG/ECE 487 FINAL (W16)

BNG/ECE 487 FINAL (W16) BNG/ECE 487 FINAL (W16) NAME: 4 Problems for 100 pts This exam is closed-everything (no notes, books, etc.). Calculators are permitted. Possibly useful formulas and tables are provided on this page. Fourier

More information

Lab 2: Magnetic Resonance Imaging

Lab 2: Magnetic Resonance Imaging EE225E/BIOE265 Spring 2013 Principles of MRI Miki Lustig Developed by: Galen Reed and Miki Lustig Lab 2: Magnetic Resonance Imaging Introduction In this lab, we will get some hands-on experience with an

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Stephan Dreiseitl University of Applied Sciences Upper Austria at Hagenberg Harvard-MIT Division of Health Sciences and Technology HST.951J: Medical Decision Support Knowledge

More information

Multi-Task Compressive Sensing

Multi-Task Compressive Sensing Multi-Task Compressive Sensing 1 Shihao Ji, David Dunson, and Lawrence Carin Department of Electrical and Computer Engineering Institute of Statistics and Decision Sciences Duke University, Durham, NC

More information

Regularizing inverse problems using sparsity-based signal models

Regularizing inverse problems using sparsity-based signal models Regularizing inverse problems using sparsity-based signal models Jeffrey A. Fessler William L. Root Professor of EECS EECS Dept., BME Dept., Dept. of Radiology University of Michigan http://web.eecs.umich.edu/

More information

Biomedical Engineering Image Formation

Biomedical Engineering Image Formation Biomedical Engineering Image Formation PD Dr. Frank G. Zöllner Computer Assisted Clinical Medicine Medical Faculty Mannheim Learning objectives! Understanding the process of image formation! Point spread

More information

MAT Inverse Problems, Part 2: Statistical Inversion

MAT Inverse Problems, Part 2: Statistical Inversion MAT-62006 Inverse Problems, Part 2: Statistical Inversion S. Pursiainen Department of Mathematics, Tampere University of Technology Spring 2015 Overview The statistical inversion approach is based on the

More information

M/EEG source analysis

M/EEG source analysis Jérémie Mattout Lyon Neuroscience Research Center Will it ever happen that mathematicians will know enough about the physiology of the brain, and neurophysiologists enough of mathematical discovery, for

More information

Bayesian Networks BY: MOHAMAD ALSABBAGH

Bayesian Networks BY: MOHAMAD ALSABBAGH Bayesian Networks BY: MOHAMAD ALSABBAGH Outlines Introduction Bayes Rule Bayesian Networks (BN) Representation Size of a Bayesian Network Inference via BN BN Learning Dynamic BN Introduction Conditional

More information

MRI beyond Fourier Encoding: From array detection to higher-order field dynamics

MRI beyond Fourier Encoding: From array detection to higher-order field dynamics MRI beyond Fourier Encoding: From array detection to higher-order field dynamics K. Pruessmann Institute for Biomedical Engineering ETH Zurich and University of Zurich Parallel MRI Signal sample: m γκ,

More information

Speeding up Magnetic Resonance Image Acquisition by Bayesian Multi-Slice Adaptive Compressed Sensing

Speeding up Magnetic Resonance Image Acquisition by Bayesian Multi-Slice Adaptive Compressed Sensing Speeding up Magnetic Resonance Image Acquisition by Bayesian Multi-Slice Adaptive Compressed Sensing Matthias W. Seeger Saarland University and Max Planck Institute for Informatics Campus E1.4, 6613 Saarbrücken,

More information

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229.

Background II. Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging. B.Hargreaves - RAD 229. Background II Signal-to-Noise Ratio (SNR) Pulse Sequences Sampling and Trajectories Parallel Imaging 1 SNR: Signal-to-Noise Ratio Signal: Desired voltage in coil Noise: Thermal, electronic Noise Thermal

More information

BLIND SEPARATION OF TEMPORALLY CORRELATED SOURCES USING A QUASI MAXIMUM LIKELIHOOD APPROACH

BLIND SEPARATION OF TEMPORALLY CORRELATED SOURCES USING A QUASI MAXIMUM LIKELIHOOD APPROACH BLID SEPARATIO OF TEMPORALLY CORRELATED SOURCES USIG A QUASI MAXIMUM LIKELIHOOD APPROACH Shahram HOSSEII, Christian JUTTE Laboratoire des Images et des Signaux (LIS, Avenue Félix Viallet Grenoble, France.

More information

A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning

A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning A hierarchical Krylov-Bayes iterative inverse solver for MEG with physiological preconditioning D Calvetti 1 A Pascarella 3 F Pitolli 2 E Somersalo 1 B Vantaggi 2 1 Case Western Reserve University Department

More information

NMR and MRI : an introduction

NMR and MRI : an introduction Intensive Programme 2011 Design, Synthesis and Validation of Imaging Probes NMR and MRI : an introduction Walter Dastrù Università di Torino walter.dastru@unito.it \ Introduction Magnetic Resonance Imaging

More information

Inverse problem and optimization

Inverse problem and optimization Inverse problem and optimization Laurent Condat, Nelly Pustelnik CNRS, Gipsa-lab CNRS, Laboratoire de Physique de l ENS de Lyon Decembre, 15th 2016 Inverse problem and optimization 2/36 Plan 1. Examples

More information

H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida

H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida Tractography in the CST using an Intrinsic Unscented Kalman Filter H. Salehian, G. Cheng, J. Sun, B. C. Vemuri Department of CISE University of Florida Outline Introduction Method Pre-processing Fiber

More information

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms *

Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms * Proceedings of the 8 th International Conference on Applied Informatics Eger, Hungary, January 27 30, 2010. Vol. 1. pp. 87 94. Using Gaussian Processes for Variance Reduction in Policy Gradient Algorithms

More information

2D X-Ray Tomographic Reconstruction From Few Projections

2D X-Ray Tomographic Reconstruction From Few Projections 2D X-Ray Tomographic Reconstruction From Few Projections Application of Compressed Sensing Theory CEA-LID, Thalès, UJF 6 octobre 2009 Introduction Plan 1 Introduction 2 Overview of Compressed Sensing Theory

More information

Noise Analysis of Regularized EM for SPECT Reconstruction 1

Noise Analysis of Regularized EM for SPECT Reconstruction 1 Noise Analysis of Regularized EM for SPECT Reconstruction Wenli Wang and Gene Gindi Departments of Electrical Engineering and Radiology SUNY at Stony Brook, Stony Brook, NY 794-846 Abstract The ability

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

Maximum Likelihood (ML), Expectation Maximization (EM) Pieter Abbeel UC Berkeley EECS

Maximum Likelihood (ML), Expectation Maximization (EM) Pieter Abbeel UC Berkeley EECS Maximum Likelihood (ML), Expectation Maximization (EM) Pieter Abbeel UC Berkeley EECS Many slides adapted from Thrun, Burgard and Fox, Probabilistic Robotics Outline Maximum likelihood (ML) Priors, and

More information

p(d θ ) l(θ ) 1.2 x x x

p(d θ ) l(θ ) 1.2 x x x p(d θ ).2 x 0-7 0.8 x 0-7 0.4 x 0-7 l(θ ) -20-40 -60-80 -00 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ ˆ 2 3 4 5 6 7 θ θ x FIGURE 3.. The top graph shows several training points in one dimension, known or assumed to

More information

Least Squares Regression

Least Squares Regression E0 70 Machine Learning Lecture 4 Jan 7, 03) Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are a brief summary of the topics covered in the lecture. They are not a substitute

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I

SYDE 372 Introduction to Pattern Recognition. Probability Measures for Classification: Part I SYDE 372 Introduction to Pattern Recognition Probability Measures for Classification: Part I Alexander Wong Department of Systems Design Engineering University of Waterloo Outline 1 2 3 4 Why use probability

More information

Compressive Sensing under Matrix Uncertainties: An Approximate Message Passing Approach

Compressive Sensing under Matrix Uncertainties: An Approximate Message Passing Approach Compressive Sensing under Matrix Uncertainties: An Approximate Message Passing Approach Asilomar 2011 Jason T. Parker (AFRL/RYAP) Philip Schniter (OSU) Volkan Cevher (EPFL) Problem Statement Traditional

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam

EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam EL-GY 6813/BE-GY 6203 Medical Imaging, Fall 2016 Final Exam (closed book, 1 sheets of notes double sided allowed, no calculator or other electronic devices allowed) 1. Ultrasound Physics (15 pt) A) (9

More information

Navigator Echoes. BioE 594 Advanced Topics in MRI Mauli. M. Modi. BioE /18/ What are Navigator Echoes?

Navigator Echoes. BioE 594 Advanced Topics in MRI Mauli. M. Modi. BioE /18/ What are Navigator Echoes? Navigator Echoes BioE 594 Advanced Topics in MRI Mauli. M. Modi. 1 What are Navigator Echoes? In order to correct the motional artifacts in Diffusion weighted MR images, a modified pulse sequence is proposed

More information

Abel Inversion using the Maximum Entropy Method

Abel Inversion using the Maximum Entropy Method Abel Inversion using the Maximum Entropy Method Danilo R. Neuber Wolfgang von der Linden 3rd October 2003 Inst. für Theoretische Physik, Tel.: +43/3 16/8 73-81 88; neuber@itp.tu-graz.ac.at Inst. für Theoretische

More information

Least Squares Regression

Least Squares Regression CIS 50: Machine Learning Spring 08: Lecture 4 Least Squares Regression Lecturer: Shivani Agarwal Disclaimer: These notes are designed to be a supplement to the lecture. They may or may not cover all the

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

Bayesian and empirical Bayesian approach to weighted averaging of ECG signal

Bayesian and empirical Bayesian approach to weighted averaging of ECG signal BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES Vol. 55, No. 4, 7 Bayesian and empirical Bayesian approach to weighted averaging of ECG signal A. MOMOT, M. MOMOT, and J. ŁĘSKI,3 Silesian

More information

A Survey of Compressive Sensing and Applications

A Survey of Compressive Sensing and Applications A Survey of Compressive Sensing and Applications Justin Romberg Georgia Tech, School of ECE ENS Winter School January 10, 2012 Lyon, France Signal processing trends DSP: sample first, ask questions later

More information

Variational Dropout via Empirical Bayes

Variational Dropout via Empirical Bayes Variational Dropout via Empirical Bayes Valery Kharitonov 1 kharvd@gmail.com Dmitry Molchanov 1, dmolch111@gmail.com Dmitry Vetrov 1, vetrovd@yandex.ru 1 National Research University Higher School of Economics,

More information

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007

HST.582J / 6.555J / J Biomedical Signal and Image Processing Spring 2007 MIT OpenCourseWare http://ocw.mit.edu HST.582J / 6.555J / 16.456J Biomedical Signal and Image Processing Spring 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

More information

MCMC Sampling for Bayesian Inference using L1-type Priors

MCMC Sampling for Bayesian Inference using L1-type Priors MÜNSTER MCMC Sampling for Bayesian Inference using L1-type Priors (what I do whenever the ill-posedness of EEG/MEG is just not frustrating enough!) AG Imaging Seminar Felix Lucka 26.06.2012 , MÜNSTER Sampling

More information

PILCO: A Model-Based and Data-Efficient Approach to Policy Search

PILCO: A Model-Based and Data-Efficient Approach to Policy Search PILCO: A Model-Based and Data-Efficient Approach to Policy Search (M.P. Deisenroth and C.E. Rasmussen) CSC2541 November 4, 2016 PILCO Graphical Model PILCO Probabilistic Inference for Learning COntrol

More information

Compressed Sensing: Extending CLEAN and NNLS

Compressed Sensing: Extending CLEAN and NNLS Compressed Sensing: Extending CLEAN and NNLS Ludwig Schwardt SKA South Africa (KAT Project) Calibration & Imaging Workshop Socorro, NM, USA 31 March 2009 Outline 1 Compressed Sensing (CS) Introduction

More information