so mathematically we can say that x d [n] is a discrete-time signal. The output of the DT system is also discrete, denoted by y d [n].

Size: px
Start display at page:

Download "so mathematically we can say that x d [n] is a discrete-time signal. The output of the DT system is also discrete, denoted by y d [n]."

Transcription

1 ELEC 36 LECURE NOES WEEK 9: Chapters 7&9 Chapter 7 (cont d) Discrete-ime Processing of Continuous-ime Signals It is often advantageous to convert a continuous-time signal into a discrete-time signal so that processing is done in the discretetime domain using a discrete-time processor such as a computer or a microcomputer. Nevertheless, after processing, it is always the case that the discrete-time signal is converted back into a continuous-time signal. he recovered continuous-time signal could be similar to the original signal, or an altered version of it, depending on the application. As you may guess, the above process consists of three parts: () sampling, (2) discrete-time processing, and (3) converting the processed signal into a continuous-time signal. his three-step process in illustrated in the following figure. (t) x c conversion to D x d [n] discrete-time system y d [n] conversion to C y c (t) Fig. 9.. D processing of C signals. Form the above figure, we can see that the output of the sampler is x c (n ) where is the sampling period, and n is integer. For convenience, we represent x c (n ) by x d [n] x c (n ) so mathematically we can say that x d [n] is a discrete-time signal. he output of the D system is also discrete, denoted by y d [n]. y d [n] is then converted back into a C signal, denoted by y c (t). he conversion of x c (t) into x d [n] is called continuous-to-discrete (D/C), and the conversion of y d [n] into y c (t) is called discrete-tocontinuous (C/D).

2 We elaborate further on the relationship between the signals above in the following block diagram. (t) x c C/D conversion xd [ n] xc ( n ) discrete-time system yd [ n] yc ( n ) D/C conversion y c (t) Fig Notation for C/D conversion and D/C conversion. Note if we consider the sampled sequence x c (n ), the spacing between adjacent samples is, whereas the spacing between adjacent samples in the sequence x d [n] is unity although both sequences correspond to the same signal. his is because x c (n ) is plotted against time (the x-axis), whereas x d [n] is plotted against n, which is an integer and the spacing between two consecutive integers is. his is illustrated in the following figure. C/D conversion x(t) p(t) x p (t) Conversion of impulse train to discrete-time sequence x d [n] x(t) t 2 x p (t) x p (t) t - x d [n] x d [n] n - Fig Sampling with a periodic impulse train followed by conversion to a discrete-time sequence. 2 n

3 Now we examine the processing stages described above in the frequency domain. Let X p (jw) be the Fourier transform (F) of x p (t), which can be expressed in terms of the sample values of x c (t) as x p (t) n x c (n )δ(t n ) (9.) which is simply an impulse train except that the n th impulse is weighted by x c (n ). Recall that the F of an impulse train is an impulse train, and in this case it is X p (jw) n x c (n )e jwnt (9.2) where this follows from the fact that the F of δ(t n ) is e jwnt. We now consider the F of x d [n] which is given by or equivalently, X d (e jω ) X d (e jω ) n n x d [n]e jωn (9.3) x c (n )e jωn. (9.4) By comparing equations (9.2) and (9.4), we observe that X p (jw) and X d (e jω ) are related through X d (e jω )X p (j Ω ). We also know that X p (jw) simply consists of an infinite number of replicas of X c (jw) centered an integer multiple of w s, i.e., Consequently, X p (jw) X d (e jω ) n n X c (j(w nw s )). X c (j( Ω 2πn )). he relationship between X c (jw), X p (jw) and X d (e jω ) is illustrated in the following figure. 3

4 X ( jw) w M wm w X p ( jw) X p ( jw) π jω X d ( e ) 2π w 2π 2π w 2 2 jω X d ( e ) π 2π Ω 2π 2π Ω Fig Relationship between X c (jw), X p (jw), and X d (e jω ) for different sampling rates. 4

5 Chapter Nine he Laplace ransform It was mentioned in an earlier chapter that the response of an LI system with impulse response h(t) to a complex exponential input of the form e st is y(t) H(s)e st where H(s) R h(t)e st dt. (9.5) If we let s jw (pure imaginary), the integral in (9.5) is essentially the Fourier transform of h(t). For arbitrary values of the complex variable s, this expression is referred to as the Laplace transform of h(t). herefore, the Laplace transform of a general signal x(t) is defined as X(s) R x(t)e st dt. (9.6) Note that s isacomplexvariable,whichcanbeexpressedingeneral as s σ + jw. when s jw (9.6) becomes X(jw) R x(t)e jwt dt which is the Fourier transform of x(t). herefore, the Fourier transform is a special case of the Laplace transform. Equation (9.6) can also be expressed as X(σ + jw) R R x(t)e (σ+jw)t dt x(t)e σt e jwt dt which is essentially the Fourier transform of the signal x(t)e σt. Example: Let x(t) e at u(t) 5

6 he Fourier transform X(jw), with a>, is X(jw) R R e at u(t)e jwt dt e at e jwt dt jw + a On the other hand, the Laplace transform of x(t) is or X(s) R X(σ + jw) R R e at u(t)e st dt e (s+a)t dt e (a+σ)t e jwt dt jw + a + σ Since s σ + jw, the last equation becomes Conclusion: X(s) s + a e at u(t) L s + a, where a + σ> Re {s} > a. Re {s} > a. We conclude from the above example that the Laplace transform exists for this particular x(t) only if Re {s} > a. he region in the complex plane in which the Laplace transform exists (or converges) is called region of convergence (ROC). he ROC for the above example is given in the following figure. Im ROC Re -a 6

7 Example: Let hen x(t) e at u( t) X(s) R R s + a e at u( t)e st dt e at e st dt which converges if Re {s + a} < Re {s} < a, which is illustrated below. Im ROC Re Example: Let x(t) 3e 2t u(t) 2e t u(t) Applying the Laplace transform to x(t) yields X(s) R 3 R -a 3e 2t u(t) 2e t u(t) e st dt e 2t u(t)e st dt 2 R 3 s +2 2 s + e t u(t)e st dt where for these integrals to converge we must have Re {s} > 2 for the first term and Re {s} > for the second term. herefore, the ROC is the intersection of the ROCs for the individual terms, i.e., the overall ROC is Re {s} >. 7

8 Example: Let X(s) x(t) e 2t u(t)+e t cos (3t) u(t) e 2t + 2 e ( 3j)t + with the condition that 2 e (+3j)t u(t) s +2 + µ + µ 2 s +( 3j) 2 s +(+3j) 2s 2 +5s +2 (s 2 +2s +)(s +2) Re {s} > 2, for the first term and Re {s} > for the second term. herefore, the ROC is the region where Re {s} >, which is the intersection of the individual regions. Example: Let x(t) δ(t) X(s) and the ROC is the entire s plane. 8

9 he Region of Convergence for Laplace ransform Let X(s) be the Laplace transform of some signal x(t). he ROC of X(s), in general, has the following characteristics:. he ROC of X(s) consists of strips parallel to the jw-axis in the s-plane. 2. For rational Laplace transforms, the ROC doesn t contain any poles. 3. If x(t) is of finite duration and is absolutely integrable, then the ROC is the entire s-plane. 4. If x(t) is right-sided, and if the line Re {s} σ is in the ROC, then all values of s for which Re {s} >σ will also be in the ROC. 5. If x(t) is left-sided, and if the line Re {s} σ is in the ROC, then all values of s for which Re {s} <σ will also be in the ROC. 6. If x(t) is two sided, and if the line Re {s} σ is in the ROC, then the ROC will consist of a strip in the s-plane that includes the line Re {s} σ. 7. If the Laplace transform X(s) of x(t) is rational, then the ROC is bounded by poles or extends to infinity. In addition, no poles of X(s) are contained in the ROC. 8. If the Laplace transform X(s) of x(t) is rational, then if x(t) is rightsided, the ROC is the region in the s-plane to the right of the rightmost pole. If x(t) is left sided, the ROC is the region in the s-plane to the left of the leftmost pole. Example: Let X(s) (s +)(s +2) Clearly, there are two poles: s and s 2. his yields three possibilities for the ROC where each possibility corresponds to a different signal. hese possibilities are:. Re {s} > he signal must be right-sided. 2. Re {s} < 2 he signal must be left-sided < Re {s} < he signal must be two-sided. 9

ECE 3620: Laplace Transforms: Chapter 3:

ECE 3620: Laplace Transforms: Chapter 3: ECE 3620: Laplace Transforms: Chapter 3: 3.1-3.4 Prof. K. Chandra ECE, UMASS Lowell September 21, 2016 1 Analysis of LTI Systems in the Frequency Domain Thus far we have understood the relationship between

More information

Fourier Transform for Continuous Functions

Fourier Transform for Continuous Functions Fourier Transform for Continuous Functions Central goal: representing a signal by a set of orthogonal bases that are corresponding to frequencies or spectrum. Fourier series allows to find the spectrum

More information

Chapter 6: The Laplace Transform. Chih-Wei Liu

Chapter 6: The Laplace Transform. Chih-Wei Liu Chapter 6: The Laplace Transform Chih-Wei Liu Outline Introduction The Laplace Transform The Unilateral Laplace Transform Properties of the Unilateral Laplace Transform Inversion of the Unilateral Laplace

More information

Review: Continuous Fourier Transform

Review: Continuous Fourier Transform Review: Continuous Fourier Transform Review: convolution x t h t = x τ h(t τ)dτ Convolution in time domain Derivation Convolution Property Interchange the order of integrals Let Convolution Property By

More information

Definition of the Laplace transform. 0 x(t)e st dt

Definition of the Laplace transform. 0 x(t)e st dt Definition of the Laplace transform Bilateral Laplace Transform: X(s) = x(t)e st dt Unilateral (or one-sided) Laplace Transform: X(s) = 0 x(t)e st dt ECE352 1 Definition of the Laplace transform (cont.)

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Chapter 5 Frequency Domain Analysis of Systems

Chapter 5 Frequency Domain Analysis of Systems Chapter 5 Frequency Domain Analysis of Systems CT, LTI Systems Consider the following CT LTI system: xt () ht () yt () Assumption: the impulse response h(t) is absolutely integrable, i.e., ht ( ) dt< (this

More information

Homework 5 EE235, Summer 2013 Solution

Homework 5 EE235, Summer 2013 Solution Homework 5 EE235, Summer 23 Solution. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a f(t 2 cos(3πt + sin(πt + π 3 w π f(t e j3πt + e j3πt + j2

More information

Module 4. Related web links and videos. 1. FT and ZT

Module 4. Related web links and videos. 1.  FT and ZT Module 4 Laplace transforms, ROC, rational systems, Z transform, properties of LT and ZT, rational functions, system properties from ROC, inverse transforms Related web links and videos Sl no Web link

More information

EC Signals and Systems

EC Signals and Systems UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS Continuous time signals (CT signals), discrete time signals (DT signals) Step, Ramp, Pulse, Impulse, Exponential 1. Define Unit Impulse Signal [M/J 1], [M/J

More information

X. Chen More on Sampling

X. Chen More on Sampling X. Chen More on Sampling 9 More on Sampling 9.1 Notations denotes the sampling time in second. Ω s = 2π/ and Ω s /2 are, respectively, the sampling frequency and Nyquist frequency in rad/sec. Ω and ω denote,

More information

One-Sided Laplace Transform and Differential Equations

One-Sided Laplace Transform and Differential Equations One-Sided Laplace Transform and Differential Equations As in the dcrete-time case, the one-sided transform allows us to take initial conditions into account. Preliminaries The one-sided Laplace transform

More information

LECTURE 12 Sections Introduction to the Fourier series of periodic signals

LECTURE 12 Sections Introduction to the Fourier series of periodic signals Signals and Systems I Wednesday, February 11, 29 LECURE 12 Sections 3.1-3.3 Introduction to the Fourier series of periodic signals Chapter 3: Fourier Series of periodic signals 3. Introduction 3.1 Historical

More information

EA2.3 - Electronics 2 1

EA2.3 - Electronics 2 1 In the previous lecture, I talked about the idea of complex frequency s, where s = σ + jω. Using such concept of complex frequency allows us to analyse signals and systems with better generality. In this

More information

EE Homework 12 - Solutions. 1. The transfer function of the system is given to be H(s) = s j j

EE Homework 12 - Solutions. 1. The transfer function of the system is given to be H(s) = s j j EE3054 - Homework 2 - Solutions. The transfer function of the system is given to be H(s) = s 2 +3s+3. Decomposing into partial fractions, H(s) = 0.5774j s +.5 0.866j + 0.5774j s +.5 + 0.866j. () (a) The

More information

Module 4 : Laplace and Z Transform Problem Set 4

Module 4 : Laplace and Z Transform Problem Set 4 Module 4 : Laplace and Z Transform Problem Set 4 Problem 1 The input x(t) and output y(t) of a causal LTI system are related to the block diagram representation shown in the figure. (a) Determine a differential

More information

ECE 301: Signals and Systems Homework Assignment #5

ECE 301: Signals and Systems Homework Assignment #5 ECE 30: Signals and Systems Homework Assignment #5 Due on November, 205 Professor: Aly El Gamal TA: Xianglun Mao Aly El Gamal ECE 30: Signals and Systems Homework Assignment #5 Problem Problem Compute

More information

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014

Identification Methods for Structural Systems. Prof. Dr. Eleni Chatzi System Stability - 26 March, 2014 Prof. Dr. Eleni Chatzi System Stability - 26 March, 24 Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can

More information

Homework 6 EE235, Spring 2011

Homework 6 EE235, Spring 2011 Homework 6 EE235, Spring 211 1. Fourier Series. Determine w and the non-zero Fourier series coefficients for the following functions: (a 2 cos(3πt + sin(1πt + π 3 w π e j3πt + e j3πt + 1 j2 [ej(1πt+ π

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

CH.6 Laplace Transform

CH.6 Laplace Transform CH.6 Laplace Transform Where does the Laplace transform come from? How to solve this mistery that where the Laplace transform come from? The starting point is thinking about power series. The power series

More information

Chapter 7: The z-transform

Chapter 7: The z-transform Chapter 7: The -Transform ECE352 1 The -Transform - definition Continuous-time systems: e st H(s) y(t) = e st H(s) e st is an eigenfunction of the LTI system h(t), and H(s) is the corresponding eigenvalue.

More information

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids Overview of Continuous-Time Fourier Transform Topics Definition Compare & contrast with Laplace transform Conditions for existence Relationship to LTI systems Examples Ideal lowpass filters Relationship

More information

Chapter 6: Applications of Fourier Representation Houshou Chen

Chapter 6: Applications of Fourier Representation Houshou Chen Chapter 6: Applications of Fourier Representation Houshou Chen Dept. of Electrical Engineering, National Chung Hsing University E-mail: houshou@ee.nchu.edu.tw H.S. Chen Chapter6: Applications of Fourier

More information

LTI Systems (Continuous & Discrete) - Basics

LTI Systems (Continuous & Discrete) - Basics LTI Systems (Continuous & Discrete) - Basics 1. A system with an input x(t) and output y(t) is described by the relation: y(t) = t. x(t). This system is (a) linear and time-invariant (b) linear and time-varying

More information

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS

DESIGN OF CMOS ANALOG INTEGRATED CIRCUITS DESIGN OF CMOS ANALOG INEGRAED CIRCUIS Franco Maloberti Integrated Microsistems Laboratory University of Pavia Discrete ime Signal Processing F. Maloberti: Design of CMOS Analog Integrated Circuits Discrete

More information

2.161 Signal Processing: Continuous and Discrete

2.161 Signal Processing: Continuous and Discrete MI OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 8 For information about citing these materials or our erms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSES INSIUE

More information

The Z transform (2) 1

The Z transform (2) 1 The Z transform (2) 1 Today Properties of the region of convergence (3.2) Read examples 3.7, 3.8 Announcements: ELEC 310 FINAL EXAM: April 14 2010, 14:00 pm ECS 123 Assignment 2 due tomorrow by 4:00 pm

More information

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk

Signals & Systems. Lecture 5 Continuous-Time Fourier Transform. Alp Ertürk Signals & Systems Lecture 5 Continuous-Time Fourier Transform Alp Ertürk alp.erturk@kocaeli.edu.tr Fourier Series Representation of Continuous-Time Periodic Signals Synthesis equation: x t = a k e jkω

More information

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)

More information

The Continuous-time Fourier

The Continuous-time Fourier The Continuous-time Fourier Transform Rui Wang, Assistant professor Dept. of Information and Communication Tongji University it Email: ruiwang@tongji.edu.cn Outline Representation of Aperiodic signals:

More information

Laplace Transforms and use in Automatic Control

Laplace Transforms and use in Automatic Control Laplace Transforms and use in Automatic Control P.S. Gandhi Mechanical Engineering IIT Bombay Acknowledgements: P.Santosh Krishna, SYSCON Recap Fourier series Fourier transform: aperiodic Convolution integral

More information

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples

Lecture 8: Signal Reconstruction, DT vs CT Processing. 8.1 Reconstruction of a Band-limited Signal from its Samples EE518 Digital Signal Processing University of Washington Autumn 2001 Dept. of Electrical Engineering Lecture 8: Signal Reconstruction, D vs C Processing Oct 24, 2001 Prof: J. Bilmes

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 2 Laplace Transform I 1/52 1/52 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 2 Laplace Transform I Linear Time Invariant Systems A general LTI system may be described by the linear constant coefficient differential equation: a n d n

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #4 Monday, January 13, 2003 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Impulse and Step Responses of Continuous-Time

More information

The Laplace Transform

The Laplace Transform The Laplace Transform Introduction There are two common approaches to the developing and understanding the Laplace transform It can be viewed as a generalization of the CTFT to include some signals with

More information

12/20/2017. Lectures on Signals & systems Engineering. Designed and Presented by Dr. Ayman Elshenawy Elsefy

12/20/2017. Lectures on Signals & systems Engineering. Designed and Presented by Dr. Ayman Elshenawy Elsefy //7 ectures on Signals & systems Engineering Designed and Presented by Dr. Ayman Elshenawy Elsefy Dept. of Systems & Computer Eng. Al-Azhar University Email : eaymanelshenawy@yahoo.com aplace Transform

More information

6.003 Homework #10 Solutions

6.003 Homework #10 Solutions 6.3 Homework # Solutions Problems. DT Fourier Series Determine the Fourier Series coefficients for each of the following DT signals, which are periodic in N = 8. x [n] / n x [n] n x 3 [n] n x 4 [n] / n

More information

Ch 4: The Continuous-Time Fourier Transform

Ch 4: The Continuous-Time Fourier Transform Ch 4: The Continuous-Time Fourier Transform Fourier Transform of x(t) Inverse Fourier Transform jt X ( j) x ( t ) e dt jt x ( t ) X ( j) e d 2 Ghulam Muhammad, King Saud University Continuous-time aperiodic

More information

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization

ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals. 1. Sampling and Reconstruction 2. Quantization ELEN E4810: Digital Signal Processing Topic 11: Continuous Signals 1. Sampling and Reconstruction 2. Quantization 1 1. Sampling & Reconstruction DSP must interact with an analog world: A to D D to A x(t)

More information

EE Homework 13 - Solutions

EE Homework 13 - Solutions EE3054 - Homework 3 - Solutions. (a) The Laplace transform of e t u(t) is s+. The pole of the Laplace transform is at which lies in the left half plane. Hence, the Fourier transform is simply the Laplace

More information

Digital Signal Processing. Midterm 1 Solution

Digital Signal Processing. Midterm 1 Solution EE 123 University of California, Berkeley Anant Sahai February 15, 27 Digital Signal Processing Instructions Midterm 1 Solution Total time allowed for the exam is 8 minutes Some useful formulas: Discrete

More information

3. Frequency-Domain Analysis of Continuous- Time Signals and Systems

3. Frequency-Domain Analysis of Continuous- Time Signals and Systems 3. Frequency-Domain Analysis of Continuous- ime Signals and Systems 3.. Definition of Continuous-ime Fourier Series (3.3-3.4) 3.2. Properties of Continuous-ime Fourier Series (3.5) 3.3. Definition of Continuous-ime

More information

Identification Methods for Structural Systems

Identification Methods for Structural Systems Prof. Dr. Eleni Chatzi System Stability Fundamentals Overview System Stability Assume given a dynamic system with input u(t) and output x(t). The stability property of a dynamic system can be defined from

More information

A system that is both linear and time-invariant is called linear time-invariant (LTI).

A system that is both linear and time-invariant is called linear time-invariant (LTI). The Cooper Union Department of Electrical Engineering ECE111 Signal Processing & Systems Analysis Lecture Notes: Time, Frequency & Transform Domains February 28, 2012 Signals & Systems Signals are mapped

More information

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are

ECE-700 Review. Phil Schniter. January 5, x c (t)e jωt dt, x[n]z n, Denoting a transform pair by x[n] X(z), some useful properties are ECE-7 Review Phil Schniter January 5, 7 ransforms Using x c (t) to denote a continuous-time signal at time t R, Laplace ransform: X c (s) x c (t)e st dt, s C Continuous-ime Fourier ransform (CF): ote that:

More information

ECE 301 Division 1, Fall 2006 Instructor: Mimi Boutin Final Examination

ECE 301 Division 1, Fall 2006 Instructor: Mimi Boutin Final Examination ECE 30 Division, all 2006 Instructor: Mimi Boutin inal Examination Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out the requested

More information

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients able : Properties of the Continuous-ime Fourier Series x(t = a k e jkω0t = a k = x(te jkω0t dt = a k e jk(/t x(te jk(/t dt Property Periodic Signal Fourier Series Coefficients x(t y(t } Periodic with period

More information

Module 4 : Laplace and Z Transform Lecture 36 : Analysis of LTI Systems with Rational System Functions

Module 4 : Laplace and Z Transform Lecture 36 : Analysis of LTI Systems with Rational System Functions Module 4 : Laplace and Z Transform Lecture 36 : Analysis of LTI Systems with Rational System Functions Objectives Scope of this Lecture: Previously we understood the meaning of causal systems, stable systems

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.6 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

Signals and Systems Spring 2004 Lecture #9

Signals and Systems Spring 2004 Lecture #9 Signals and Systems Spring 2004 Lecture #9 (3/4/04). The convolution Property of the CTFT 2. Frequency Response and LTI Systems Revisited 3. Multiplication Property and Parseval s Relation 4. The DT Fourier

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

Time Response Analysis (Part II)

Time Response Analysis (Part II) Time Response Analysis (Part II). A critically damped, continuous-time, second order system, when sampled, will have (in Z domain) (a) A simple pole (b) Double pole on real axis (c) Double pole on imaginary

More information

DSP-I DSP-I DSP-I DSP-I

DSP-I DSP-I DSP-I DSP-I NOTES FOR 8-79 LECTURES 3 and 4 Introduction to Discrete-Time Fourier Transforms (DTFTs Distributed: September 8, 2005 Notes: This handout contains in brief outline form the lecture notes used for 8-79

More information

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients

Table 1: Properties of the Continuous-Time Fourier Series. Property Periodic Signal Fourier Series Coefficients able : Properties of the Continuous-ime Fourier Series x(t = e jkω0t = = x(te jkω0t dt = e jk(/t x(te jk(/t dt Property Periodic Signal Fourier Series Coefficients x(t y(t } Periodic with period and fundamental

More information

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr.

Final Exam of ECE301, Section 3 (CRN ) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. Final Exam of ECE301, Section 3 (CRN 17101-003) 8 10am, Wednesday, December 13, 2017, Hiler Thtr. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, and

More information

27. The pole diagram and the Laplace transform

27. The pole diagram and the Laplace transform 124 27. The pole diagram and the Laplace transform When working with the Laplace transform, it is best to think of the variable s in F (s) as ranging over the complex numbers. In the first section below

More information

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace

Unit 2: Modeling in the Frequency Domain Part 2: The Laplace Transform. The Laplace Transform. The need for Laplace Unit : Modeling in the Frequency Domain Part : Engineering 81: Control Systems I Faculty of Engineering & Applied Science Memorial University of Newfoundland January 1, 010 1 Pair Table Unit, Part : Unit,

More information

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105.

Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. Final Exam of ECE301, Prof. Wang s section 1 3pm Tuesday, December 11, 2012, Lily 1105. 1. Please make sure that it is your name printed on the exam booklet. Enter your student ID number, e-mail address,

More information

Signals and Spectra (1A) Young Won Lim 11/26/12

Signals and Spectra (1A) Young Won Lim 11/26/12 Signals and Spectra (A) Copyright (c) 202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later

More information

Introduction to Fourier Transforms. Lecture 7 ELE 301: Signals and Systems. Fourier Series. Rect Example

Introduction to Fourier Transforms. Lecture 7 ELE 301: Signals and Systems. Fourier Series. Rect Example Introduction to Fourier ransforms Lecture 7 ELE 3: Signals and Systems Fourier transform as a limit of the Fourier series Inverse Fourier transform: he Fourier integral theorem Prof. Paul Cuff Princeton

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 2.161 Signal Processing: Continuous and Discrete Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Massachusetts

More information

Properties of Fourier Series - GATE Study Material in PDF

Properties of Fourier Series - GATE Study Material in PDF Properties of Fourier Series - GAE Study Material in PDF In the previous article, we learnt the Basics of Fourier Series, the different types and all about the different Fourier Series spectrums. Now,

More information

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n.

ECE 301 Fall 2010 Division 2 Homework 10 Solutions. { 1, if 2n t < 2n + 1, for any integer n, x(t) = 0, if 2n 1 t < 2n, for any integer n. ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Consider the following periodic signal, depicted below: {, if n t < n +, for any integer n,

More information

Question Paper Code : AEC11T02

Question Paper Code : AEC11T02 Hall Ticket No Question Paper Code : AEC11T02 VARDHAMAN COLLEGE OF ENGINEERING (AUTONOMOUS) Affiliated to JNTUH, Hyderabad Four Year B. Tech III Semester Tutorial Question Bank 2013-14 (Regulations: VCE-R11)

More information

Review of Discrete-Time System

Review of Discrete-Time System Review of Discrete-Time System Electrical & Computer Engineering University of Maryland, College Park Acknowledgment: ENEE630 slides were based on class notes developed by Profs. K.J. Ray Liu and Min Wu.

More information

Solutions to Problems in Chapter 4

Solutions to Problems in Chapter 4 Solutions to Problems in Chapter 4 Problems with Solutions Problem 4. Fourier Series of the Output Voltage of an Ideal Full-Wave Diode Bridge Rectifier he nonlinear circuit in Figure 4. is a full-wave

More information

Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system

Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system Plan of the Lecture Review: transient and steady-state response; DC gain and the FVT Today s topic: system-modeling diagrams; prototype 2nd-order system Plan of the Lecture Review: transient and steady-state

More information

Assignment 4 Solutions Continuous-Time Fourier Transform

Assignment 4 Solutions Continuous-Time Fourier Transform Assignment 4 Solutions Continuous-Time Fourier Transform ECE 3 Signals and Systems II Version 1.01 Spring 006 1. Properties of complex numbers. Let c 1 α 1 + jβ 1 and c α + jβ be two complex numbers. a.

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture : Design of Digital IIR Filters (Part I) Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 008 K. E. Barner (Univ.

More information

Generalizing the DTFT!

Generalizing the DTFT! The Transform Generaliing the DTFT! The forward DTFT is defined by X e jω ( ) = x n e jωn in which n= Ω is discrete-time radian frequency, a real variable. The quantity e jωn is then a complex sinusoid

More information

Bridge between continuous time and discrete time signals

Bridge between continuous time and discrete time signals 6 Sampling Bridge between continuous time and discrete time signals Sampling theorem complete representation of a continuous time signal by its samples Samplingandreconstruction implementcontinuous timesystems

More information

Stability. X(s) Y(s) = (s + 2) 2 (s 2) System has 2 poles: points where Y(s) -> at s = +2 and s = -2. Y(s) 8X(s) G 1 G 2

Stability. X(s) Y(s) = (s + 2) 2 (s 2) System has 2 poles: points where Y(s) -> at s = +2 and s = -2. Y(s) 8X(s) G 1 G 2 Stability 8X(s) X(s) Y(s) = (s 2) 2 (s 2) System has 2 poles: points where Y(s) -> at s = 2 and s = -2 If all poles are in region where s < 0, system is stable in Fourier language s = jω G 0 - x3 x7 Y(s)

More information

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0

7. Find the Fourier transform of f (t)=2 cos(2π t)[u (t) u(t 1)]. 8. (a) Show that a periodic signal with exponential Fourier series f (t)= δ (ω nω 0 Fourier Transform Problems 1. Find the Fourier transform of the following signals: a) f 1 (t )=e 3 t sin(10 t)u (t) b) f 1 (t )=e 4 t cos(10 t)u (t) 2. Find the Fourier transform of the following signals:

More information

z Transform System Analysis

z Transform System Analysis z Transform System Analysis Block Diagrams and Transfer Functions Just as with continuous-time systems, discrete-time systems are conveniently described by block diagrams and transfer functions can be

More information

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3

ECE 301. Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 ECE 30 Division 2, Fall 2006 Instructor: Mimi Boutin Midterm Examination 3 Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out

More information

16.362: Signals and Systems: 1.0

16.362: Signals and Systems: 1.0 16.362: Signals and Systems: 1.0 Prof. K. Chandra ECE, UMASS Lowell September 1, 2016 1 Background The pre-requisites for this course are Calculus II and Differential Equations. A basic understanding of

More information

EE 261 The Fourier Transform and its Applications Fall 2007 Problem Set Eight Solutions

EE 261 The Fourier Transform and its Applications Fall 2007 Problem Set Eight Solutions EE 6 he Fourier ransform and its Applications Fall 7 Problem Set Eight Solutions. points) A rue Story: Professor Osgood and a graduate student were working on a discrete form of the sampling theorem. his

More information

Each problem is worth 25 points, and you may solve the problems in any order.

Each problem is worth 25 points, and you may solve the problems in any order. EE 120: Signals & Systems Department of Electrical Engineering and Computer Sciences University of California, Berkeley Midterm Exam #2 April 11, 2016, 2:10-4:00pm Instructions: There are four questions

More information

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1

ECE 301 Fall 2011 Division 1 Homework 10 Solutions. { 1, for 0.5 t 0.5 x(t) = 0, for 0.5 < t 1 ECE 3 Fall Division Homework Solutions Problem. Reconstruction of a continuous-time signal from its samples. Let x be a periodic continuous-time signal with period, such that {, for.5 t.5 x(t) =, for.5

More information

ECE 301 Division 1, Fall 2008 Instructor: Mimi Boutin Final Examination Instructions:

ECE 301 Division 1, Fall 2008 Instructor: Mimi Boutin Final Examination Instructions: ECE 30 Division, all 2008 Instructor: Mimi Boutin inal Examination Instructions:. Wait for the BEGIN signal before opening this booklet. In the meantime, read the instructions below and fill out the requested

More information

Lecture 7 ELE 301: Signals and Systems

Lecture 7 ELE 301: Signals and Systems Lecture 7 ELE 30: Signals and Systems Prof. Paul Cuff Princeton University Fall 20-2 Cuff (Lecture 7) ELE 30: Signals and Systems Fall 20-2 / 22 Introduction to Fourier Transforms Fourier transform as

More information

Homework 7 Solution EE235, Spring Find the Fourier transform of the following signals using tables: te t u(t) h(t) = sin(2πt)e t u(t) (2)

Homework 7 Solution EE235, Spring Find the Fourier transform of the following signals using tables: te t u(t) h(t) = sin(2πt)e t u(t) (2) Homework 7 Solution EE35, Spring. Find the Fourier transform of the following signals using tables: (a) te t u(t) h(t) H(jω) te t u(t) ( + jω) (b) sin(πt)e t u(t) h(t) sin(πt)e t u(t) () h(t) ( ejπt e

More information

2.161 Signal Processing: Continuous and Discrete Fall 2008

2.161 Signal Processing: Continuous and Discrete Fall 2008 MIT OpenCourseWare http://ocw.mit.edu.6 Signal Processing: Continuous and Discrete Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS

More information

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform

(i) Represent discrete-time signals using transform. (ii) Understand the relationship between transform and discrete-time Fourier transform z Transform Chapter Intended Learning Outcomes: (i) Represent discrete-time signals using transform (ii) Understand the relationship between transform and discrete-time Fourier transform (iii) Understand

More information

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam

New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Final Exam New Mexico State University Klipsch School of Electrical Engineering EE312 - Signals and Systems I Fall 2015 Name: Solve problems 1 3 and two from problems 4 7. Circle below which two of problems 4 7 you

More information

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform.

Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Inversion of the z-transform Focus on rational z-transform of z 1. Apply partial fraction expansion. Like bilateral Laplace transforms, ROC must be used to determine a unique inverse z-transform. Let X(z)

More information

Circuit Analysis Using Fourier and Laplace Transforms

Circuit Analysis Using Fourier and Laplace Transforms EE2015: Electrical Circuits and Networks Nagendra Krishnapura https://wwweeiitmacin/ nagendra/ Department of Electrical Engineering Indian Institute of Technology, Madras Chennai, 600036, India July-November

More information

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if.

13. Power Spectrum. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if. For a deterministic signal x(t), the spectrum is well defined: If represents its Fourier transform, i.e., if jt X ( ) = xte ( ) dt, (3-) then X ( ) represents its energy spectrum. his follows from Parseval

More information

6.003: Signals and Systems. CT Fourier Transform

6.003: Signals and Systems. CT Fourier Transform 6.003: Signals and Systems CT Fourier Transform April 8, 200 CT Fourier Transform Representing signals by their frequency content. X(jω)= x(t)e jωt dt ( analysis equation) x(t)= X(jω)e jωt dω ( synthesis

More information

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling

Tutorial Sheet #2 discrete vs. continuous functions, periodicity, sampling 2.39 utorial Sheet #2 discrete vs. continuous functions, periodicity, sampling We will encounter two classes of signals in this class, continuous-signals and discrete-signals. he distinct mathematical

More information

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114.

ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. ECE 301 Division 1 Final Exam Solutions, 12/12/2011, 3:20-5:20pm in PHYS 114. The exam for both sections of ECE 301 is conducted in the same room, but the problems are completely different. Your ID will

More information

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the

ω 0 = 2π/T 0 is called the fundamental angular frequency and ω 2 = 2ω 0 is called the he ime-frequency Concept []. Review of Fourier Series Consider the following set of time functions {3A sin t, A sin t}. We can represent these functions in different ways by plotting the amplitude versus

More information

Fourier series for continuous and discrete time signals

Fourier series for continuous and discrete time signals 8-9 Signals and Systems Fall 5 Fourier series for continuous and discrete time signals The road to Fourier : Two weeks ago you saw that if we give a complex exponential as an input to a system, the output

More information

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010

DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 [E2.5] IMPERIAL COLLEGE LONDON DEPARTMENT OF ELECTRICAL AND ELECTRONIC ENGINEERING EXAMINATIONS 2010 EEE/ISE PART II MEng. BEng and ACGI SIGNALS AND LINEAR SYSTEMS Time allowed: 2:00 hours There are FOUR

More information

Chap 4. Sampling of Continuous-Time Signals

Chap 4. Sampling of Continuous-Time Signals Digital Signal Processing Chap 4. Sampling of Continuous-Time Signals Chang-Su Kim Digital Processing of Continuous-Time Signals Digital processing of a CT signal involves three basic steps 1. Conversion

More information

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response.

NAME: ht () 1 2π. Hj0 ( ) dω Find the value of BW for the system having the following impulse response. University of California at Berkeley Department of Electrical Engineering and Computer Sciences Professor J. M. Kahn, EECS 120, Fall 1998 Final Examination, Wednesday, December 16, 1998, 5-8 pm NAME: 1.

More information

Chapter 13 Z Transform

Chapter 13 Z Transform Chapter 13 Z Transform 1. -transform 2. Inverse -transform 3. Properties of -transform 4. Solution to Difference Equation 5. Calculating output using -transform 6. DTFT and -transform 7. Stability Analysis

More information

Grades will be determined by the correctness of your answers (explanations are not required).

Grades will be determined by the correctness of your answers (explanations are not required). 6.00 (Fall 20) Final Examination December 9, 20 Name: Kerberos Username: Please circle your section number: Section Time 2 am pm 4 2 pm Grades will be determined by the correctness of your answers (explanations

More information

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control

School of Information Technology and Electrical Engineering EXAMINATION. ELEC3004 Signals, Systems & Control This exam paper must not be removed from the venue Venue Seat Number Student Number Family Name First Name School of Information Technology and Electrical Engineering EXAMINATION Semester One Final Examinations,

More information