ECE 301: Signals and Systems Homework Assignment #5

Size: px
Start display at page:

Download "ECE 301: Signals and Systems Homework Assignment #5"

Transcription

1 ECE 30: Signals and Systems Homework Assignment #5 Due on November, 205 Professor: Aly El Gamal TA: Xianglun Mao

2 Aly El Gamal ECE 30: Signals and Systems Homework Assignment #5 Problem Problem Compute the Fourier transform of each of the following signals (a) (b) (c) (d) x(t) { + cos(πt), t 0, t > a k δ(t kt ), a < k0 x(t) [te 2t sin(4t)]u(t) { t 2, 0 < t < 0, otherwise (e) x(t) as show in Figure. Figure : The graph of signal x(t) in (e). Solution (a) 2sin(w) w x(t)e jwt dt ( + cos(πt))e jwt dt + sin(w) π w sin(w) π + w (b) x(t)e jwt dt ( a k e jwkt δ(t kt ))dt k0 a k e jwkt k0 αe jwt Problem continued on next page... 2

3 Aly El Gamal ECE 30: Signals and Systems Homework Assignment #5 Problem (continued) (c) We have Therefore, x(t) (/2j)te 2t e j4t u(t) (/2j)e 2t e j4t u(t). /2j (2 j4 + jw) 2 /2j (2 + j4 jw) 2. (d) 0 x(t)e jwt dt ( t 2 )e jwt dt jw + 2e jw w 2 2e jw 2 jw 2 (e) If then Therefore, x (t) δ(t 2k), x(t) x (t) + x (t ) X (jw)[2 + e w ] π δ(w kπ)[2 + ( ) k ] k 3

4 Aly El Gamal ECE 30: Signals and Systems Homework Assignment #5 Problem 2 Problem 2 Consider the signal x 0 (t) { e t, 0 t 0, elsewhere Determine the Fourier transform of each of the signals shown in Figure 2. You should be able to do this by explicitly evaluating only the transform of x 0 (t) and then using properties of the Fourier transform. Solution Figure 2: The graph of signals x (t), x 2 (t), x 3 (t), x 4 (t). For the given signal x 0 (t), we use the Fourier transform analysis to evaluate the corresponding Fourier transform X 0 (jw) e (+jw) + jw. (a) We know that x (t) x 0 (t) + x 0 ( t). Using the linearity and time reversal properties of the Fourier transform we have (b) We know that X (jw) X 0 (jw) + X 0 ( jw) 2 2e cos(w) 2we sin(w) + w 2 x 2 (t) x 0 (t) x 0 ( t). Using the linearity and time reversal properties of the Fourier transform we have X 2 (jw) X 0 (jw) X 0 ( jw) j[ 2w + 2e sin(w) + 2we cos(w) + w 2 ] Problem 2 continued on next page... 4

5 Aly El Gamal ECE 30: Signals and Systems Homework Assignment #5 Problem 2 (continued) (c) We know that x 3 (t) x 0 (t) + x 0 (t + ). Using the linearity and time reversal properties of the Fourier transform we have (d) We know that X 3 (jw) X 0 (jw) + e jw X 0 ( jw) + ejw e ( + e jw ) + jw x 4 (t) tx 0 (t). Using the linearity and time reversal properties of the Fourier transform we have X 4 (jw) j d dw X 0(jw) 2e e jw jwe e jw ( + jw) 2 5

6 Aly El Gamal ECE 30: Signals and Systems Homework Assignment #5 Problem 3 Problem 3 Determine which, if any, of the real signals depicted in Figure 3 have Fourier tranforms that satisfy each of the following conditions: (a) Re{X(jw)} 0 (b) Im{X(jw)} 0 (c) There exists a real α such that e jαw X(jw) is real (d) X(jw)dw 0 (e) wx(jw)dw 0 (f) X(jw) is periodic Figure 3: The graph of real signals (a), (b), (c), (d), (e), (f). Problem 3 continued on next page... 6

7 Aly El Gamal ECE 30: Signals and Systems Homework Assignment #5 Problem 3 (continued) Solution (a) For Re{X(jw)} 0, the signal x(t) must be real and odd. Therefore, signals in figures (a) and (d) have this property. (b) For Im{X(jw)} 0, the signal x(t) must be real and even. Therefore, signals in figures (e) and (f) have this property. (c) For there to exist a real α such that e jαw X(jw) is real, we require that x(t + α) be a real and even signal. Therefore, signals in figures (a), (b), (e), and (f) have this property. (d) For this condition to be true, x(0) 0. Therefore, signals in figures (a), (b), (c), (d), and (f) have this property. (e) For this condition to be true the derivative of x(t) has to be zero at t 0. Therefore, signals in figures (b), (c), (e), and (f) have this property. (f) The signal in figure (a) and (b) have this property. Figure (a) has this property because it s the integration of shifted square waves. The Fourier transform of the signal that shown in Figure (b) is 2e jw, which is periodic. 7

8 Aly El Gamal ECE 30: Signals and Systems Homework Assignment #5 Problem 4 Problem 4 The input and the output of a stable and causal LTI system are related by the differential equation d 2 y(t) dt 2 (a) Find the impulse response of this system. + 6 dy(t) dt (b) What is the response of this system if x(t) te 2t u(t)? + 8y(t) 2x(t) (c) Repeat part (a) for the stable and causal LTI system described by the equation Solution d 2 y(t) dt dy(t) dt + y(t) 2 d2 x(t) dt 2 2x(t) (a) Taking the Fourier transform of both sides of the given differential equation, we obtain Therefore, we have Using partial fraction expansion, we obtain Taking the inverse Fourier transform, w 2 Y (jw) + 6jwY (jw) + 8Y (jw) 2X(jw) H(jw) Y (jw) 2 w 2 + 6jw + 8 H(jw) (b) For the given signal x(t) te 2t u(t), we have Therefore, Using partial fraction expansion, we obtain Taking the inverse Fourier transform, jw + 2 jw + 4 h(t) e 2t u(t) e 4t u(t) (2 + jw) 2. 2 Y (jw) X(jw)H(jw) ( w 2 + 6jw + 8) (2 + jw) 2. Y (jw) /4 jw + 2 /2 (jw + 2) 2 + (jw + 2) 3 /4 jw + 4 y(t) 4 e 2t u(t) 2 te 2t u(t) + t 2 e 2t u(t) 4 e 4t u(t) (c) Taking the Fourier transform of both sides of the given differential equation, we obtain w 2 Y (jw) + 2jwY (jw) + Y (jw) 2w 2 X(jw) 2X(jw) Problem 4 continued on next page... 8

9 Aly El Gamal ECE 30: Signals and Systems Homework Assignment #5 Problem 4 (continued) Therefore, we have Using partial fraction expansion, we obtain Taking the inverse Fourier transform, H(jw) Y (jw) 2( w 2 ) w 2 + 2jw + H(jw) j jw 2+j j jw 2 j 2 2 h(t) 2δ(t) 2( + 2j)e (+j)t/ 2 u(t) 2( 2j)e ( j)t/ 2 u(t) 9

10 Aly El Gamal ECE 30: Signals and Systems Homework Assignment #5 Problem 5 Problem 5 A causal and stable LTI system S has the frequency response H(jw) jw w 2 + 5jw (a) Determine a differential equation relating the input x(t) and output y(t) of S. (b) Determine the impulse response h(t) of S. (c) What is the output of S when the input is Solution x(t) e 4t u(t) te 4t u(t)? (a) We have Y (jw) jw w 2 + 5jw. Cross-multiplying and taking the inverse Fourier transform, we obtain (b) We have (c) For d 2 y(t) dt dy(t) dt Taking the inverse Fourier transform we obtain, we have Therefore, + 6y(t) dx(t) dt jw + 4 H(jw) 6 w 2 + 5jw jw 3 + jw h(t) 2e 2t u(t) e 3t u(t) x(t) e 4t u(t) te 4t u(t), Y (jw) X(jw)H(jw) 4 + jw (4 + jw) x(t) (4 + jw)(2 + jw) /2 2 + jw /2 4 + jw Finding the partial fraction expansion of Y (jw) and taking the inverse Fourier transform, y(t) 2 e 2t u(t) 2 e 4t u(t), 0

ECE 301: Signals and Systems Homework Assignment #7

ECE 301: Signals and Systems Homework Assignment #7 ECE 301: Signals and Systems Homework Assignment #7 Due on December 11, 2015 Professor: Aly El Gamal TA: Xianglun Mao 1 Aly El Gamal ECE 301: Signals and Systems Homework Assignment #7 Problem 1 Note:

More information

ECE 301: Signals and Systems Homework Assignment #4

ECE 301: Signals and Systems Homework Assignment #4 ECE 301: Sigals ad Systems Homework Assigmet #4 Due o October 28, 2015 Professor: Aly El Gamal TA: Xiaglu Mao 1 Aly El Gamal ECE 301: Sigals ad Systems Homework Assigmet #4 Problem 1 Problem 1 Let x[]

More information

ECE 301: Signals and Systems Homework Assignment #3

ECE 301: Signals and Systems Homework Assignment #3 ECE 31: Signals and Systems Homework Assignment #3 Due on October 14, 215 Professor: Aly El Gamal A: Xianglun Mao 1 Aly El Gamal ECE 31: Signals and Systems Homework Assignment #3 Problem 1 Problem 1 Consider

More information

6.003 Homework #10 Solutions

6.003 Homework #10 Solutions 6.3 Homework # Solutions Problems. DT Fourier Series Determine the Fourier Series coefficients for each of the following DT signals, which are periodic in N = 8. x [n] / n x [n] n x 3 [n] n x 4 [n] / n

More information

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1 Module 2 : Signals in Frequency Domain Problem Set 2 Problem 1 Let be a periodic signal with fundamental period T and Fourier series coefficients. Derive the Fourier series coefficients of each of the

More information

Homework 7 Solution EE235, Spring Find the Fourier transform of the following signals using tables: te t u(t) h(t) = sin(2πt)e t u(t) (2)

Homework 7 Solution EE235, Spring Find the Fourier transform of the following signals using tables: te t u(t) h(t) = sin(2πt)e t u(t) (2) Homework 7 Solution EE35, Spring. Find the Fourier transform of the following signals using tables: (a) te t u(t) h(t) H(jω) te t u(t) ( + jω) (b) sin(πt)e t u(t) h(t) sin(πt)e t u(t) () h(t) ( ejπt e

More information

Fourier Series and Fourier Transforms

Fourier Series and Fourier Transforms Fourier Series and Fourier Transforms Houshou Chen Dept. of Electrical Engineering, National Chung Hsing University E-mail: houshou@ee.nchu.edu.tw H.S. Chen Fourier Series and Fourier Transforms 1 Why

More information

Fourier Transform for Continuous Functions

Fourier Transform for Continuous Functions Fourier Transform for Continuous Functions Central goal: representing a signal by a set of orthogonal bases that are corresponding to frequencies or spectrum. Fourier series allows to find the spectrum

More information

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Name: Solve problems 1 3 and two from problems 4 7. Circle below which two of problems 4 7 you

More information

George Mason University Signals and Systems I Spring 2016

George Mason University Signals and Systems I Spring 2016 George Mason University Signals and Systems I Spring 206 Problem Set #6 Assigned: March, 206 Due Date: March 5, 206 Reading: This problem set is on Fourier series representations of periodic signals. The

More information

Homework 5 EE235, Summer 2013 Solution

Homework 5 EE235, Summer 2013 Solution Homework 5 EE235, Summer 23 Solution. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a f(t 2 cos(3πt + sin(πt + π 3 w π f(t e j3πt + e j3πt + j2

More information

Chapter 6: Applications of Fourier Representation Houshou Chen

Chapter 6: Applications of Fourier Representation Houshou Chen Chapter 6: Applications of Fourier Representation Houshou Chen Dept. of Electrical Engineering, National Chung Hsing University E-mail: houshou@ee.nchu.edu.tw H.S. Chen Chapter6: Applications of Fourier

More information

EE 210. Signals and Systems Solutions of homework 2

EE 210. Signals and Systems Solutions of homework 2 EE 2. Signals and Systems Solutions of homework 2 Spring 2 Exercise Due Date Week of 22 nd Feb. Problems Q Compute and sketch the output y[n] of each discrete-time LTI system below with impulse response

More information

so mathematically we can say that x d [n] is a discrete-time signal. The output of the DT system is also discrete, denoted by y d [n].

so mathematically we can say that x d [n] is a discrete-time signal. The output of the DT system is also discrete, denoted by y d [n]. ELEC 36 LECURE NOES WEEK 9: Chapters 7&9 Chapter 7 (cont d) Discrete-ime Processing of Continuous-ime Signals It is often advantageous to convert a continuous-time signal into a discrete-time signal so

More information

EE Homework 12 - Solutions. 1. The transfer function of the system is given to be H(s) = s j j

EE Homework 12 - Solutions. 1. The transfer function of the system is given to be H(s) = s j j EE3054 - Homework 2 - Solutions. The transfer function of the system is given to be H(s) = s 2 +3s+3. Decomposing into partial fractions, H(s) = 0.5774j s +.5 0.866j + 0.5774j s +.5 + 0.866j. () (a) The

More information

4.1. Use the Fourier transform analysis equation (4.9) to calculate the Fourier transforms of: (a) e- 2 U-l)u(t- 1) (b) e- 2 lt-ll

4.1. Use the Fourier transform analysis equation (4.9) to calculate the Fourier transforms of: (a) e- 2 U-l)u(t- 1) (b) e- 2 lt-ll 334 The Continuous-Time Fourier Transform Chap.4 this chapter we have derived and examined many of these properties. Among them are two that have particular significance for our study of signals and systems.

More information

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Homework 4 May 2017 1. An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Determine the impulse response of the system. Rewriting as y(t) = t e (t

More information

Continuous-Time Fourier Transform

Continuous-Time Fourier Transform Signals and Systems Continuous-Time Fourier Transform Chang-Su Kim continuous time discrete time periodic (series) CTFS DTFS aperiodic (transform) CTFT DTFT Lowpass Filtering Blurring or Smoothing Original

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Fall 2017 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Fall 2017 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2017 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points / 25

More information

Ch 4: The Continuous-Time Fourier Transform

Ch 4: The Continuous-Time Fourier Transform Ch 4: The Continuous-Time Fourier Transform Fourier Transform of x(t) Inverse Fourier Transform jt X ( j) x ( t ) e dt jt x ( t ) X ( j) e d 2 Ghulam Muhammad, King Saud University Continuous-time aperiodic

More information

12/20/2017. Lectures on Signals & systems Engineering. Designed and Presented by Dr. Ayman Elshenawy Elsefy

12/20/2017. Lectures on Signals & systems Engineering. Designed and Presented by Dr. Ayman Elshenawy Elsefy //7 ectures on Signals & systems Engineering Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng. Al-Azhar University Email : eaymanelshenawy@yahoo.com aplace Transform

More information

3. Frequency-Domain Analysis of Continuous- Time Signals and Systems

3. Frequency-Domain Analysis of Continuous- Time Signals and Systems 3. Frequency-Domain Analysis of Continuous- ime Signals and Systems 3.. Definition of Continuous-ime Fourier Series (3.3-3.4) 3.2. Properties of Continuous-ime Fourier Series (3.5) 3.3. Definition of Continuous-ime

More information

Definition of the Laplace transform. 0 x(t)e st dt

Definition of the Laplace transform. 0 x(t)e st dt Definition of the Laplace transform Bilateral Laplace Transform: X(s) = x(t)e st dt Unilateral (or one-sided) Laplace Transform: X(s) = 0 x(t)e st dt ECE352 1 Definition of the Laplace transform (cont.)

More information

Introduction to DFT. Deployment of Telecommunication Infrastructures. Azadeh Faridi DTIC UPF, Spring 2009

Introduction to DFT. Deployment of Telecommunication Infrastructures. Azadeh Faridi DTIC UPF, Spring 2009 Introduction to DFT Deployment of Telecommunication Infrastructures Azadeh Faridi DTIC UPF, Spring 2009 1 Review of Fourier Transform Many signals can be represented by a fourier integral of the following

More information

EEE 303 HW#2 Solutions 1.43 a.

EEE 303 HW#2 Solutions 1.43 a. EEE 33 HW # SOLUTIONS Problem.5 Since x(t) =fort. b. x( t)+x( t) =x( t)u( t ) + x( t)u( t ) which is zero for

More information

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114.

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. The exam for both sections of ECE 301 is conducted in the same room, but the problems are completely different. Your ID will

More information

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1 ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Let x be a periodic continuous-time signal with period, such that {, for.5 t.5 x(t) =, for.5

More information

One-Sided Laplace Transform and Differential Equations

One-Sided Laplace Transform and Differential Equations One-Sided Laplace Transform and Differential Equations As in the dcrete-time case, the one-sided transform allows us to take initial conditions into account. Preliminaries The one-sided Laplace transform

More information

Differential and Difference LTI systems

Differential and Difference LTI systems Signals and Systems Lecture: 6 Differential and Difference LTI systems Differential and difference linear time-invariant (LTI) systems constitute an extremely important class of systems in engineering.

More information

ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013

ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013 ECE 308 SIGNALS AND SYSTEMS SPRING 2013 Examination #2 14 March 2013 Name: Instructions: The examination lasts for 75 minutes and is closed book, closed notes. No electronic devices are permitted, including

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

Discussion Section #2, 31 Jan 2014

Discussion Section #2, 31 Jan 2014 Discussion Section #2, 31 Jan 2014 Lillian Ratliff 1 Unit Impulse The unit impulse (Dirac delta) has the following properties: { 0, t 0 δ(t) =, t = 0 ε ε δ(t) = 1 Remark 1. Important!: An ordinary function

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

ECE 314 Signals and Systems Fall 2012

ECE 314 Signals and Systems Fall 2012 ECE 31 ignals and ystems Fall 01 olutions to Homework 5 Problem.51 Determine the impulse response of the system described by y(n) = x(n) + ax(n k). Replace x by δ to obtain the impulse response: h(n) =

More information

4 The Continuous Time Fourier Transform

4 The Continuous Time Fourier Transform 96 4 The Continuous Time ourier Transform ourier (or frequency domain) analysis turns out to be a tool of even greater usefulness Extension of ourier series representation to aperiodic signals oundation

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

2. Time-Domain Analysis of Continuous- Time Signals and Systems

2. Time-Domain Analysis of Continuous- Time Signals and Systems 2. Time-Domain Analysis of Continuous- Time Signals and Systems 2.1. Continuous-Time Impulse Function (1.4.2) 2.2. Convolution Integral (2.2) 2.3. Continuous-Time Impulse Response (2.2) 2.4. Classification

More information

Fourier series for continuous and discrete time signals

Fourier series for continuous and discrete time signals 8-9 Signals and Systems Fall 5 Fourier series for continuous and discrete time signals The road to Fourier : Two weeks ago you saw that if we give a complex exponential as an input to a system, the output

More information

Chapter 6: The Laplace Transform. Chih-Wei Liu

Chapter 6: The Laplace Transform. Chih-Wei Liu Chapter 6: The Laplace Transform Chih-Wei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace

More information

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002.

The Johns Hopkins University Department of Electrical and Computer Engineering Introduction to Linear Systems Fall 2002. The Johns Hopkins University Department of Electrical and Computer Engineering 505.460 Introduction to Linear Systems Fall 2002 Final exam Name: You are allowed to use: 1. Table 3.1 (page 206) & Table

More information

ECE-314 Fall 2012 Review Questions for Midterm Examination II

ECE-314 Fall 2012 Review Questions for Midterm Examination II ECE-314 Fall 2012 Review Questions for Midterm Examination II First, make sure you study all the problems and their solutions from homework sets 4-7. Then work on the following additional problems. Problem

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Spring 2018 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points /

More information

The Continuous-time Fourier

The Continuous-time Fourier The Continuous-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals:

More information

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1

06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1 IV. Continuous-Time Signals & LTI Systems [p. 3] Analog signal definition [p. 4] Periodic signal [p. 5] One-sided signal [p. 6] Finite length signal [p. 7] Impulse function [p. 9] Sampling property [p.11]

More information

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk Signals & Systems Lecture 5 Continuous-Time Fourier Transform Alp Ertürk alp.erturk@kocaeli.edu.tr Fourier Series Representation of Continuous-Time Periodic Signals Synthesis equation: x t = a k e jkω

More information

Homework 6 EE235, Spring 2011

Homework 6 EE235, Spring 2011 Homework 6 EE235, Spring 211 1. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a 2 cos(3πt + sin(1πt + π 3 w π e j3πt + e j3πt + 1 j2 [ej(1πt+ π

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

6.003 Homework #6 Solutions

6.003 Homework #6 Solutions 6.3 Homework #6 Solutions Problems. Maximum gain For each of the following systems, find the frequency ω m for which the magnitude of the gain is greatest. a. + s + s ω m = w This system has poles at s

More information

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105.

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address,

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 [E2.5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART II MEng. BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: 2:00 hours There are FOUR

More information

ECE 3620: Laplace Transforms: Chapter 3:

ECE 3620: Laplace Transforms: Chapter 3: ECE 3620: Laplace Transforms: Chapter 3: 3.1-3.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between

More information

The Continuous Time Fourier Transform

The Continuous Time Fourier Transform COMM 401: Signals & Systems Theory Lecture 8 The Continuous Time Fourier Transform Fourier Transform Continuous time CT signals Discrete time DT signals Aperiodic signals nonperiodic periodic signals Aperiodic

More information

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr.

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. Final Exam of ECE301, Section 3 (CRN 17101-003) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

Frequency Response and Continuous-time Fourier Series

Frequency Response and Continuous-time Fourier Series Frequency Response and Continuous-time Fourier Series Recall course objectives Main Course Objective: Fundamentals of systems/signals interaction (we d like to understand how systems transform or affect

More information

EECE 3620: Linear Time-Invariant Systems: Chapter 2

EECE 3620: Linear Time-Invariant Systems: Chapter 2 EECE 3620: Linear Time-Invariant Systems: Chapter 2 Prof. K. Chandra ECE, UMASS Lowell September 7, 2016 1 Continuous Time Systems In the context of this course, a system can represent a simple or complex

More information

Notes 07 largely plagiarized by %khc

Notes 07 largely plagiarized by %khc Notes 07 largely plagiarized by %khc Warning This set of notes covers the Fourier transform. However, i probably won t talk about everything here in section; instead i will highlight important properties

More information

Homework 9 Solutions

Homework 9 Solutions 8-290 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 207 Homework 9 Solutions Part One. (6 points) Compute the convolution of the following continuous-time aperiodic signals. (Hint: Use the

More information

Review: Continuous Fourier Transform

Review: Continuous Fourier Transform Review: Continuous Fourier Transform Review: convolution x t h t = x τ h(t τ)dτ Convolution in time domain Derivation Convolution Property Interchange the order of integrals Let Convolution Property By

More information

Assignment 4 Solutions Continuous-Time Fourier Transform

Assignment 4 Solutions Continuous-Time Fourier Transform Assignment 4 Solutions Continuous-Time Fourier Transform ECE 3 Signals and Systems II Version 1.01 Spring 006 1. Properties of complex numbers. Let c 1 α 1 + jβ 1 and c α + jβ be two complex numbers. a.

More information

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids Overview of Continuous-Time Fourier Transform Topics Definition Compare & contrast with Laplace transform Conditions for existence Relationship to LTI systems Examples Ideal lowpass filters Relationship

More information

x(t) = t[u(t 1) u(t 2)] + 1[u(t 2) u(t 3)]

x(t) = t[u(t 1) u(t 2)] + 1[u(t 2) u(t 3)] ECE30 Summer II, 2006 Exam, Blue Version July 2, 2006 Name: Solution Score: 00/00 You must show all of your work for full credit. Calculators may NOT be used.. (5 points) x(t) = tu(t ) + ( t)u(t 2) u(t

More information

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129.

Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. Final Exam of ECE301, Prof. Wang s section 8 10am Tuesday, May 6, 2014, EE 129. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address, and signature

More information

Signals and Systems Spring 2004 Lecture #9

Signals and Systems Spring 2004 Lecture #9 Signals and Systems Spring 2004 Lecture #9 (3/4/04). The convolution Property of the CTFT 2. Frequency Response and LTI Systems Revisited 3. Multiplication Property and Parseval s Relation 4. The DT Fourier

More information

NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet

NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet Test Duration: 75 minutes Coverage: Chaps 1,2 Open Book but Closed Notes One 85 in x 11 in crib sheet Calculators NOT allowed DO NOT

More information

Review of Frequency Domain Fourier Series: Continuous periodic frequency components

Review of Frequency Domain Fourier Series: Continuous periodic frequency components Today we will review: Review of Frequency Domain Fourier series why we use it trig form & exponential form how to get coefficients for each form Eigenfunctions what they are how they relate to LTI systems

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

ECE 301 Fall 2011 Division 1 Homework 5 Solutions

ECE 301 Fall 2011 Division 1 Homework 5 Solutions ECE 301 Fall 2011 ivision 1 Homework 5 Solutions Reading: Sections 2.4, 3.1, and 3.2 in the textbook. Problem 1. Suppose system S is initially at rest and satisfies the following input-output difference

More information

Assignment 3 Solutions

Assignment 3 Solutions Assignment Solutions Networks and systems August 8, 7. Consider an LTI system with transfer function H(jw) = input is sin(t + π 4 ), what is the output? +jw. If the Solution : C For an LTI system with

More information

Module 1: Introduction to Digital Control Lecture Note 4

Module 1: Introduction to Digital Control Lecture Note 4 Digital Control Module Lecture 4 Module : Introduction to Digital Control Lecture Note 4 Data Reconstruction Most of the control systems have analog controlled processes which are inherently driven by

More information

2 Background: Fourier Series Analysis and Synthesis

2 Background: Fourier Series Analysis and Synthesis Signal Processing First Lab 15: Fourier Series Pre-Lab and Warm-Up: You should read at least the Pre-Lab and Warm-up sections of this lab assignment and go over all exercises in the Pre-Lab section before

More information

II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Answer ONE question from each unit.

II/IV B.Tech (Regular/Supplementary) DEGREE EXAMINATION. Answer ONE question from each unit. 14ECEI302/EC 212 1. Answer all questions (1X12=12 Marks) a What are the applications of linked list? b Compare singly linked list and doubly linked list. c Define ADT. d What are the basic operations of

More information

MAE143A Signals & Systems - Homework 5, Winter 2013 due by the end of class Tuesday February 12, 2013.

MAE143A Signals & Systems - Homework 5, Winter 2013 due by the end of class Tuesday February 12, 2013. MAE43A Signals & Systems - Homework 5, Winter 23 due by the end of class Tuesday February 2, 23. If left under my door, then straight to the recycling bin with it. This week s homework will be a refresher

More information

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061.

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061. ECE 301 Division 1 Exam 1 Solutions, 10/6/011, 8-9:45pm in ME 1061. Your ID will be checked during the exam. Please bring a No. pencil to fill out the answer sheet. This is a closed-book exam. No calculators

More information

Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 2016 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2.

Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 2016 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2. Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 20 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2. Note: Π(t) = u(t + 1) u(t 1 ), and r(t) = tu(t) where u(t)

More information

Continuous-Time Frequency Response (II) Lecture 28: EECS 20 N April 2, Laurent El Ghaoui

Continuous-Time Frequency Response (II) Lecture 28: EECS 20 N April 2, Laurent El Ghaoui EECS 20 N April 2, 2001 Lecture 28: Continuous-Time Frequency Response (II) Laurent El Ghaoui 1 annoucements homework due on Wednesday 4/4 at 11 AM midterm: Friday, 4/6 includes all chapters until chapter

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 2-May-05 COURSE: ECE-2025 NAME: GT #: LAST, FIRST (ex: gtz123a) Recitation Section: Circle the date & time when

More information

1. The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ = Ax + Bu is

1. The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ = Ax + Bu is ECE 55, Fall 2007 Problem Set #4 Solution The Transition Matrix (Hint: Recall that the solution to the linear equation ẋ Ax + Bu is x(t) e A(t ) x( ) + e A(t τ) Bu(τ)dτ () This formula is extremely important

More information

8 Continuous-Time Fourier Transform

8 Continuous-Time Fourier Transform 8 Continuous-Time Fourier Transform Recommended Problems P8. Consider the signal x(t), which consists of a single rectangular pulse of unit height, is symmetric about the origin, and has a total width

More information

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions

Signals and Systems Profs. Byron Yu and Pulkit Grover Fall Midterm 2 Solutions 8-90 Signals and Systems Profs. Byron Yu and Pulkit Grover Fall 08 Midterm Solutions Name: Andrew ID: Problem Score Max 8 5 3 6 4 7 5 8 6 7 6 8 6 9 0 0 Total 00 Midterm Solutions. (8 points) Indicate whether

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

EE Homework 5 - Solutions

EE Homework 5 - Solutions EE054 - Homework 5 - Solutions 1. We know the general result that the -transform of α n 1 u[n] is with 1 α 1 ROC α < < and the -transform of α n 1 u[ n 1] is 1 α 1 with ROC 0 < α. Using this result, the

More information

Fourier transform representation of CT aperiodic signals Section 4.1

Fourier transform representation of CT aperiodic signals Section 4.1 Fourier transform representation of CT aperiodic signals Section 4. A large class of aperiodic CT signals can be represented by the CT Fourier transform (CTFT). The (CT) Fourier transform (or spectrum)

More information

Problem Value Score No/Wrong Rec 3

Problem Value Score No/Wrong Rec 3 GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING QUIZ #3 DATE: 21-Nov-11 COURSE: ECE-2025 NAME: GT username: LAST, FIRST (ex: gpburdell3) 3 points 3 points 3 points Recitation

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

Chapter 3 Convolution Representation

Chapter 3 Convolution Representation Chapter 3 Convolution Representation DT Unit-Impulse Response Consider the DT SISO system: xn [ ] System yn [ ] xn [ ] = δ[ n] If the input signal is and the system has no energy at n = 0, the output yn

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014 Prof. Dr. Eleni Chatzi System Stability - 26 March, 24 Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Introduction There are two common approaches to the developing and understanding the Laplace transform It can be viewed as a generalization of the CTFT to include some signals with

More information

Background LTI Systems (4A) Young Won Lim 4/20/15

Background LTI Systems (4A) Young Won Lim 4/20/15 Background LTI Systems (4A) Copyright (c) 2014-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING TUTORIAL BANK Name : SIGNALS AND SYSTEMS Code : A30406 Class : II B. Tech I Semester

More information

3.2 Complex Sinusoids and Frequency Response of LTI Systems

3.2 Complex Sinusoids and Frequency Response of LTI Systems 3. Introduction. A signal can be represented as a weighted superposition of complex sinusoids. x(t) or x[n]. LTI system: LTI System Output = A weighted superposition of the system response to each complex

More information

University Question Paper Solution

University Question Paper Solution Unit 1: Introduction University Question Paper Solution 1. Determine whether the following systems are: i) Memoryless, ii) Stable iii) Causal iv) Linear and v) Time-invariant. i) y(n)= nx(n) ii) y(t)=

More information

This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted.

This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted. 6.003 Homework #14 This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted. Problems 1. Neural signals The following figure illustrates

More information

12 Filtering. Solutions to Recommended Problems. H(-w)e' t. (a) The impulse response is real because. h*(t) = f H*(w)e ~i"' dw = - H(w)e -i-t dw

12 Filtering. Solutions to Recommended Problems. H(-w)e' t. (a) The impulse response is real because. h*(t) = f H*(w)e ~i' dw = - H(w)e -i-t dw 1 Filtering Solutions to Recommended Problems S1.1 (a) The impulse response is real because h(t) = - 1 H(w)ew' dw, h*(t) = f H*(w)e ~i"' dw = - H(w)e -i-t dw 1 H(-w)e-' do = --- H(w)eij' dw = h(t) where

More information

Module 4. Related web links and videos. 1. FT and ZT

Module 4. Related web links and videos. 1.  FT and ZT Module 4 Laplace transforms, ROC, rational systems, Z transform, properties of LT and ZT, rational functions, system properties from ROC, inverse transforms Related web links and videos Sl no Web link

More information

Module 4 : Laplace and Z Transform Problem Set 4

Module 4 : Laplace and Z Transform Problem Set 4 Module 4 : Laplace and Z Transform Problem Set 4 Problem 1 The input x(t) and output y(t) of a causal LTI system are related to the block diagram representation shown in the figure. (a) Determine a differential

More information

Lecture 8 ELE 301: Signals and Systems

Lecture 8 ELE 301: Signals and Systems Lecture 8 ELE 30: Signals and Systems Prof. Paul Cuff Princeton University Fall 20-2 Cuff (Lecture 7) ELE 30: Signals and Systems Fall 20-2 / 37 Properties of the Fourier Transform Properties of the Fourier

More information