06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1

Size: px
Start display at page:

Download "06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1"

Transcription

1 IV. Continuous-Time Signals & LTI Systems [p. 3] Analog signal definition [p. 4] Periodic signal [p. 5] One-sided signal [p. 6] Finite length signal [p. 7] Impulse function [p. 9] Sampling property [p.11] Impulse properties [p.17] Continuous time system building blocks [p. 18] Delay block [p. 20] Integrator block [p. 25] Differentiator block [p. 26] LTI system [p. 26] Definition [p. 27] Testing for linearity [p. 30] Testing for time invariance [p. 32] Evaluating convolution [p.37] Convolving unit steps [p.38] Convolving impulses [p. 39] Convolution properties [p. 44] Combining LTI systems [p. 47] System stability [p. 51] System causality [p. 53] Examples 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 1

2 Processing of continuous time Signals x ( t ) ANALOG y ( t ) System Analog signal x(t) INFINITE LENGTH SINUSOIDS: (t = time in secs) PERIODIC SIGNALS ONE-SIDED, e.g., for t>0 UNIT STEP: u(t) FINITE LENGTH SQUARE PULSE 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 3

3 CT Signals: PERIODIC Signals of INFINITE DURATION x (t) = 10 cos( 200 π t) Sinusoidal signal Square Wave 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 4

4 CT Signals: ONE-SIDED ut () 1 t 0 = 0 t < 0 Unit step signal One-Sided Sinusoid v(t ) = e t u(t ) Suddenly applied Exponential 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 5

5 CT Signals: FINITE LENGTH p(t) =u(t 2) u(t 4) Square Pulse signal Sinusoid multiplied by a square pulse 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 6

6 What is an Impulse? A signal that is concentrated at one point. δ () t = lim () t δ Δ Δ 0 where δ Δ ( t ) dt = 1 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 7

7 Defining the Impulse δ(t) =0, t 0 One INTUITIVE definition is: Concentrated at t=0 with unit area δ ( τ ) d τ = 1 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 8

8 δ(t) Sampling Property f (t)δ Δ (t) f (0)δ Δ (t) f ( t )δ ( t ) = f (0)δ ( t ) 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 9

9 General Sampling Property f (t)δ (t t 0 ) = f (t 0 )δ (t t 0 ) 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 10

10 Properties of the Impulse δ (t t 0 ) = 0, t t 0 δ ( t t 0 )dt = 1 f (t)δ(t t 0 ) = f(t 0 )δ(t t 0 ) f ( t ) δ ( t t 0 ) dt = f ( t 0 ) 1 δ ( at) = δ ( t) a du ( t) dt = δ (t) Concentrated at one time Of Unit area Scaling Property Sampling Property Extract one value of f(t) sifting property Derivative of unit step 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 11

11 Example: xt e ut 2( t 1) () = ( 1) Compute and plot dx( t) / dt 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 12

12 Example: Compute: t 1 τ A= δτ ( + 3) e dτ d B= e u t dt C t+ 1 t { 3t ( 1) } = δτ ( + 3) dτ jt D= sin( t) e δ ( τ + 3) dτ 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 13

13 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 14

14 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 15

15 Example: Assume x(t)=u(t)-u(t-5), sketch: 1) dx(t)/dt, 2) x(2-t) 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 16

16 CT Building Blocks DELAY by t o INTEGRATOR (CIRCUITS) DIFFERENTIATOR MULTIPLIER & ADDER Others 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 17

17 Ideal Delay: System S x(t) Mathematical Definition: y(t) y(t) = x(t t d ) To find the IMPULSE RESPONSE of a system, h(t), let x(t) be an impulse, so x(t) y(t) System S x(t)=δ(t) y(t)=h(t) ht () =? 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 18

18 Output of Ideal Delay of 1 sec y(t) = x(t 1) = e (t 1) u(t 1) 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 19

19 Integrator: x(t) System S y(t) Mathematical Definition: t y ( t ) = x (τ )d τ Running Integral To find the IMPULSE RESPONSE, h(t), let x(t) be an impulse, so t h(t) = δ (τ )dτ = u(t) 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 20

20 Integrator: y ( t ) = x (τ ) d τ Integrate the impulse t δ (τ )d τ = u (t ) t IF t<0, we get zero IF t>0, we get one Thus we have h(t) = u(t) for the integrator 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 21

21 Graphical Representation δ (t ) = du (t) dt t 1 t 0 ut () = δτ ( ) dτ= 0 t < 0 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 22

22 Output of Integrator x(t) System S y(t) t y ( t) = x( τ ) dτ y(t)= 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 23

23 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 24

24 Differentiator: Differentiator Output: Example: x(t) y ( t ) = System S dx (t ) dt y(t) y(t)= 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 25

25 Linear and Time-Invariant (LTI) Systems If a continuous-time system is both linear and timeinvariant, then the output y(t) is related to the input x(t) by a convolution integral where h(t) is the impulse response of the system. x(t) x(t)=δ(t) System S y(t) h(t)=y(t) 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 26

26 Testing for Linearity Identical process to discrete signal case x(t) System S y(t) S x () t + x () t = { α β } 1 2 αs x () t + S x () t Examples: y(t)=2x(t) y(t)=2x(t)+1 y(t)=x(t 2 ) y(t)=x(t-d) { } β { } 1 2 t y () t = x ( τ ) dτ 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 27

27 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 28

28 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 29

29 Testing Time-Invariance A system is time-invariant if a shift in the input produces the same shift in the output x(t) System S y(t) Examples: y(t)=2x(t) y(t)=x(2t) y(t)=x(t-d) 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 30

30 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 31

31 Evaluating a Convolution x( t) = u( t 1) t h( t) = e u( t) y( t) = h( τ ) x( t τ ) dτ = h( t) x( t) 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 32

32 Solution y(t)= 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 33

33 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 34

34 Example at bt x() t e = u(), t h() t = e u() t y(t)= 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 35

35 Special Case: h(t)=u(t) at x() t = e u(), t a 0, h() t = u() t y(t)= 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 36

36 Convolving Unit Steps x() t = u(), t h() t = u() t y(t)= 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 37

37 Convolution Properties 1) Commutative 2) Associative 3) Distributive 4) Derivative of convolution d dt d x() t y() t = x() t y() t dt d = x() t () dt [ ] [ ] [ y t ] 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 39

38 Convolution Properties 5) Time invariance yt () = xt () ht () xt ( t)* ht ( ) = yt ( t) /12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 40

39 Proofs: 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 41

40 Examples: Compute t A = δ( t 1)*( δ( t+ 2) + 2 e ) d B= sin(5 t) u( t 1/ 2) dt ( ) 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 42

41 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 43

42 Cascade of LTI Systems h(t) = h 1 (t) h 2 (t) = h 2 (t) h 1 (t) 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 44

43 Stability A system is stable if every bounded input produces a bounded output. A continuous-time LTI system is stable if and only if h ( t ) dt < 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 47

44 Stability Examples: yt () = 3 xt (), yt () = x( τ ) dτ dx() t yt () =, yt () = txt () dt xt () yt () = e t 0 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 48

45 Note: 1) Finding a counter-example is OK. 2) You can t prove a property with an example 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 49

46 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 50

47 Causal Systems A system is causal if and only if y(t 0 ) depends only on x(τ) for τ< t 0. An LTI system is causal if and only if h( t) = 0 for t < 0 Example: Are the LTI systems with the following imput/output relationships or impulse responses causal? y () t = x( t) 1 y t x t 2 2 () = ( ) h () t = u( t + 3) 2 u( t 3) 3 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 51

48 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 52

49 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 54

50 Example: LTI system h 1 (t)=δ(t+2) LTI system h 2 (t)=δ(t-2) + - LTI system h 3 (t)=u(t Τ) 1) Compute the impulse response to the overall system and plot it 2) How do you need to pick T so that the overall system is causal 3) Are systems 1, 2, 3 causal, is the overall system causal? 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 55

51 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 56

52 Example: 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 57

53 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 58

54 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 59

55 06/12/ rws/jMc- modif SuFY10 (MPF) - Textbook Section IX 60

Chapter 3 Convolution Representation

Chapter 3 Convolution Representation Chapter 3 Convolution Representation DT Unit-Impulse Response Consider the DT SISO system: xn [ ] System yn [ ] xn [ ] = δ[ n] If the input signal is and the system has no energy at n = 0, the output yn

More information

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1

Therefore the new Fourier coefficients are. Module 2 : Signals in Frequency Domain Problem Set 2. Problem 1 Module 2 : Signals in Frequency Domain Problem Set 2 Problem 1 Let be a periodic signal with fundamental period T and Fourier series coefficients. Derive the Fourier series coefficients of each of the

More information

2. CONVOLUTION. Convolution sum. Response of d.t. LTI systems at a certain input signal

2. CONVOLUTION. Convolution sum. Response of d.t. LTI systems at a certain input signal 2. CONVOLUTION Convolution sum. Response of d.t. LTI systems at a certain input signal Any signal multiplied by the unit impulse = the unit impulse weighted by the value of the signal in 0: xn [ ] δ [

More information

Figure 1 A linear, time-invariant circuit. It s important to us that the circuit is both linear and time-invariant. To see why, let s us the notation

Figure 1 A linear, time-invariant circuit. It s important to us that the circuit is both linear and time-invariant. To see why, let s us the notation Convolution In this section we consider the problem of determining the response of a linear, time-invariant circuit to an arbitrary input, x(t). This situation is illustrated in Figure 1 where x(t) is

More information

x(t) = t[u(t 1) u(t 2)] + 1[u(t 2) u(t 3)]

x(t) = t[u(t 1) u(t 2)] + 1[u(t 2) u(t 3)] ECE30 Summer II, 2006 Exam, Blue Version July 2, 2006 Name: Solution Score: 00/00 You must show all of your work for full credit. Calculators may NOT be used.. (5 points) x(t) = tu(t ) + ( t)u(t 2) u(t

More information

Signals and Systems Chapter 2

Signals and Systems Chapter 2 Signals and Systems Chapter 2 Continuous-Time Systems Prof. Yasser Mostafa Kadah Overview of Chapter 2 Systems and their classification Linear time-invariant systems System Concept Mathematical transformation

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52 1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

2 Classification of Continuous-Time Systems

2 Classification of Continuous-Time Systems Continuous-Time Signals and Systems 1 Preliminaries Notation for a continuous-time signal: x(t) Notation: If x is the input to a system T and y the corresponding output, then we use one of the following

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet

NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet NAME: 23 February 2017 EE301 Signals and Systems Exam 1 Cover Sheet Test Duration: 75 minutes Coverage: Chaps 1,2 Open Book but Closed Notes One 85 in x 11 in crib sheet Calculators NOT allowed DO NOT

More information

信號與系統 Signals and Systems

信號與系統 Signals and Systems Spring 2015 信號與系統 Signals and Systems Chapter SS-2 Linear Time-Invariant Systems Feng-Li Lian NTU-EE Feb15 Jun15 Figures and images used in these lecture notes are adopted from Signals & Systems by Alan

More information

1.17 : Consider a continuous-time system with input x(t) and output y(t) related by y(t) = x( sin(t)).

1.17 : Consider a continuous-time system with input x(t) and output y(t) related by y(t) = x( sin(t)). (Note: here are the solution, only showing you the approach to solve the problems. If you find some typos or calculation error, please post it on Piazza and let us know ).7 : Consider a continuous-time

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts 1 Signals A signal is a pattern of variation of a physical quantity, often as a function of time (but also space, distance, position, etc). These quantities are usually the

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

ENGIN 211, Engineering Math. Laplace Transforms

ENGIN 211, Engineering Math. Laplace Transforms ENGIN 211, Engineering Math Laplace Transforms 1 Why Laplace Transform? Laplace transform converts a function in the time domain to its frequency domain. It is a powerful, systematic method in solving

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

4 The Continuous Time Fourier Transform

4 The Continuous Time Fourier Transform 96 4 The Continuous Time ourier Transform ourier (or frequency domain) analysis turns out to be a tool of even greater usefulness Extension of ourier series representation to aperiodic signals oundation

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

EE 210. Signals and Systems Solutions of homework 2

EE 210. Signals and Systems Solutions of homework 2 EE 2. Signals and Systems Solutions of homework 2 Spring 2 Exercise Due Date Week of 22 nd Feb. Problems Q Compute and sketch the output y[n] of each discrete-time LTI system below with impulse response

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 [E2.5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART II MEng. BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: 2:00 hours There are FOUR

More information

Discussion Section #2, 31 Jan 2014

Discussion Section #2, 31 Jan 2014 Discussion Section #2, 31 Jan 2014 Lillian Ratliff 1 Unit Impulse The unit impulse (Dirac delta) has the following properties: { 0, t 0 δ(t) =, t = 0 ε ε δ(t) = 1 Remark 1. Important!: An ordinary function

More information

1.4 Unit Step & Unit Impulse Functions

1.4 Unit Step & Unit Impulse Functions 1.4 Unit Step & Unit Impulse Functions 1.4.1 The Discrete-Time Unit Impulse and Unit-Step Sequences Unit Impulse Function: δ n = ቊ 0, 1, n 0 n = 0 Figure 1.28: Discrete-time Unit Impulse (sample) 1 [n]

More information

EECE 3620: Linear Time-Invariant Systems: Chapter 2

EECE 3620: Linear Time-Invariant Systems: Chapter 2 EECE 3620: Linear Time-Invariant Systems: Chapter 2 Prof. K. Chandra ECE, UMASS Lowell September 7, 2016 1 Continuous Time Systems In the context of this course, a system can represent a simple or complex

More information

Chapter 1 Fundamental Concepts

Chapter 1 Fundamental Concepts Chapter 1 Fundamental Concepts Signals A signal is a pattern of variation of a physical quantity as a function of time, space, distance, position, temperature, pressure, etc. These quantities are usually

More information

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt

Homework 4. May An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Homework 4 May 2017 1. An LTI system has an input, x(t) and output y(t) related through the equation y(t) = t e (t t ) x(t 2)dt Determine the impulse response of the system. Rewriting as y(t) = t e (t

More information

4.1. If the input of the system consists of the superposition of M functions, M

4.1. If the input of the system consists of the superposition of M functions, M 4. The Zero-State Response: The system state refers to all information required at a point in time in order that a unique solution for the future output can be compute from the input. In the case of LTIC

More information

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2)

E2.5 Signals & Linear Systems. Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & 2) E.5 Signals & Linear Systems Tutorial Sheet 1 Introduction to Signals & Systems (Lectures 1 & ) 1. Sketch each of the following continuous-time signals, specify if the signal is periodic/non-periodic,

More information

MAE143 A - Signals and Systems - Winter 11 Midterm, February 2nd

MAE143 A - Signals and Systems - Winter 11 Midterm, February 2nd MAE43 A - Signals and Systems - Winter Midterm, February 2nd Instructions (i) This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may

More information

CH.3 Continuous-Time Linear Time-Invariant System

CH.3 Continuous-Time Linear Time-Invariant System CH.3 Continuous-Time Linear Time-Invariant System 1 LTI System Characterization 1.1 what does LTI mean? In Ch.2, the properties of the system are investigated. We are particularly interested in linear

More information

Laplace Transform Part 1: Introduction (I&N Chap 13)

Laplace Transform Part 1: Introduction (I&N Chap 13) Laplace Transform Part 1: Introduction (I&N Chap 13) Definition of the L.T. L.T. of Singularity Functions L.T. Pairs Properties of the L.T. Inverse L.T. Convolution IVT(initial value theorem) & FVT (final

More information

University Question Paper Solution

University Question Paper Solution Unit 1: Introduction University Question Paper Solution 1. Determine whether the following systems are: i) Memoryless, ii) Stable iii) Causal iv) Linear and v) Time-invariant. i) y(n)= nx(n) ii) y(t)=

More information

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels)

GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM. COURSE: ECE 3084A (Prof. Michaels) GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-14 COURSE: ECE 3084A (Prof. Michaels) NAME: STUDENT #: LAST, FIRST Write your name on the front page

More information

Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 2016 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2.

Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 2016 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2. Professor Fearing EECS120/Problem Set 2 v 1.01 Fall 20 Due at 4 pm, Fri. Sep. 9 in HW box under stairs (1st floor Cory) Reading: O&W Ch 1, Ch2. Note: Π(t) = u(t + 1) u(t 1 ), and r(t) = tu(t) where u(t)

More information

Module 4. Related web links and videos. 1. FT and ZT

Module 4. Related web links and videos. 1.  FT and ZT Module 4 Laplace transforms, ROC, rational systems, Z transform, properties of LT and ZT, rational functions, system properties from ROC, inverse transforms Related web links and videos Sl no Web link

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 30-Apr-04 COURSE: ECE-2025 NAME: GT #: LAST, FIRST Recitation Section: Circle the date & time when your Recitation

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

Using MATLAB with the Convolution Method

Using MATLAB with the Convolution Method ECE 350 Linear Systems I MATLAB Tutorial #5 Using MATLAB with the Convolution Method A linear system with input, x(t), and output, y(t), can be described in terms of its impulse response, h(t). x(t) h(t)

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

信號與系統 Signals and Systems

信號與系統 Signals and Systems Spring 2010 信號與系統 Signals and Systems Chapter SS-2 Linear Time-Invariant Systems Feng-Li Lian NTU-EE Feb10 Jun10 Figures and images used in these lecture notes are adopted from Signals & Systems by Alan

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Spring 2018 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Spring 2018 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points /

More information

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes

20.6. Transfer Functions. Introduction. Prerequisites. Learning Outcomes Transfer Functions 2.6 Introduction In this Section we introduce the concept of a transfer function and then use this to obtain a Laplace transform model of a linear engineering system. (A linear engineering

More information

Chapter 2: Linear systems & sinusoids OVE EDFORS DEPT. OF EIT, LUND UNIVERSITY

Chapter 2: Linear systems & sinusoids OVE EDFORS DEPT. OF EIT, LUND UNIVERSITY Chapter 2: Linear systems & sinusoids OVE EDFORS DEPT. OF EIT, LUND UNIVERSITY Learning outcomes After this lecture, the student should understand what a linear system is, including linearity conditions,

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Ch 2: Linear Time-Invariant System

Ch 2: Linear Time-Invariant System Ch 2: Linear Time-Invariant System A system is said to be Linear Time-Invariant (LTI) if it possesses the basic system properties of linearity and time-invariance. Consider a system with an output signal

More information

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE)

QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) QUESTION BANK SIGNALS AND SYSTEMS (4 th SEM ECE) 1. For the signal shown in Fig. 1, find x(2t + 3). i. Fig. 1 2. What is the classification of the systems? 3. What are the Dirichlet s conditions of Fourier

More information

2. Time-Domain Analysis of Continuous- Time Signals and Systems

2. Time-Domain Analysis of Continuous- Time Signals and Systems 2. Time-Domain Analysis of Continuous- Time Signals and Systems 2.1. Continuous-Time Impulse Function (1.4.2) 2.2. Convolution Integral (2.2) 2.3. Continuous-Time Impulse Response (2.2) 2.4. Classification

More information

Frequency Response (III) Lecture 26:

Frequency Response (III) Lecture 26: EECS 20 N March 21, 2001 Lecture 26: Frequency Response (III) Laurent El Ghaoui 1 outline reading assignment: Chapter 8 of Lee and Varaiya we ll concentrate on continuous-time systems: convolution integral

More information

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

e st f (t) dt = e st tf(t) dt = L {t f(t)} s Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic

More information

Properties of LTI Systems

Properties of LTI Systems Properties of LTI Systems Properties of Continuous Time LTI Systems Systems with or without memory: A system is memory less if its output at any time depends only on the value of the input at that same

More information

EE 224 Signals and Systems I Review 1/10

EE 224 Signals and Systems I Review 1/10 EE 224 Signals and Systems I Review 1/10 Class Contents Signals and Systems Continuous-Time and Discrete-Time Time-Domain and Frequency Domain (all these dimensions are tightly coupled) SIGNALS SYSTEMS

More information

1. SINGULARITY FUNCTIONS

1. SINGULARITY FUNCTIONS 1. SINGULARITY FUNCTIONS 1.0 INTRODUCTION Singularity functions are discontinuous functions or their derivatives are discontinuous. A singularity is a point at which a function does not possess a derivative.

More information

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061.

ECE 301 Division 1 Exam 1 Solutions, 10/6/2011, 8-9:45pm in ME 1061. ECE 301 Division 1 Exam 1 Solutions, 10/6/011, 8-9:45pm in ME 1061. Your ID will be checked during the exam. Please bring a No. pencil to fill out the answer sheet. This is a closed-book exam. No calculators

More information

Cosc 3451 Signals and Systems. What is a system? Systems Terminology and Properties of Systems

Cosc 3451 Signals and Systems. What is a system? Systems Terminology and Properties of Systems Cosc 3451 Signals and Systems Systems Terminology and Properties of Systems What is a system? an entity that manipulates one or more signals to yield new signals (often to accomplish a function) can be

More information

Generalized sources (Sect. 6.5). The Dirac delta generalized function. Definition Consider the sequence of functions for n 1, Remarks:

Generalized sources (Sect. 6.5). The Dirac delta generalized function. Definition Consider the sequence of functions for n 1, Remarks: Generalized sources (Sect. 6.5). The Dirac delta generalized function. Definition Consider the sequence of functions for n, d n, t < δ n (t) = n, t 3 d3 d n, t > n. d t The Dirac delta generalized function

More information

Fourier Transform for Continuous Functions

Fourier Transform for Continuous Functions Fourier Transform for Continuous Functions Central goal: representing a signal by a set of orthogonal bases that are corresponding to frequencies or spectrum. Fourier series allows to find the spectrum

More information

ECE 3620: Laplace Transforms: Chapter 3:

ECE 3620: Laplace Transforms: Chapter 3: ECE 3620: Laplace Transforms: Chapter 3: 3.1-3.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between

More information

6.003 Homework #10 Solutions

6.003 Homework #10 Solutions 6.3 Homework # Solutions Problems. DT Fourier Series Determine the Fourier Series coefficients for each of the following DT signals, which are periodic in N = 8. x [n] / n x [n] n x 3 [n] n x 4 [n] / n

More information

NAME: 13 February 2013 EE301 Signals and Systems Exam 1 Cover Sheet

NAME: 13 February 2013 EE301 Signals and Systems Exam 1 Cover Sheet NAME: February EE Signals and Systems Exam Cover Sheet Test Duration: 75 minutes. Coverage: Chaps., Open Book but Closed Notes. One 8.5 in. x in. crib sheet Calculators NOT allowed. This test contains

More information

Introduction to Signals and Systems Lecture #4 - Input-output Representation of LTI Systems Guillaume Drion Academic year

Introduction to Signals and Systems Lecture #4 - Input-output Representation of LTI Systems Guillaume Drion Academic year Introduction to Signals and Systems Lecture #4 - Input-output Representation of LTI Systems Guillaume Drion Academic year 2017-2018 1 Outline Systems modeling: input/output approach of LTI systems. Convolution

More information

LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding

LINEAR SYSTEMS. J. Elder PSYC 6256 Principles of Neural Coding LINEAR SYSTEMS Linear Systems 2 Neural coding and cognitive neuroscience in general concerns input-output relationships. Inputs Light intensity Pre-synaptic action potentials Number of items in display

More information

This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted.

This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted. 6.003 Homework #14 This homework will not be collected or graded. It is intended to help you practice for the final exam. Solutions will be posted. Problems 1. Neural signals The following figure illustrates

More information

(t ) a 1. (t ).x 1..y 1

(t ) a 1. (t ).x 1..y 1 Introduction to the convolution Experiment # 4 LTI S ystems & Convolution Amongst the concepts that cause the most confusion to electrical engineering students, the Convolution Integral stands as a repeat

More information

Solution 10 July 2015 ECE301 Signals and Systems: Midterm. Cover Sheet

Solution 10 July 2015 ECE301 Signals and Systems: Midterm. Cover Sheet Solution 10 July 2015 ECE301 Signals and Systems: Midterm Cover Sheet Test Duration: 60 minutes Coverage: Chap. 1,2,3,4 One 8.5" x 11" crib sheet is allowed. Calculators, textbooks, notes are not allowed.

More information

Module 1: Signals & System

Module 1: Signals & System Module 1: Signals & System Lecture 6: Basic Signals in Detail Basic Signals in detail We now introduce formally some of the basic signals namely 1) The Unit Impulse function. 2) The Unit Step function

More information

9.2 The Input-Output Description of a System

9.2 The Input-Output Description of a System Lecture Notes on Control Systems/D. Ghose/212 22 9.2 The Input-Output Description of a System The input-output description of a system can be obtained by first defining a delta function, the representation

More information

Modeling and Analysis of Systems Lecture #3 - Linear, Time-Invariant (LTI) Systems. Guillaume Drion Academic year

Modeling and Analysis of Systems Lecture #3 - Linear, Time-Invariant (LTI) Systems. Guillaume Drion Academic year Modeling and Analysis of Systems Lecture #3 - Linear, Time-Invariant (LTI) Systems Guillaume Drion Academic year 2015-2016 1 Outline Systems modeling: input/output approach and LTI systems. Convolution

More information

CLTI System Response (4A) Young Won Lim 4/11/15

CLTI System Response (4A) Young Won Lim 4/11/15 CLTI System Response (4A) Copyright (c) 2011-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

EE102 Homework 2, 3, and 4 Solutions

EE102 Homework 2, 3, and 4 Solutions EE12 Prof. S. Boyd EE12 Homework 2, 3, and 4 Solutions 7. Some convolution systems. Consider a convolution system, y(t) = + u(t τ)h(τ) dτ, where h is a function called the kernel or impulse response of

More information

Signals and Systems Lecture Notes

Signals and Systems Lecture Notes Dr. Mahmoud M. Al-Husari Signals and Systems Lecture Notes This set of lecture notes are never to be considered as a substitute to the textbook recommended by the lecturer. ii Contents Preface v 1 Introduction

More information

Lecture 2 ELE 301: Signals and Systems

Lecture 2 ELE 301: Signals and Systems Lecture 2 ELE 301: Signals and Systems Prof. Paul Cuff Princeton University Fall 2011-12 Cuff (Lecture 2) ELE 301: Signals and Systems Fall 2011-12 1 / 70 Models of Continuous Time Signals Today s topics:

More information

Lecture 6: Time-Domain Analysis of Continuous-Time Systems Dr.-Ing. Sudchai Boonto

Lecture 6: Time-Domain Analysis of Continuous-Time Systems Dr.-Ing. Sudchai Boonto Lecture 6: Time-Domain Analysis of Continuous-Time Systems Dr-Ing Sudchai Boonto Department of Control System and Instrumentation Engineering King Mongkut s Unniversity of Technology Thonburi Thailand

More information

Convolution and Linear Systems

Convolution and Linear Systems CS 450: Introduction to Digital Signal and Image Processing Bryan Morse BYU Computer Science Introduction Analyzing Systems Goal: analyze a device that turns one signal into another. Notation: f (t) g(t)

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University

ENSC327 Communications Systems 2: Fourier Representations. Jie Liang School of Engineering Science Simon Fraser University ENSC327 Communications Systems 2: Fourier Representations Jie Liang School of Engineering Science Simon Fraser University 1 Outline Chap 2.1 2.5: Signal Classifications Fourier Transform Dirac Delta Function

More information

Background LTI Systems (4A) Young Won Lim 4/20/15

Background LTI Systems (4A) Young Won Lim 4/20/15 Background LTI Systems (4A) Copyright (c) 2014-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2

More information

The Continuous Time Fourier Transform

The Continuous Time Fourier Transform COMM 401: Signals & Systems Theory Lecture 8 The Continuous Time Fourier Transform Fourier Transform Continuous time CT signals Discrete time DT signals Aperiodic signals nonperiodic periodic signals Aperiodic

More information

ECE 314 Signals and Systems Fall 2012

ECE 314 Signals and Systems Fall 2012 ECE 31 ignals and ystems Fall 01 olutions to Homework 5 Problem.51 Determine the impulse response of the system described by y(n) = x(n) + ax(n k). Replace x by δ to obtain the impulse response: h(n) =

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Review of Frequency Domain Fourier Series: Continuous periodic frequency components

Review of Frequency Domain Fourier Series: Continuous periodic frequency components Today we will review: Review of Frequency Domain Fourier series why we use it trig form & exponential form how to get coefficients for each form Eigenfunctions what they are how they relate to LTI systems

More information

Chap 2. Discrete-Time Signals and Systems

Chap 2. Discrete-Time Signals and Systems Digital Signal Processing Chap 2. Discrete-Time Signals and Systems Chang-Su Kim Discrete-Time Signals CT Signal DT Signal Representation 0 4 1 1 1 2 3 Functional representation 1, n 1,3 x[ n] 4, n 2 0,

More information

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Fall 2017 Exam #1

New Mexico State University Klipsch School of Electrical Engineering. EE312 - Signals and Systems I Fall 2017 Exam #1 New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2017 Exam #1 Name: Prob. 1 Prob. 2 Prob. 3 Prob. 4 Total / 30 points / 20 points / 25 points / 25

More information

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name:

ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, Name: ECE 3084 QUIZ 2 SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING GEORGIA INSTITUTE OF TECHNOLOGY APRIL 2, 205 Name:. The quiz is closed book, except for one 2-sided sheet of handwritten notes. 2. Turn off

More information

LOPE3202: Communication Systems 10/18/2017 2

LOPE3202: Communication Systems 10/18/2017 2 By Lecturer Ahmed Wael Academic Year 2017-2018 LOPE3202: Communication Systems 10/18/2017 We need tools to build any communication system. Mathematics is our premium tool to do work with signals and systems.

More information

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Name: Solve problems 1 3 and two from problems 4 7. Circle below which two of problems 4 7 you

More information

1 otherwise. Note that the area of the pulse is one. The Dirac delta function (a.k.a. the impulse) can be defined using the pulse as follows:

1 otherwise. Note that the area of the pulse is one. The Dirac delta function (a.k.a. the impulse) can be defined using the pulse as follows: The Dirac delta function There is a function called the pulse: { if t > Π(t) = 2 otherwise. Note that the area of the pulse is one. The Dirac delta function (a.k.a. the impulse) can be defined using the

More information

Basic Procedures for Common Problems

Basic Procedures for Common Problems Basic Procedures for Common Problems ECHE 550, Fall 2002 Steady State Multivariable Modeling and Control 1 Determine what variables are available to manipulate (inputs, u) and what variables are available

More information

ECE 301 Fall 2011 Division 1 Homework 5 Solutions

ECE 301 Fall 2011 Division 1 Homework 5 Solutions ECE 301 Fall 2011 ivision 1 Homework 5 Solutions Reading: Sections 2.4, 3.1, and 3.2 in the textbook. Problem 1. Suppose system S is initially at rest and satisfies the following input-output difference

More information

Interconnection of LTI Systems

Interconnection of LTI Systems EENG226 Signals and Systems Chapter 2 Time-Domain Representations of Linear Time-Invariant Systems Interconnection of LTI Systems Prof. Dr. Hasan AMCA Electrical and Electronic Engineering Department (ee.emu.edu.tr)

More information

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2,

Convolution. Define a mathematical operation on discrete-time signals called convolution, represented by *. Given two discrete-time signals x 1, x 2, Filters Filters So far: Sound signals, connection to Fourier Series, Introduction to Fourier Series and Transforms, Introduction to the FFT Today Filters Filters: Keep part of the signal we are interested

More information

9.5 The Transfer Function

9.5 The Transfer Function Lecture Notes on Control Systems/D. Ghose/2012 0 9.5 The Transfer Function Consider the n-th order linear, time-invariant dynamical system. dy a 0 y + a 1 dt + a d 2 y 2 dt + + a d n y 2 n dt b du 0u +

More information

Chapter 6: The Laplace Transform. Chih-Wei Liu

Chapter 6: The Laplace Transform. Chih-Wei Liu Chapter 6: The Laplace Transform Chih-Wei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace

More information

Ordinary differential equations

Ordinary differential equations Class 11 We will address the following topics Convolution of functions Consider the following question: Suppose that u(t) has Laplace transform U(s), v(t) has Laplace transform V(s), what is the inverse

More information

The Convolution Sum for Discrete-Time LTI Systems

The Convolution Sum for Discrete-Time LTI Systems The Convolution Sum for Discrete-Time LTI Systems Andrew W. H. House 01 June 004 1 The Basics of the Convolution Sum Consider a DT LTI system, L. x(n) L y(n) DT convolution is based on an earlier result

More information

Definition of the Laplace transform. 0 x(t)e st dt

Definition of the Laplace transform. 0 x(t)e st dt Definition of the Laplace transform Bilateral Laplace Transform: X(s) = x(t)e st dt Unilateral (or one-sided) Laplace Transform: X(s) = 0 x(t)e st dt ECE352 1 Definition of the Laplace transform (cont.)

More information

Problem Value

Problem Value GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL & COMPUTER ENGINEERING FINAL EXAM DATE: 2-May-05 COURSE: ECE-2025 NAME: GT #: LAST, FIRST (ex: gtz123a) Recitation Section: Circle the date & time when

More information

Chap 4. State-Space Solutions and

Chap 4. State-Space Solutions and Chap 4. State-Space Solutions and Realizations Outlines 1. Introduction 2. Solution of LTI State Equation 3. Equivalent State Equations 4. Realizations 5. Solution of Linear Time-Varying (LTV) Equations

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information