Rubber Elasticity. Scope. Sources of Rubber. What is Rubber? MSE 383, Unit 2-6

Size: px
Start display at page:

Download "Rubber Elasticity. Scope. Sources of Rubber. What is Rubber? MSE 383, Unit 2-6"

Transcription

1 Rubber Elasticity MSE 383, Unit 2-6 Joshua U. Otaigbe Iowa State University Materials Science and Engineering Dept. Scope Physical properties of rubber Molecular interpretation of physical properties Relation of rubber to other polymers Sources of Rubber Natural Rubber >> Hevea Braziliensis (Hevea or wild rubber) >> Plantation rubber from Malaysia, Sri- Lanka, Indonesia Synthetic Rubber >> Developed in Germany/World Wars I and II >> 1/2 total global consumption of rubber What is Rubber? >> name from pencil rubber [Priestley (1770)] N.R. obtained from incisions in bark >> milky white in appearance >> water suspension of rubber globules ( µm) >> flows freely 2.6.1

2 Rubber Latex Composition Faraday (1826) >> rubber hydrocarbon 37 wt. % >> other solids (proteins, sugars, waxes, etc.) 3 >> water 60* Chemical Formula and Structure of N.R. Poly (cis-isoprene) (C 5 H 8 ) n Show chemical structure Why unique props. from such a simple molecule? >> physics of rubber elasticity Properties of Rubber Rubber Steel Similar hydrocarbons E (N/mm 2 ) 1 2 x 10 5 Liquids Extension (%)* ~ 700* ~ 1 Unique Properties of N.R. Thermoelastic effects [Gough (1805)] >> heat evolved reversibly on extension >> stretched rubber contracts reversibly on heating Confirmed by Joule (1859) >> Demonstrate rubber strips/wheel 2.6.2

3 Heat of Extension Dart, Anthony and Guth (1942) Up to 10 C Temp. rise at 600% extension Effects related to thermodynamics T C Extension % Molecular Structure of N.R. Recall planar zig-zag, bond rotation versus random chain conformations Length of chain approx. 1 kilometer!! Random conformation is most probable due to molecular motions >> statistical form of chain (cf link chain) Randomly-Jointed Chain r * No valence angle or other restrictions Let n = # of links; λ = length of link r 2 = n λ 2 ( r 2 ) 1/2 = n 1/2 λ R.M.S. length nλ / n 1/2 λ = n 1/2 Extensibility => importance of chain length* 2.6.3

4 Thermodynamics of Rubber Elasticity Entropy >> related to probability of a given state >> stretched state has lower entropy (or lower probability) >> contracted state has higher entropy >> no charge in internal energy (or P.E.) & intermolecular forces in elastic deformation Heat of Extension (Gough-Joule Effect) F l dl F dw = Fdl (work done to extend rubber) du = dq + dw(1st Law of Thermodynamics) du = 0 (assumption of kinetic theory)** (=> all states have the same U) Hence dq = - dw But dw is +ive, dq is -ive => Heat given out on stretching Increase of Tension on Heating (F) Meyer found Tg T( C) (F)λ T abs Compare Gas (P) V T Recall wheel demo Increased tension due to increased thermal energy or energy of molecular bombardment Bombardment by surrounding molecules Brittleness in liquid N 2 and T g ** F F 2.6.4

5 Increase of Tension on Heating (Cont d) Contrast with ordinary solids >> force raises distance b/w atoms >> work done against intermolecular forces raises U of system Rubber vs. Ordinary Solids Rubber >> du = 0 on const. T >> falls in entropy on const. T (cf. perfect gas in compression) Ordinary Solid >> rising U of system on deformation >> no significant change in entropy Stress-Strain Relation (review derivations in class text) F = Ai G [ λ - 1/ λ 2 ] = N κ T N = ν / V λx λy λz = 1 Technologically Important Rubbers Vulcanized N.R. (Goodyear 1839)** >> typically crosslinked with sulfur >> (approx. 1 crosslink per isoprene units) 2.6.5

6 Technologically Important Rubbers N.R. mixed with carbon >> Improved stiffness and strength, liquid absorption, sunlight and ozone defradation PU elastomers >> endlinked networks from condensation of polyols and polyisocyanates Synthetic PIsoP, PBD SBR NBR >> copolymer of styrene and acrylonitrile >> resistant to swelling in oil and petrol >> belong to nitrile rubber family Thermoplastic rubbers (TPR) >> PBD end-tipped with PS blocks >> glassy PS domains in rubbery PBD domains >> processable above T g of PS phase >> easy alloying with PP and processable EP copolymers >> E/P = 40/60 to 60/40 >> completely amorphous in this range Chloroprene rubbers >> PBD with a H-atom replaced by Cl-atom >> heat resistant, gas impermeable, resistant to ozone attack Theory of Rubber Elasticity Chain statistics >> randomly jointed chain Affine deformation of chains >> uniform deformation of specimen Network theory >> network of chains joined together by unbreakable bonds (Details outside scope of course) 2.6.6

7 Summary Rubber elasticity is predominantly entropy-driven and statistical in nature Stiffness increases with increasing T Heat is reversibly generated upon stretching Hooke's law obeyed in shear only but not in tension and compression Elastic constant, G = NkT (= ρ RT/M c ) Crosslinking increases stiffness Stress-strain behavior is predicatable End of Lecture Read Class text, Ch. 2 >> review worked examples Exam #1 on../../.. >> Units 1 and 2 ONLY Practice Problems #2 (Rubber Elasticity) I. Reading Guide: McCrum et at (Class text) and lecture notes II. Problems** 1. Problem 3.8. (Class text, McCrum et al., 1991) Recall that G=NkT (Given 40 C, tetrafunctional xlinks) N=G/kT=0.8*10 6 /1.38*10-23 * =1.8512*10 26 chains per m³ Note: only one xlinks joins 4 chain ends, each chain has 2 chain ends 1 xlink is required per 2 chains # xlinks per m³ = N/2 = 9.26*10 25 m

8 Practice Problems #2 (Rubber Elasticity) 2. Problem 3.10 (Class text, McCrum et al., 1991) By definition E = [dσ/dε]ε 0 = [dσ/dλ]λ 1 (since λ=ε+1) But from Eqn. 3.38: σ = G(λ - λ -2 ) Hence E = [G(1 + 2λ -3 )] = 3G This is a direct result of the assumption of incompressibility. In pure tension, lateral contraction strains = ½ * (axial extension strain) At constant volume. Hence ν = ½. From E = 2G(1+ν) it follows that E = 3G. 3. A spherical rubber balloon is of initial wall thickness 0.5 mm and diameter 100 mm. It is inflated to a final diameter of 500 mm. Calculate the final thickness. Balloon radius = 0.05 m initially, 0.25 m finally. If X, Y axes are Defined in the plane of the balloon wall, the stress state is equal biaxial with: λ X = λ Y = 0.25/0.05 = 5 Volume of spherical shell = 4πr²h; where h = thickness If volume remains constant : r 1 ²h 1 = r 2 ²h 2 Final thickness h 2 = h1(r 1 /r 2 )² = 0.5(0.05/0.25)² = 0.02 mm 4. Problem 3.19 (Class text, McCrum et al., 1991) (See ch. 8, Class text for a discussion of some applications) Rubbers are used in a wide variety of engineering applications, especially where their ability to support high hydrostatic stresses whilst deforming relatively easily under shear stresses make them uniquely suitable. Examples include: Engine mountings, vehicle suspensions, bridge bearings, anti-vibration and earthquake-protection supports for buildings, seals and gaskets. Tensile properties, flexibility, and impermeability are some requirements in tires, hoses, inflatable rafts, diving suits, etc

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

Mechanical Properties of Polymers. Scope. MSE 383, Unit 3-1. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Mechanical Properties of Polymers Scope MSE 383, Unit 3-1 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Structure - mechanical properties relations Time-dependent mechanical

More information

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 3-3. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Dynamic Mechanical Behavior MSE 383, Unit 3-3 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Scope Why DMA & TTS? DMA Dynamic Mechanical Behavior (DMA) Superposition Principles

More information

MATERIALS SCIENCE POLYMERS

MATERIALS SCIENCE POLYMERS POLYMERS 1) Types of Polymer (a) Plastic Possibly the largest number of different polymeric materials come under the plastic classification. Polyethylene, polypropylene, polyvinyl chloride, polystyrene,

More information

MSE 383, Unit 1-4. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept.

MSE 383, Unit 1-4. Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Polymer Classifications Mole. Wt. MSE 383, Unit 1-4 Joshua U. Otaigbe Iowa State University Materials Science & Engineering Dept. Introduction Recall polymer (macromolecular) definition Covalent linkages

More information

Lecture No. (1) Introduction of Polymers

Lecture No. (1) Introduction of Polymers Lecture No. (1) Introduction of Polymers Polymer Structure Polymers are found in nature as proteins, cellulose, silk or synthesized like polyethylene, polystyrene and nylon. Some natural polymers can also

More information

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore

Mechanical properties of polymers: an overview. Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore Mechanical properties of polymers: an overview Suryasarathi Bose Dept. of Materials Engineering, IISc, Bangalore UGC-NRCM Summer School on Mechanical Property Characterization- June 2012 Overview of polymer

More information

MECHANICAL PROPERTIES OF MATERIALS

MECHANICAL PROPERTIES OF MATERIALS 1 MECHANICAL PROPERTIES OF MATERIALS Pressure in Solids: Pressure in Liquids: Pressure = force area (P = F A ) 1 Pressure = height density gravity (P = hρg) 2 Deriving Pressure in a Liquid Recall that:

More information

Lab Week 4 Module α 1. Polymer chains as entropy springs: Rubber stretching experiment and XRD study. Instructor: Gretchen DeVries

Lab Week 4 Module α 1. Polymer chains as entropy springs: Rubber stretching experiment and XRD study. Instructor: Gretchen DeVries 3.014 Materials Laboratory December 9-14, 005 Lab Week 4 Module α 1 Polymer chains as entropy springs: Rubber stretching experiment and XRD study Instructor: Gretchen DeVries Objectives Review thermodynamic

More information

Thermoplastic. Condensation. Homopolymer. Polymer POLYMERS. Synthetic. Natural. Addition. Copolymer. Polymer. Thermosetting

Thermoplastic. Condensation. Homopolymer. Polymer POLYMERS. Synthetic. Natural. Addition. Copolymer. Polymer. Thermosetting Thermoplastic Homopolymer Condensation Polymer Natural POLYMERS Synthetic Addition Polymer Copolymer Thermosetting Polymers are very large covalent molecular substances containing tens of thousands of

More information

Characterisation of Crosslinks in Vulcanised Rubbers: From Simple to Advanced Techniques

Characterisation of Crosslinks in Vulcanised Rubbers: From Simple to Advanced Techniques Characterisation of Crosslinks in Vulcanised Rubbers: From Simple to Advanced Techniques K.L. Mok* and A.H. Eng** *Malaysian Rubber Board, Paper Presenter **Malaysian Institute of Chemistry 1 Rubber &

More information

Chapter : 15. POLYMERS. Level-1:Questions

Chapter : 15. POLYMERS. Level-1:Questions 1) What are polymers? Chapter : 15. POLYMERS Level-1:Questions A: These are referred to as Macromolecules which are formed by joining of repeating structural units on a large scale. 2) Give two examples

More information

Rubber elasticity. Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge. February 21, 2009

Rubber elasticity. Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge. February 21, 2009 Rubber elasticity Marc R. Roussel Department of Chemistry and Biochemistry University of Lethbridge February 21, 2009 A rubber is a material that can undergo large deformations e.g. stretching to five

More information

International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:14 No:04 9

International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:14 No:04 9 International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:14 No:04 9 Investigation on a Practical Model to Explain the Temperature Change of a Deflating Balloon Yongkyun Lee*, Yongnam Kwon Korean

More information

TOPIC 7. Polymeric materials

TOPIC 7. Polymeric materials Universidad Carlos III de Madrid www.uc3m.es MATERIALS SCIENCE AND ENGINEERING TOPIC 7. Polymeric materials 1. Introduction Definition General characteristics Historic introduction Polymers: Examples 2.

More information

The functionality of a monomer is the number of binding sites that is/are present in that monomer.

The functionality of a monomer is the number of binding sites that is/are present in that monomer. Question 15.1: Explain the terms polymer and monomer. Polymers are high molecular mass macromolecules composed of repeating structural units derived from monomers. Polymers have a high molecular mass (10

More information

Polymers are high molecular mass macromolecules composed of repeating structural

Polymers are high molecular mass macromolecules composed of repeating structural Question 15.1: Explain the terms polymer and monomer. Polymers are high molecular mass macromolecules composed of repeating structural units derived from monomers. Polymers have a high molecular mass (10

More information

Lecture 1 NONLINEAR ELASTICITY

Lecture 1 NONLINEAR ELASTICITY Lecture 1 NONLINEAR ELASTICITY Soft-Matter Engineering: Mechanics, Design, & Modeling Mechanics Rigid/Hard Systems bending or torsion (but not stretching) small strains (~0.1% metals; ~1% plastics) linearized

More information

Practical 1P9 Polymers - Molecular weight effects

Practical 1P9 Polymers - Molecular weight effects Practical 1P9 Polymers - Molecular weight effects What you should learn from this practical Science The main theme of the Polymer Synthesis lectures is that molecular weight, and the ability to control

More information

Practical 1P9 Polymers - Molecular weight effects

Practical 1P9 Polymers - Molecular weight effects Practical 1P9 Polymers - Molecular weight effects What you should learn from this practical Science The main theme of the Polymer Synthesis lectures is that molecular weight, and the ability to control

More information

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why?

Effect of crystallinity on properties. Melting temperature. Melting temperature. Melting temperature. Why? Effect of crystallinity on properties The morphology of most polymers is semi-crystalline. That is, they form mixtures of small crystals and amorphous material and melt over a range of temperature instead

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Rouse chains, unentangled. entangled. Low Molecular Weight (M < M e ) chains shown moving past one another.

Rouse chains, unentangled. entangled. Low Molecular Weight (M < M e ) chains shown moving past one another. Physical Picture for Diffusion of Polymers Low Molecular Weight (M < M e ) chains shown moving past one another. Z X Y Rouse chains, unentangled Figure by MIT OCW. High Molecular weight (M > M e ) Entanglements

More information

Mechanical Properties

Mechanical Properties Mechanical Properties Elastic deformation Plastic deformation Fracture I. Elastic Deformation S s u s y e u e T I II III e For a typical ductile metal: I. Elastic deformation II. Stable plastic deformation

More information

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization

POLYMER SCIENCE : lecture 1. Dr. Hanaa J. Alshimary Second class Poly. Eng. Dep. Introduction of Polymers Polymer poly mer Monomer Polymerization Introduction of Polymers Polymer - The word polymer is the Greek word : poly means many and mer means unit or parts, A Polymer is a large molecule that comprises repeating structural units joined by the

More information

XI. NANOMECHANICS OF GRAPHENE

XI. NANOMECHANICS OF GRAPHENE XI. NANOMECHANICS OF GRAPHENE Carbon is an element of extraordinary properties. The carbon-carbon bond possesses large magnitude cohesive strength through its covalent bonds. Elemental carbon appears in

More information

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9 Table of Contents 1. Plasticity:... 3 1.1 Plastic Deformation,

More information

VIII. Rubber Elasticity [B.Erman, J.E.Mark, Structure and properties of rubberlike networks]

VIII. Rubber Elasticity [B.Erman, J.E.Mark, Structure and properties of rubberlike networks] VIII. Rubber Elasticity [B.Erman, J.E.Mark, Structure and properties of rubberlike networks] Using various chemistry, one can chemically crosslink polymer chains. With sufficient cross-linking, the polymer

More information

Strength of Material. Shear Strain. Dr. Attaullah Shah

Strength of Material. Shear Strain. Dr. Attaullah Shah Strength of Material Shear Strain Dr. Attaullah Shah Shear Strain TRIAXIAL DEFORMATION Poisson's Ratio Relationship Between E, G, and ν BIAXIAL DEFORMATION Bulk Modulus of Elasticity or Modulus of Volume

More information

POLYMER STRUCTURES ISSUES TO ADDRESS...

POLYMER STRUCTURES ISSUES TO ADDRESS... POLYMER STRUTURES ISSUES TO ADDRESS... What are the basic microstructural features? ow are polymer properties effected by molecular weight? ow do polymeric crystals accommodate the polymer chain? Melting

More information

2014 Problem 12: Cold Balloon As inflated, a rubber balloon s surface becomes cooler to the touch

2014 Problem 12: Cold Balloon As inflated, a rubber balloon s surface becomes cooler to the touch 33 As it is clear from figure 17, height of water and cola Radius mm drops increased and height of syrup and salty water decreased during solidification. Because of vertical expansion of water and cola

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Chapter 6 Molten State

Chapter 6 Molten State Chapter 6 Molten State Rheology ( 流變學 ) study of flow and deformation of (liquid) fluids constitutive (stress-strain) relation of fluids shear flow shear rate ~ dγ/dt ~ velocity gradient dv 1 = dx 1 /dt

More information

MECHANICAL AND RHEOLOGICAL PROPERTIES

MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL AND RHEOLOGICAL PROPERTIES MECHANICAL PROPERTIES OF SOLIDS Extension Shear δ τ xy l 0 l l 0 θ σ Hooke's law σ = Eε Hooke's law τ = G γ xy xy MECHANICAL AND RHEOLOGICAL PROPERTIES RHEOLOGICAL

More information

III. Molecular Structure Chapter Molecular Size Size & Shape

III. Molecular Structure Chapter Molecular Size Size & Shape III. Molecular Structure Chapter 3. 3. Molecular Size Size & Shape Molecular Structure (1)Molecular Size & Shape Size : molecular weight molecular weight distribution Shape : branching (2) Molecular Flexibility

More information

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 17 Physics, 4 th Edition James S. Walker Chapter 17 Phases and Phase Changes Ideal Gases Kinetic Theory Units of Chapter 17 Solids and Elastic Deformation Phase Equilibrium and

More information

POLYMER CHEMISTRY Lecture/Lession Plan -4

POLYMER CHEMISTRY Lecture/Lession Plan -4 Chapter 6 POLYMER CHEMISTRY Lecture/Lession Plan -4 POLYMER CHEMISTRY 6.1 Rubber Rubber is a natural elastomeric polymer whose monomer unit is cis-2-methyle-1,3-butadiene. Raw rubber material is extracted

More information

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state

2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state 2. Amorphous or Crystalline Structurally, polymers in the solid state may be amorphous or crystalline. When polymers are cooled from the molten state or concentrated from the solution, molecules are often

More information

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

More information

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials

Chap. 2. Polymers Introduction. - Polymers: synthetic materials <--> natural materials Chap. 2. Polymers 2.1. Introduction - Polymers: synthetic materials natural materials no gas phase, not simple liquid (much more viscous), not perfectly crystalline, etc 2.3. Polymer Chain Conformation

More information

13 Solid materials Exam practice questions

13 Solid materials Exam practice questions Pages 206-209 Exam practice questions 1 a) The toughest material has the largest area beneath the curve the answer is C. b) The strongest material has the greatest breaking stress the answer is B. c) A

More information

Materials of Engineering ENGR 151 POLYMER STRUCTURES

Materials of Engineering ENGR 151 POLYMER STRUCTURES Materials of Engineering ENGR 151 POLYMER STRUCTURES LEARNING OBJECTIVES Understand different molecular and crystal structures of polymers What are the general structural and chemical characteristics of

More information

Chapter 3 Entropy elasticity (rubbery materials) Review basic thermal physics Chapter 5.1 to 5.5 (Nelson)

Chapter 3 Entropy elasticity (rubbery materials) Review basic thermal physics Chapter 5.1 to 5.5 (Nelson) Chapter 3 Entropy elasticity (rubbery materials) Review basic thermal physics Chapter 5.1 to 5.5 (Nelson) Outline: 3.1 Strain, stress and Young modulus 3. Energy density 3.3 Typical stress-strain curve

More information

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction

COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS. Abstract. Introduction COMPRESSION AND BENDING STIFFNESS OF FIBER-REINFORCED ELASTOMERIC BEARINGS Hsiang-Chuan Tsai, National Taiwan University of Science and Technology, Taipei, Taiwan James M. Kelly, University of California,

More information

Chapter 13 - Polymers Introduction

Chapter 13 - Polymers Introduction Chapter 13 - Polymers Introduction I. Nomenclature A. Polymer/Macromolecule polymer - nonmetallic material consisting of large molecules composed of many repeating units - from Greek: poly (many) and meros

More information

Packing of Atoms in Solids [5]

Packing of Atoms in Solids [5] Packing of Atoms in Solids [5] Non dense, random packing Energy typical neighbor bond length typical neighbor bond energy r Dense, ordered packing Energy typical neighbor bond length typical neighbor bond

More information

Chemistry Class 12 th NCERT Solutions

Chemistry Class 12 th NCERT Solutions This e-book is prepared by the CBSE board exam experts of jagranjosh.com, an online educational portal of Dainik Jagran. The purpose of providing solutions for CBSE class 12 th Science and Mathematics

More information

CPO Science Foundations of Physics. Unit 8, Chapter 27

CPO Science Foundations of Physics. Unit 8, Chapter 27 CPO Science Foundations of Physics Unit 8, Chapter 27 Unit 8: Matter and Energy Chapter 27 The Physical Properties of Matter 27.1 Properties of Solids 27.2 Properties of Liquids and Fluids 27.3 Properties

More information

(Refer Slide Time: 00:58)

(Refer Slide Time: 00:58) Nature and Properties of Materials Professor Bishak Bhattacharya Department of Mechanical Engineering Indian Institute of Technology Kanpur Lecture 18 Effect and Glass Transition Temperature In the last

More information

Example: Uniaxial Deformation. With Axi-symmetric sample cross-section dl l 0 l x. α x since α x α y α z = 1 Rewriting ΔS α ) explicitly in terms of α

Example: Uniaxial Deformation. With Axi-symmetric sample cross-section dl l 0 l x. α x since α x α y α z = 1 Rewriting ΔS α ) explicitly in terms of α Eample: Uniaial Deformation y α With Ai-symmetric sample cross-section l dl l 0 l, d Deform along, α = α = l0 l0 = α, α y = α z = Poisson contraction in lateral directions α since α α y α z = Rewriting

More information

Periodic table with the elements associated with commercial polymers in color.

Periodic table with the elements associated with commercial polymers in color. Polymers 1. What are polymers 2. Polymerization 3. Structure features of polymers 4. Thermoplastic polymers and thermosetting polymers 5. Additives 6. Polymer crystals 7. Mechanical properties of polymers

More information

MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle?

MATERIALS. Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: A. Composition

More information

Weight and contact forces: Young's modulus, Hooke's law and material properties

Weight and contact forces: Young's modulus, Hooke's law and material properties Weight and contact forces: Young's modulus, Hooke's law and material properties Many objects deform according to Hooke's law; many materials behave elastically and have a Young's modulus. In this section,

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

Thermal physics revision questions

Thermal physics revision questions Thermal physics revision questions ONE SECTION OF QUESTIONS TO BE COMPLETED AND MARKED EVERY WEEK AFTER HALF TERM. Section 1: Energy 1. Define the law of conservation of energy. Energy is neither created

More information

Johns Hopkins University What is Engineering? M. Karweit MATERIALS

Johns Hopkins University What is Engineering? M. Karweit MATERIALS Why do things break? Why are some materials stronger than others? Why is steel tough? Why is glass brittle? What is toughness? strength? brittleness? Elemental material atoms: MATERIALS A. Composition

More information

PHYS 101 Lecture 34 - Physical properties of matter 34-1

PHYS 101 Lecture 34 - Physical properties of matter 34-1 PHYS 101 Lecture 34 - Physical properties of matter 34-1 Lecture 34 - Physical properties of matter What s important: thermal expansion elastic moduli Demonstrations: heated wire; ball and ring; rulers

More information

POLYMERS: A BRIEF TUTORIAL

POLYMERS: A BRIEF TUTORIAL POLYMERS: A BRIEF TUTORIAL Presented at: Energy Rubber Group Education Program September 18 19, 2001 by Dan Hertz, Jr., Andy Farinella Danny Hertz, III Seals Eastern, Inc. Red Bank, NJ 07701-0520 Table

More information

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor.

1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. Elasticity Homework Problems 2014 Section 1. The Strain Tensor. 1. A pure shear deformation is shown. The volume is unchanged. What is the strain tensor. 2. Given a steel bar compressed with a deformation

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi

Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi Part II Fundamentals of Fluid Mechanics By Munson, Young, and Okiishi WHAT we will learn I. Characterization of Fluids - What is the fluid? (Physical properties of Fluid) II. Behavior of fluids - Fluid

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase

Liquid Crystal. Liquid Crystal. Liquid Crystal Polymers. Liquid Crystal. Orientation of molecules in the mesophase Liquid Crystal - Liquid crystals (LCs) are a state of matter that have properties between those of a conventional liquid and those of a solid crystal. (Fourth state of matter) Liquid Crystal Orientation

More information

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers

Abvanced Lab Course. Dynamical-Mechanical Analysis (DMA) of Polymers Abvanced Lab Course Dynamical-Mechanical Analysis (DMA) of Polymers M211 As od: 9.4.213 Aim: Determination of the mechanical properties of a typical polymer under alternating load in the elastic range

More information

A Review On Methodology Of Material Characterization And Finite Element Modelling Of Rubber-Like Materials

A Review On Methodology Of Material Characterization And Finite Element Modelling Of Rubber-Like Materials IOSR Journal of Engineering (IOSRJEN) ISSN (e): 50-301, ISSN (p): 78-8719 PP 06-10 www.iosrjen.org A Review On Methodology Of Material Characterization And Finite Element Modelling Of Rubber-Like Materials

More information

Gelation. Carsten Svaneborg, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark

Gelation. Carsten Svaneborg, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark Gelation Carsten Svaneborg, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark Gelation Gelation chemical or physical process of linking subunits until a macroscopic

More information

, to obtain a way to calculate stress from the energy function U(r).

, to obtain a way to calculate stress from the energy function U(r). BIOEN 36 014 LECTURE : MOLECULAR BASIS OF ELASTICITY Estimating Young s Modulus from Bond Energies and Structures First we consider solids, which include mostly nonbiological materials, such as metals,

More information

Strain Gage Calibration Factors for Constant Room Temperature Conditions. Gage Resistance, Gage Factor and Transverse Sensitivity Coefficient)

Strain Gage Calibration Factors for Constant Room Temperature Conditions. Gage Resistance, Gage Factor and Transverse Sensitivity Coefficient) Strain Gage Calibration Factors for Constant Room Temperature Conditions (Or equivalently, measurement of the room temperature (Or equivalently, measurement of the room temperature Gage Resistance, Gage

More information

HIGHLY ADAPTABLE RUBBER ISOLATION SYSTEMS

HIGHLY ADAPTABLE RUBBER ISOLATION SYSTEMS th World Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 24 Paper No. 746 HIGHLY ADAPTABLE RUBBER ISOLATION SYSTEMS Luis DORFMANN, Maria Gabriella CASTELLANO 2, Stefan L. BURTSCHER,

More information

How materials work. Compression Tension Bending Torsion

How materials work. Compression Tension Bending Torsion Materials How materials work Compression Tension Bending Torsion Elemental material atoms: A. Composition a) Nucleus: protons (+), neutrons (0) b) Electrons (-) B. Neutral charge, i.e., # electrons = #

More information

Strain Gauges and Accessories

Strain Gauges and Accessories Strain Gauges and Accessories Nurgül Er nurguel.er@hbm.com www.hbm.com 19.03.2008, Folie 1 Hottinger Baldwin Messtechnik GmbH Nurgül Er How to find the right strain gauge a wide range of of strain gauges

More information

3.22 Mechanical Properties of Materials Spring 2008

3.22 Mechanical Properties of Materials Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 3.22 Mechanical Properties of Materials Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Quiz #1 Example

More information

Chapter 12 - Modern Materials

Chapter 12 - Modern Materials Chapter 12 - Modern Materials 12.1 Semiconductors Inorganic compounds that semiconduct tend to have chemical formulas related to Si and Ge valence electron count of four. Semiconductor conductivity can

More information

Deformation of Elastomeric Networks: Relation between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity

Deformation of Elastomeric Networks: Relation between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity Deformation of Elastomeric Networks: Relation between Molecular Level Deformation and Classical Statistical Mechanics Models of Rubber Elasticity J. S. Bergström and M. C. Boyce Department of Mechanical

More information

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland

Agricultural Science 1B Principles & Processes in Agriculture. Mike Wheatland Agricultural Science 1B Principles & Processes in Agriculture Mike Wheatland (m.wheatland@physics.usyd.edu.au) Outline - Lectures weeks 9-12 Chapter 6: Balance in nature - description of energy balance

More information

RUBBER MATERIALS AND DYNAMIC SPACE APPLICATIONS

RUBBER MATERIALS AND DYNAMIC SPACE APPLICATIONS RUBBER MATERIALS AND DYNAMIC SPACE APPLICATIONS Tony DEMERVILLE SMAC, 66 Impasse Branly 83130 La Garde FRANCE, tony.demerville@smac.fr, Tel : +33 4 94 75 24 88 ABSTRACT In many fields (for example automotive,

More information

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1

University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING. ME Fluid Mechanics Lecture notes. Chapter 1 University of Hail Faculty of Engineering DEPARTMENT OF MECHANICAL ENGINEERING ME 311 - Fluid Mechanics Lecture notes Chapter 1 Introduction and fluid properties Prepared by : Dr. N. Ait Messaoudene Based

More information

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers

Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Robert Q. Kluttz KRATON Polymers Polymers in Modified Asphalt Types of Polymers Compatibility of Polymers Effects of Polymers Analysis of polymers Recovery of PMA What Is a

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

Exercise: concepts from chapter 8

Exercise: concepts from chapter 8 Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic

More information

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers

SCH4U Synthesis and Polymers. Synthesis Reactions and Addition and Condensation Polymers SCH4U Synthesis and Polymers Synthesis Reactions and Addition and Condensation Polymers ADDITION POLYMERS ADDITION POLYMERS A + A + A + A A A A A monomers polymer + + + ethylene (ethene) polyethylene

More information

ES 247 Fracture Mechanics Zhigang Suo. Fracture of Rubber

ES 247 Fracture Mechanics  Zhigang Suo. Fracture of Rubber Fracture of Rubber This lecture focuses on fracture of highly deformable materials, such as natural rubber, synthetic elastomers, and elastomeric gels. Before rupture, these materials are capable of large

More information

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 3 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 3 ME 276 Spring 2017-2018 Dr./ Ahmed Mohamed Nagib Elmekawy Axial Stress 2 Beam under the action of two tensile forces 3 Beam under the action of two tensile forces 4 Shear Stress

More information

Rubber Elasticity (Indented text follows Strobl, other follows Doi)

Rubber Elasticity (Indented text follows Strobl, other follows Doi) Rubber Elasticity (Indented text follows Strobl, other follows Doi) Elasticity of A Single Chain: The spring constant associated with a single polymer chain is of importance in a wide range of situations

More information

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

STANDARD SAMPLE. Reduced section  Diameter. Diameter. 2 Gauge length. Radius MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

More information

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ

COMPOSITE MATERIALS. Asst. Prof. Dr. Ayşe KALEMTAŞ COMPOSITE MATERIALS Office ours: Tuesday, 16:30-17:30 akalemtas@mu.edu.tr, akalemtas@gmail.com Phone: +90 252 211 19 17 Metallurgical and Materials Engineering Department ISSUES TO ADDRESS Polymers Applications

More information

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there?

High Tech High Top Hat Technicians. An Introduction to Solid Mechanics. Is that supposed to bend there? High Tech High Top Hat Technicians An Introduction to Solid Mechanics Or Is that supposed to bend there? Why don't we fall through the floor? The power of any Spring is in the same proportion with the

More information

not to be republished NCERT Unit I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals?

not to be republished NCERT Unit I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals? I. Multiple Choice Questions (Type-I) 1. Which of the following polymers of glucose is stored by animals? Cellulose Amylose Amylopectin Glycogen 2. Which of the following is not a semisynthetic polymer?

More information

Quiz 1 Introduction to Polymers (Please answer each question even if you guess)

Quiz 1 Introduction to Polymers (Please answer each question even if you guess) 080407 Quiz 1 Introduction to Polymers (Please answer each question even if you guess) This week we explored the definition of a polymer in terms of properties. 1) The flow of polymer melts and concentrated

More information

Polymer engineering syllabus (BSc)

Polymer engineering syllabus (BSc) Polymer engineering syllabus (BSc) First semester Math 1 Physics 1 Physics 1 lab General chemistry General chemistry lab workshop Second semester Math 2 Physics 2 Organic chemistry 1 Organic chemistry

More information

Elasticity. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M.

Elasticity. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M. Elasticity A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Modified by M. Lepore Elasticity Photo Vol. 10 PhotoDisk/Getty BUNGEE jumping utilizes

More information

COMPARISON OF CONSTITUTIVE HYPER-ELASTIC MATERIAL MODELS IN FINITE ELEMENT THEORY

COMPARISON OF CONSTITUTIVE HYPER-ELASTIC MATERIAL MODELS IN FINITE ELEMENT THEORY OTEKON 2012 6. Otomotiv Teknolojileri Kongresi 04 05 Haziran 2012, BURSA COMPARISON O CONSTITUTIVE HYPER-ELASTIC MATERIAL MODELS IN INITE ELEMENT THEORY ABSTRACT Savaş Kayacı, Ali Kamil Serbest Las-Par

More information

Mechanical properties 1 Elastic behaviour of materials

Mechanical properties 1 Elastic behaviour of materials MME131: Lecture 13 Mechanical properties 1 Elastic behaviour of materials A. K. M. B. Rashid Professor, Department of MME BUET, Dhaka Today s Topics Deformation of material under the action of a mechanical

More information

ME 207 Material Science I

ME 207 Material Science I ME 207 Material Science I Chapter 3 Properties in Tension and Compression Dr. İbrahim H. Yılmaz http://web.adanabtu.edu.tr/iyilmaz Automotive Engineering Adana Science and Technology University Introduction

More information

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, Shear Modulus, (S) N/m 2

Strain Gages. Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, Shear Modulus, (S) N/m 2 When you bend a piece of metal, the Strain Gages Approximate Elastic Constants (from University Physics, Sears Zemansky, and Young, Reading, MA, 1979 Material Young's Modulus, (E) 10 11 N/m 2 Shear Modulus,

More information

Chapter 2. Rubber Elasticity:

Chapter 2. Rubber Elasticity: Chapter. Rubber Elasticity: The mechanical behavior of a rubber band, at first glance, might appear to be Hookean in that strain is close to 100% recoverable. However, the stress strain curve for a rubber

More information

Which expression gives the elastic energy stored in the stretched wire?

Which expression gives the elastic energy stored in the stretched wire? 1 wire of length L and cross-sectional area is stretched a distance e by a tensile force. The Young modulus of the material of the wire is E. Which expression gives the elastic energy stored in the stretched

More information

EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD

EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD Journal of KONES Powertrain and Transport, Vol. 7, No. EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD Robert Czabanowski Wroclaw University

More information

CHAPTER 1 Fluids and their Properties

CHAPTER 1 Fluids and their Properties FLUID MECHANICS Gaza CHAPTER 1 Fluids and their Properties Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Define the nature of a fluid. Show where fluid mechanics concepts are common with those

More information

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a

More information

**********************************************************************

********************************************************************** Department of Civil and Environmental Engineering School of Mining and Petroleum Engineering 3-33 Markin/CNRL Natural Resources Engineering Facility www.engineering.ualberta.ca/civil Tel: 780.492.4235

More information