BEC-BCS cross-over in the exciton gas

Size: px
Start display at page:

Download "BEC-BCS cross-over in the exciton gas"

Transcription

1 BEC-BCS ross-over in the exiton gas Monique Combesot Institut des NanoSienes de Paris, CNRS Université Pierre et Marie Curie Evora ot

2 1)Dilute limit: BEC ondensate of linearly polarized dark exitons 2)Under a density inrease: - mixture of dark and bright ondensates - phase separation between BEC and BCS ondensates 2

3 Part 1 dilute limit 3

4 In the dilute limit, eletrons and holes form exitons. At low T, they undergo a Bose-Einstein ondensation in a linearly polarized dark state 4

5 Semiondutor ondution band k photon valene band k v photon Q p ondution eletron k = k v + Q p k v valene eletron 5

6 eletron k e photon hole k h eletron k e = k v + Q p photon Q p hole k h = "k v 6

7 hole: full valene band minus one eletron formidable redution of the many-body problem! 7

8 Naive view of an exiton "e eletron + e hole exiton similar to Hydrogen atom light effetive mass dieletri onstant m e * " 0.1m e " s #10 R X = me4 $ #13.6eV 0.1 ' 2h 2 2 & ) " s % 10 2 ( R X "10meV a X = h2 " s $ 10 ' # 0.53A 2 & ) me % 0.1( a X " 50A 8

9 The true story is far more omplex 9

10 Coulomb interation in a periodi lattie Bloh states r nk = eik.r L 3 2 u nk (r) u nk(r) = u nk(r + a) + nk = a nks v 10

11 V Coul = V e"e "V e"e " n 2 k 2 # q " n 1 k 1 + q n 2 k 2 n 1 k 1 = 1 2 $ +...a " + n 1 k 1 +qa n " 2 k 2 #q a n2 k 2 a n1 k 1 v q ( n 1 ",n 1 )v #q ( n " 2,n 2 ) v q (n,n) = 4"e2 v q ( n " # n) = O(q 0 ) L 3 q 2 repulsive sattering between ondution and valene eletrons 11

12 Intraband Coulomb proesses 4"e 2 L 3 q 2 v v v v v v dressed by a dieletri onstant whih results from many-body effets indued by «boiling valene band» 12

13 2 1 v 2 v 1 v 1 v v 2 13

14 4"e 2 L 3 q 2 1 q v 1 q... q 2 v q (n,n) = 4"e2 L 3 q 2 v q ( n " # n) = O(q 0 ) 1 q q 0 v... q 2 1 q v 14

15 n 2 n 1 n 2 2 4"e n # s L 3 q 2 1 Diret satterings between valene and/or ondution eletrons: repulsive as between free eletrons redued by the semiondutor dieletri onstant 15

16 repulsion between ondution and valene eletrons attration between eletrons and holes + a k1 +q + a vk2 "qa vk2 a k1 + "a vk2 a vk2 "q We turn from ondution/valene eletrons to eletrons/holes a k = a k a vk = b "k V v = "4#e 2 & $ s L 3 q 2 q%0 & + a k1 +q k 1 k 2 b + "k2 b "k2 +qa k1 "k 2 + q = # k 2 16

17 h e k 1 + q k 2 " q k 1 k 2 e h " 4#e2 $ s L 3 q 2 Attration between one eletron and one hole redued by dieletri onstant 17

18 One Wannier exiton e e e h h h e e h h e h k e + k h = Q onserved through Coulomb satterings Wannier exiton ",Q = # k e,k h... energy " # + Q 2 2(m e + m h ) k h,k e ",Q wave funtion r e,r h ",Q = eiq.r L 3 2 # " (r) R = m er e + m h r h m e + m h r = r e " r h 18

19 Exiton reation operator ",Q = # k e,k h k h,k e ",Q B + "Q 0 a + ke b + kh 0 B + "Q = # a + ke b + kh k h,k e ",Q 19

20 Exitons are boson-like partiles i = (" i,q i ) [ B + + j,b ] i " = B + j B + i " B + i B + j = 0 as bosons [ + B m,b ] i " = # mi " D mi but not exatly [ + D mi,b ] j = # + " {... }B n n n j n j m i + m i 20

21 Being boson-like partiles, exitons, as old atoms, must undergo Bose-Einstein ondensation Yet, the preise nature of omposite boson ondensate is not known! lose to (B 0 + ) N but surely not exatly (B + ) N 0 21

22 Exiton BEC searhed for deades. but never evidened! Reason: the ondensate must be dark and searh has been done through photoluminesene experiments 22

23 ondution band l = 0 s =1/2 j e z = ± 1 2 valene band l =1 l h z = ±1,0 s =1/2 s h z = ± 1 2 j h z = ± 3 2,± 1 2 pair z J eh = j e z + j h z = ±2,±1,0 23

24 Although small, interband Coulomb interation also exists v v v 1 v 1 v 2 v 2 e 1 e 2 h 2 h 1 emission and reabsorption of a virtual photon exists for bright pairs J= (+1, 0, -1) only 24

25 z J eh = ±1,0 bright oupled to " ±,# photons z J eh = ±2 dark unoupled to photons no valene-ondution Coulomb proesses 25

26 Coulomb intraband exists for all e Coulomb interband exists for bright only h (repulsive) interband Coulomb proesses push bright exiton above dark exiton 26

27 Dark exitons have the lowest energy just beause they are dark! Exiton BEC must be dark No hope to see it (diretly) with photoluminesene experiments Better to know where ondensation takes plae! 27

28 Pairs are reated in bright states by photon absorption However, dark / bright exitons are linked by arrier exhange +2 1/2-3/2-1 dark -2 3/2-1/2 +1 bright 28

29 Dark ondensate must have a linear polarization H N = 0 BN HB +N 0 0 B N B +N 0 a " 2 (+2) + a " #2 (#2) B + = a 2 B a "2 B "2 a 2 (+2) + a "2 ("2) a " 2 (+2) + a " #2 (#2) a 2 (+2) + a "2 ("2) a " 2 (+2) a 2 (+2) a # "2 ("2) a "2 ("2) + a " a 2 (+2) 2 (+2) a # "2 ("2) a "2 ("2) H N minimum for a 2 2 = a "2 2 =1 2 linear polarization 29

30 So, in the dilute limit, eletrons and holes form exitons. At low T, they undergo a Bose-Einstein ondensation in a linearly polarized dark state 30

31 How an we see a dark ondensate? paraboli trap lowest state dark lowest trap level we predit the appearane of a dark spot at the enter of the trap when BEC takes plae 31

32 32

33 Optial trap: standing wave (+Q, -Q) K exiton K +Q photon +Q K + 2Q exiton K - Q photon +Q K exiton beomes superposition of (K, K +2Q, K- 2Q) so, it is trapped. Potential depth: a fration of mev 33

34 Part 2 Under a density inrease 34

35 (A) a bright omponent appears in the ondensate 35

36 dark exitons bright exitons D k + B k + H kin = k 2 " D + k D k + (# 0 + k 2 " )B + k B k 2M 2M lowest state (D 0 + ) N 0 dark ondensate 36

37 When the density inreases, we must inlude interations k 4 1 "2 k 2 k 3 "1 2 the Hamiltonian then reads k 2 H = " D + k D k + "(# 0 + k 2 )B + k B k + 2M 2M k 1 g " B + k4 B + k3 D k2 D k1 + h.. mean field treatment D + D " N d B + B " N b D " B " N d e i# d N b e i# b H " # 0 N b + 2g N b N d os2($ b %$ d ) minimum " g 37

38 H " # 0 N b $ 2 g N b N d minimum "H "N b = 0 N b (0) = 2 g N "# 0 4 g " 0 #10µeV m " 0.1 threshold N th L 2 "10 9 m #2 N " N b N th = " 0 2 g " # 0 $ exh ( ) " # 0 R X ( L a X ) D for N > N th the lowest state (D + 0 ) N"N ( 0) b (B + 0 ) N ( 0) b 0 ondensate has a bright omponent 38

39 Josephson osillations " = " b #" d and "N = (N b # N d ) /2 are onjugate variables Hamilton equations d("n) = #H dt #$ d" dt = # $H $(%N) lose to equilibrium "N # "N (0) +...os$ J t h 2 " 2 J = 32g 2 bd N (0) b N (0) d = 2# 2 0 ( N 2 N $1) 2 th " 0 #10µeV " J #10 10 N /N th 39

40 (B) a phase separation takes plae between exiton gas and eletron-hole plasma 40

41 Mott dissoiation a X Exiton gas Eletron-hole plasma " = N( a X L )D Exitons dissoiate into an eletron-hole plasma for " #1 41

42 dilute exiton gas E N = NR X "1+ (...)# +... [ ] = N$ X (#) " = N( a X L )D positive to avoid ollapse dense eletron-hole plasma # E N = N (...) k 2 F 2m " & % (...)e2 k F +...( = N) eh (*) $ ' N " (k F L) D " eh (#) $ %n 2 3 & 'n 1 3 " #n $ %n 1 2 in 3D in 2D the average pair energy has a minimum in the dense limit 42

43 "(#) «eletron-hole droplets» in Ge and Si " 0 " = N( a X L )D "R X T 0 x eh phase separation eh " 0 ( L a X ) D N 43

44 "(#) " 1 " 2 " = N( a X L )D "R X N = N 1 + N 2 dn 1 = "dn 2 E N = N 1 "(# 1 ) + N 2 "(# 2 ) 0 = de N dn 1 = "(# 1 ) + # 1 $ " (# 1 ) %"(# 2 ) %# 2 $ " (# 2 ) for #"($ 1 ) = #"($ 2 ) "(# 2 ) $"(# 1 ) # 2 $# 1 = % " (# 1 ) = % " (# 2 ) Phase separation along double tangente 44

45 T 0 x " 1 ( L a X ) D eh eh phase separation " 2 ( L N ) D a X 45

46 (C) a BCS ondensation ours in the dense eletron-hole plasma 46

47 Even if strongly sreened eletrons and holes still attrat eah other #...a k b "k = B Cooper Formation of «eletron-hole Cooper pairs» neutral, so not superonduting but still superfluid 47

48 Again, dark pairs have the lowest energy Exhange oupling must however bring a bright omponent to the ondensate sine it is dense Moreover, degeneray between the two dark and the two bright pairs must lead to a linear polarisation as optimum state (B B + "2 ) N"N ( 0) 1 (B B + "1 ) N ( 0)

49 T exiton BEC eh dark ondensate x phase separation «gray» ondensate " 2 ( L N " ) D 1 ( L ) D a X a X exiton BCS 49

50 So, under a density inrease, -a bright omponent appears in the ondensate. -a phase separation ours between exiton gas and e-h plasma -a BCS ondensation of exitoni Cooper pairs takes plae in the e-h plasma 50

51 Conlusion Eletron-hole systems are quite rih! 1) At low density, exitons are formed. They suffer BEC ondensation into a dark state with linear polarisation 2) Under a density inrease, - a bright omponent appears in the ondensate - a phase separation ours between exiton gas and eletron-hole plasma - a BCS ondensation of exitoni Cooper pairs takes plae in the dense plasma 51

52 Referenes Bose-Einstein ondensation of exitons: the key role of dark exitons Monique Combesot, Odile Betbeder-Matibet, Roland Combesot Phys. Rev. Lett. 99, (2007) Optial traps for dark exitons Monique Combesot, Mihael Moore, Carlo Piermarohi Phys. Rev. Lett. 106, (2011) «Gray» BCS ondensate of exitons and internal Josephson osillations Roland Combesot, Monique Combesot Phys. Rev. Lett. 109, (2012) 52

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E')

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') 22.54 Neutron Interations and Appliations (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') Referenes -- J. R. Lamarsh, Introdution to Nulear Reator Theory (Addison-Wesley, Reading, 1966),

More information

1. Tc from BCS 2. Ginzburg-Landau theory 3. Josephson effect

1. Tc from BCS 2. Ginzburg-Landau theory 3. Josephson effect Condensed Matter Physis 6 Leture 6/: More on superondutiity.. T from BCS. Ginzburg-Landau theory 3. Josephson effet Referenes: Ashroft & Mermin 34 Taylor & Heinonen 7.-7.5 7.7 blaboard Reall from last

More information

22.01 Fall 2015, Problem Set 6 (Normal Version Solutions)

22.01 Fall 2015, Problem Set 6 (Normal Version Solutions) .0 Fall 05, Problem Set 6 (Normal Version Solutions) Due: November, :59PM on Stellar November 4, 05 Complete all the assigned problems, and do make sure to show your intermediate work. Please upload your

More information

Principle Concepts behind IBM Q D. Stancil, Quantum Computing Seminar, 15 Feb 2018

Principle Concepts behind IBM Q D. Stancil, Quantum Computing Seminar, 15 Feb 2018 Priniple Conepts behind IBM Q D. Stanil, Quantum Computing Seminar, 15 Feb 018 V. Bouhiat, et al, Quantum Coherene with a Single Cooper Pair, Physia Sripta, Vol. T76, 165-170 (1998) A. Blais, et al, Cavity

More information

Line Radiative Transfer

Line Radiative Transfer http://www.v.nrao.edu/ourse/astr534/ineradxfer.html ine Radiative Transfer Einstein Coeffiients We used armor's equation to estimate the spontaneous emission oeffiients A U for À reombination lines. A

More information

General Equilibrium. What happens to cause a reaction to come to equilibrium?

General Equilibrium. What happens to cause a reaction to come to equilibrium? General Equilibrium Chemial Equilibrium Most hemial reations that are enountered are reversible. In other words, they go fairly easily in either the forward or reverse diretions. The thing to remember

More information

Semiconductor light sources Outline

Semiconductor light sources Outline Light soures Semiondutor light soures Outline Thermal (blakbody) radiation Light / matter interations & LEDs Lasers Robert R. MLeod, University of Colorado Pedrotti 3, Chapter 6 3 Blakbody light Blakbody

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge The Conept of Mass as Interfering Photons, and the Originating Mehanism of Gravitation D.T. Froedge V04 Formerly Auburn University Phys-dtfroedge@glasgow-ky.om Abstrat For most purposes in physis the onept

More information

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically.

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically. Eletrodynamis I Exam 3 - Part A - Closed Book KSU 205/2/8 Name Eletrodynami Sore = 24 / 24 points Instrutions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to

More information

Chapter 10 Dyson s equation, RPA and Ladder Approximations

Chapter 10 Dyson s equation, RPA and Ladder Approximations Chapter 1 Dyson s euation RPA and Ladder Approximations Dyson s euation low-high density fermion gases Summation tris to deal with divergent series. Conept of renormalization i.e. dressed partile is bare

More information

Calculation of Desorption Parameters for Mg/Si(111) System

Calculation of Desorption Parameters for Mg/Si(111) System e-journal of Surfae Siene and Nanotehnology 29 August 2009 e-j. Surf. Si. Nanoteh. Vol. 7 (2009) 816-820 Conferene - JSSS-8 - Calulation of Desorption Parameters for Mg/Si(111) System S. A. Dotsenko, N.

More information

Heat exchangers: Heat exchanger types:

Heat exchangers: Heat exchanger types: Heat exhangers: he proess of heat exhange between two fluids that are at different temperatures and separated by a solid wall ours in many engineering appliations. he devie used to implement this exhange

More information

Metal: a free electron gas model. Drude theory: simplest model for metals Sommerfeld theory: classical mechanics quantum mechanics

Metal: a free electron gas model. Drude theory: simplest model for metals Sommerfeld theory: classical mechanics quantum mechanics Metal: a free eletron gas model Drude theory: simplest model for metals Sommerfeld theory: lassial mehanis quantum mehanis Drude model in a nutshell Simplest model for metal Consider kinetis for eletrons

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysisAndMathsTutor.om. (a (i beam splitter [or semi-silvered mirror] (ii a ompensator [or a glass blok] allows for the thikness of the (semi-silvered mirror to obtain equal optial path lengths in the

More information

+Ze. n = N/V = 6.02 x x (Z Z c ) m /A, (1.1) Avogadro s number

+Ze. n = N/V = 6.02 x x (Z Z c ) m /A, (1.1) Avogadro s number In 1897, J. J. Thomson disovered eletrons. In 1905, Einstein interpreted the photoeletri effet In 1911 - Rutherford proved that atoms are omposed of a point-like positively harged, massive nuleus surrounded

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES ELECTROMAGNETIC WAVES Now we will study eletromagneti waves in vauum or inside a medium, a dieletri. (A metalli system an also be represented as a dieletri but is more ompliated due to damping or attenuation

More information

Physics 218, Spring February 2004

Physics 218, Spring February 2004 Physis 8 Spring 004 0 February 004 Today in Physis 8: dispersion in onduting dia Semilassial theory of ondutivity Condutivity and dispersion in tals and in very dilute ondutors : group veloity plasma frequeny

More information

Gravitation is a Gradient in the Velocity of Light ABSTRACT

Gravitation is a Gradient in the Velocity of Light ABSTRACT 1 Gravitation is a Gradient in the Veloity of Light D.T. Froedge V5115 @ http://www.arxdtf.org Formerly Auburn University Phys-dtfroedge@glasgow-ky.om ABSTRACT It has long been known that a photon entering

More information

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW P. М. Меdnis Novosibirs State Pedagogial University, Chair of the General and Theoretial Physis, Russia, 636, Novosibirs,Viljujsy, 8 e-mail: pmednis@inbox.ru

More information

Monte Carlo Simulation of Electron and Radiative Emission from Silicon Diodes

Monte Carlo Simulation of Electron and Radiative Emission from Silicon Diodes SIMULATION OF SEMICONDUCTOR DEVICES AND PROCESSES Vol. 4 Edited by W. Fihtner, D. Aemmer - Zurih (Switzerland) September 12-14,1991 - Hartung-Gorre 521 Monte Carlo Simulation of Eletron and Radiative Emission

More information

Supplementary Figures

Supplementary Figures Supplementary Figures a Sample A Sample Sample B mm Sample A a Sample B Supplementary Figure : Laue patterns and piture of the single rystals. (a,) Laue patterns of sample A (a) and sample B (). () Piture

More information

Physics 218, Spring February 2004

Physics 218, Spring February 2004 Physis 8 Spring 004 8 February 004 Today in Physis 8: dispersion Motion of bound eletrons in matter and the frequeny dependene of the dieletri onstant Dispersion relations Ordinary and anomalous dispersion

More information

Blackbody radiation and Plank s law

Blackbody radiation and Plank s law lakbody radiation and Plank s law blakbody problem: alulating the intensity o radiation at a given wavelength emitted by a body at a speii temperature Max Plank, 900 quantization o energy o radiation-emitting

More information

Computational Models of Superconducting Quantum Effects

Computational Models of Superconducting Quantum Effects JOURNAL ON POTONICS AND SPINTRONICS VOL. NO.4 NOVEMBER 014 ISSN 4-857 (Print) ISSN 4-8580 (Online) http://www.researhpub.org/journal/jps/jps.html Computational Models of Superonduting Quantum Effets Roío

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

Investigation of the de Broglie-Einstein velocity equation s. universality in the context of the Davisson-Germer experiment. Yusuf Z.

Investigation of the de Broglie-Einstein velocity equation s. universality in the context of the Davisson-Germer experiment. Yusuf Z. Investigation of the de Broglie-instein veloity equation s universality in the ontext of the Davisson-Germer experiment Yusuf Z. UMUL Canaya University, letroni and Communiation Dept., Öğretmenler Cad.,

More information

Chapter 26 Lecture Notes

Chapter 26 Lecture Notes Chapter 26 Leture Notes Physis 2424 - Strauss Formulas: t = t0 1 v L = L0 1 v m = m0 1 v E = m 0 2 + KE = m 2 KE = m 2 -m 0 2 mv 0 p= mv = 1 v E 2 = p 2 2 + m 2 0 4 v + u u = 2 1 + vu There were two revolutions

More information

Energy Gaps in a Spacetime Crystal

Energy Gaps in a Spacetime Crystal Energy Gaps in a Spaetime Crystal L.P. Horwitz a,b, and E.Z. Engelberg a Shool of Physis, Tel Aviv University, Ramat Aviv 69978, Israel b Department of Physis, Ariel University Center of Samaria, Ariel

More information

A model for measurement of the states in a coupled-dot qubit

A model for measurement of the states in a coupled-dot qubit A model for measurement of the states in a oupled-dot qubit H B Sun and H M Wiseman Centre for Quantum Computer Tehnology Centre for Quantum Dynamis Griffith University Brisbane 4 QLD Australia E-mail:

More information

Tutorial 8: Solutions

Tutorial 8: Solutions Tutorial 8: Solutions 1. * (a) Light from the Sun arrives at the Earth, an average of 1.5 10 11 m away, at the rate 1.4 10 3 Watts/m of area perpendiular to the diretion of the light. Assume that sunlight

More information

SUGRA Models at the LHC

SUGRA Models at the LHC SUGRA odels at the LHC Bhaskar Dutta and Teruki Kamon Texas A& University PASCOS 9, DESY, Germany 9 th July 9 SUGRA odels at the LHC SUSY at the LHC D (or l + l -, τ+τ High P T jet [mass differene is large]

More information

The story so far: Isolated defects

The story so far: Isolated defects The story so far: Infinite, periodi strutures have Bloh wave single-partile states, labeled by a wavenumber k. Translational symmetry of the lattie periodi boundary onditions give disrete allowed values

More information

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t).

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t). Physis 486 Tony M. Liss Leture 1 Why quantum mehanis? Quantum vs. lassial mehanis: Classial Newton s laws Motion of bodies desribed in terms of initial onditions by speifying x(t), v(t). Hugely suessful

More information

Application of the Dyson-type boson mapping for low-lying electron excited states in molecules

Application of the Dyson-type boson mapping for low-lying electron excited states in molecules Prog. Theor. Exp. Phys. 05, 063I0 ( pages DOI: 0.093/ptep/ptv068 Appliation of the Dyson-type boson mapping for low-lying eletron exited states in moleules adao Ohkido, and Makoto Takahashi Teaher-training

More information

LECTURE 22. Electromagnetic. Spectrum 11/11/15. White Light: A Mixture of Colors (DEMO) White Light: A Mixture of Colors (DEMO)

LECTURE 22. Electromagnetic. Spectrum 11/11/15. White Light: A Mixture of Colors (DEMO) White Light: A Mixture of Colors (DEMO) LECTURE 22 Eletromagneti Spetrum 2 White Light: A Mixture of Colors (DEMO) White Light: A Mixture of Colors (DEMO) 1. Add together magenta, yan, and yellow. Play with intensities of eah to get white light.

More information

The Reason of Photons Angular Distribution at Electron-Positron Annihilation in a Positron-Emission Tomograph

The Reason of Photons Angular Distribution at Electron-Positron Annihilation in a Positron-Emission Tomograph Advanes in Natural Siene ol 7, No,, pp -5 DOI: 3968/66 ISSN 75-786 [PRINT] ISSN 75-787 [ONLINE] wwwsanadanet wwwsanadaorg The Reason of Photons Angular Distribution at Eletron-Positron Annihilation in

More information

Chapter 9. The excitation process

Chapter 9. The excitation process Chapter 9 The exitation proess qualitative explanation of the formation of negative ion states Ne and He in He-Ne ollisions an be given by using a state orrelation diagram. state orrelation diagram is

More information

Chapter 15: Chemical Equilibrium

Chapter 15: Chemical Equilibrium Chapter 5: Chemial Equilibrium ahoot!. At eq, the rate of the forward reation is the rate of the reverse reation. equal to, slower than, faster than, the reverse of. Selet the statement that BEST desribes

More information

23.1 Tuning controllers, in the large view Quoting from Section 16.7:

23.1 Tuning controllers, in the large view Quoting from Section 16.7: Lesson 23. Tuning a real ontroller - modeling, proess identifiation, fine tuning 23.0 Context We have learned to view proesses as dynami systems, taking are to identify their input, intermediate, and output

More information

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory Partile-wave symmetry in Quantum Mehanis And Speial Relativity Theory Author one: XiaoLin Li,Chongqing,China,hidebrain@hotmail.om Corresponding author: XiaoLin Li, Chongqing,China,hidebrain@hotmail.om

More information

A special reference frame is the center of mass or zero momentum system frame. It is very useful when discussing high energy particle reactions.

A special reference frame is the center of mass or zero momentum system frame. It is very useful when discussing high energy particle reactions. High nergy Partile Physis A seial referene frame is the enter of mass or zero momentum system frame. It is very useful when disussing high energy artile reations. We onsider a ollision between two artiles

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

Einstein s Three Mistakes in Special Relativity Revealed. Copyright Joseph A. Rybczyk

Einstein s Three Mistakes in Special Relativity Revealed. Copyright Joseph A. Rybczyk Einstein s Three Mistakes in Speial Relativity Revealed Copyright Joseph A. Rybzyk Abstrat When the evidene supported priniples of eletromagneti propagation are properly applied, the derived theory is

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 3 Aug 2006

arxiv:cond-mat/ v1 [cond-mat.str-el] 3 Aug 2006 arxiv:ond-mat/0608083v1 [ond-mat.str-el] 3 Aug 006 Raman sattering for triangular latties spin- 1 Heisenberg antiferromagnets 1. Introdution F. Vernay 1,, T. P. Devereaux 1, and M. J. P. Gingras 1,3 1

More information

REVIEW QUESTIONS Chapter 15

REVIEW QUESTIONS Chapter 15 hemistry 10 ANSWER EY REVIEW QUESTIONS hapter 15 1. A mixture of 0.10 mol of NO, 0.050 mol of H and 0.10 mol of HO is plaed in a 1.0-L flask and allowed to reah equilibrium as shown below: NO (g) + H (g)

More information

arxiv:cond-mat/ v1 10 Sep 2005

arxiv:cond-mat/ v1 10 Sep 2005 Absorption of Nulear Gamma Radiation by Heavy Eletrons on Metalli Hydride Surfaes A. Widom Physis Department, Northeastern University, 0 Forsyth Street, Boston MA 025 L. Larsen Lattie Energy LLC, 75 North

More information

Nuclear Shell Structure Evolution Theory

Nuclear Shell Structure Evolution Theory Nulear Shell Struture Evolution Theory Zhengda Wang (1) Xiaobin Wang () Xiaodong Zhang () Xiaohun Wang () (1) Institute of Modern physis Chinese Aademy of SienesLan Zhou P. R. China 70000 () Seagate Tehnology

More information

Supporting Information

Supporting Information This journal is The Owner Soieties 014 Supporting Information Extintion and Extra-High Depolarized Light Sattering Spetra of Gold Nanorods with Improved Purity: Diret and Inverse Problems Boris N. Khlebtsov,

More information

Supporting Information

Supporting Information Supporting Information Olsman and Goentoro 10.1073/pnas.1601791113 SI Materials Analysis of the Sensitivity and Error Funtions. We now define the sensitivity funtion Sð, «0 Þ, whih summarizes the steepness

More information

Wavepacket dynamics in solid and its quantization

Wavepacket dynamics in solid and its quantization Wavepaket dynamis in solid and its quantization C.P. Chuu Q. Niu Dept. of Physis Ming-Che Chang Ot. 0, 007 Review: wavepaket dynamis QHE, AHE, SHE Multi-omponent wavepaket Dira eletron semiondutor eletron

More information

(E B) Rate of Absorption and Stimulated Emission. π 2 E 0 ( ) 2. δ(ω k. p. 59. The rate of absorption induced by the field is. w k

(E B) Rate of Absorption and Stimulated Emission. π 2 E 0 ( ) 2. δ(ω k. p. 59. The rate of absorption induced by the field is. w k p. 59 Rate of Absorption and Stimulated Emission The rate of absorption indued by the field is π w k ( ω) ω E 0 ( ) k ˆ µ δω ( k ω) The rate is learly dependent on the strength of the field. The variable

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:.8/nphys SUPPLEMENTARY INFORMATION for The Quantum-Optial Josephson Interferometer D. Gerae,, Hakan E. Türei, A. Imamoglu, V. Giovannetti, and Rosario Fazio, Institute of

More information

New Potential of the. Positron-Emission Tomography

New Potential of the. Positron-Emission Tomography International Journal of Modern Physis and Appliation 6; 3(: 39- http://www.aasit.org/journal/ijmpa ISSN: 375-387 New Potential of the Positron-Emission Tomography Andrey N. olobuev, Eugene S. Petrov,

More information

physica status solidi current topics in solid state physics

physica status solidi current topics in solid state physics physia pss urrent topis in solid state physis Eletromagnetially indued transpareny in asymmetri double quantum wells in the transient regime Leonardo Silvestri1 and Gerard Czajkowski2 1 2 Dipartimento

More information

The Laws of Acceleration

The Laws of Acceleration The Laws of Aeleration The Relationships between Time, Veloity, and Rate of Aeleration Copyright 2001 Joseph A. Rybzyk Abstrat Presented is a theory in fundamental theoretial physis that establishes the

More information

Final Exam: know your section, bring your ID!

Final Exam: know your section, bring your ID! Chapter 15: Equilibrium Part 1 Read: BLB 15.1 3 HW: BLB 15:13,14, 21 Supplemental 15:1 4 Know: Chemial Equilibrium Catalysts Equilibrium Constant Equilibrium onstant expression Homogeneous/Heterogeneous

More information

HALO/CLUSTER EFFECTIVE FIELD THEORY. U. van Kolck

HALO/CLUSTER EFFECTIVE FIELD THEORY. U. van Kolck Unité mixte de reherhe CNRS-INP3 Université Paris-Sud 9406 Orsay Cedex http://ipnweb.inp3.fr HALO/CLUSTER EFFECTIVE FIELD THEORY U. van Kolk Université Paris-Sud and University of Arizona Supported in

More information

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way.

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way. Chapter 14 The Conept of Equilibrium and the Equilibrium Constant In hapter 1 we dealt with Physial Equilibrium Physial Changes HO 2 (l) HO 2 (g) In hapter 14 we will learn about Chemial Equilibrium. We

More information

Planck unit theory: Fine structure constant alpha and sqrt of Planck momentum

Planck unit theory: Fine structure constant alpha and sqrt of Planck momentum Plank unit theory: Fine struture onstant alpha and sqrt of Plank momentum Malolm Maleod e-mail: mail4malolm@gmx.de The primary onstants; G,, h, e, α, k B, m e... range in preision from low G (4-digits)

More information

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p .. RADIATIVE TRANSITIONS Marh 3, 5 Leture XXIV Quantization of the E-M field. Radiative transitions We onsider the nonrelativisti regime so no pair prodution or annihilation.the hamiltonian for interation

More information

E γ. Electromagnetic Radiation -- Photons. 2. Mechanisms. a. Photoelectric Effect: photon disappears. b. Compton Scattering: photon scatters

E γ. Electromagnetic Radiation -- Photons. 2. Mechanisms. a. Photoelectric Effect: photon disappears. b. Compton Scattering: photon scatters III. letromagneti Radiation -- Photons. Mehanisms a. Photoeletri ffet: γ photon disappears b. Compton Sattering: γ photon satters. Pair Prodution: γ e ± pair produed C. Photoeletri ffet e Sine photon is

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

Thermal interaction between free convection and forced convection along a vertical conducting wall

Thermal interaction between free convection and forced convection along a vertical conducting wall Termal interation between free onvetion and fored onvetion along a vertial onduting wall J.-J. Su, I. Pop Heat and Mass Transfer 35 (1999) 33±38 Ó Springer-Verlag 1999 Abstrat A teoretial study is presented

More information

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering 561 Fall 2017 Leture #1 page 1 Leture #1: Quantum Mehanis Historial Bakground Photoeletri Effet Compton Sattering Robert Field Experimental Spetrosopist = Quantum Mahinist TEXTBOOK: Quantum Chemistry,

More information

The Janus Cosmological Model and the fluctuations of the CMB

The Janus Cosmological Model and the fluctuations of the CMB The anus Cosmologial Model and the flutuations of the CMB.P. PETIT E-mail: p.petit@mailaps.org It is shown than, in the framework of the anus Cosmologial Model the gravitational instability whih ours in

More information

1 Josephson Effect. dx + f f 3 = 0 (1)

1 Josephson Effect. dx + f f 3 = 0 (1) Josephson Effet In 96 Brian Josephson, then a year old graduate student, made a remarkable predition that two superondutors separated by a thin insulating barrier should give rise to a spontaneous zero

More information

Particle Properties of Wave

Particle Properties of Wave 1 Chapter-1 Partile Properties o Wave Contains: (Blakbody radiation, photoeletri eet, Compton eet).1: Blakbody radiation A signiiant hint o the ailure o lassial physis arose rom investigations o thermalradiation

More information

pss A multi-sensor study of Cl 2 etching of polycrystalline Si solidi status physica Pete I. Klimecky and Fred L. Terry, Jr. *

pss A multi-sensor study of Cl 2 etching of polycrystalline Si solidi status physica Pete I. Klimecky and Fred L. Terry, Jr. * phys. stat. sol. () 5, No. 5, 5 (8) / DOI./pss.77787 A multi-sensor study of Cl ething of polyrystalline Si physia pss www.pss-.om urrent topis in solid state physis Pete I. Klimeky and Fred L. Terry,

More information

Generalized Dimensional Analysis

Generalized Dimensional Analysis #HUTP-92/A036 7/92 Generalized Dimensional Analysis arxiv:hep-ph/9207278v1 31 Jul 1992 Howard Georgi Lyman Laboratory of Physis Harvard University Cambridge, MA 02138 Abstrat I desribe a version of so-alled

More information

Ab Initio Theory of Gate Induced Gaps in Graphene Bilayers

Ab Initio Theory of Gate Induced Gaps in Graphene Bilayers Title APS Marh Meeting Ab Initio Theory of Gate Indued Gaps in Graphene Bilayers The University of Texas at Austin Hongki Min, B.R.Sahu, Sanjay K.Banerjee and A.H.MaDonald Phys. Rev.B 75, 555 (007) Outline

More information

Controller Design Based on Transient Response Criteria. Chapter 12 1

Controller Design Based on Transient Response Criteria. Chapter 12 1 Controller Design Based on Transient Response Criteria Chapter 12 1 Desirable Controller Features 0. Stable 1. Quik responding 2. Adequate disturbane rejetion 3. Insensitive to model, measurement errors

More information

11.4 Molecular Orbital Description of the Hydrogen Molecule Electron Configurations of Homonuclear Diatomic Molecules

11.4 Molecular Orbital Description of the Hydrogen Molecule Electron Configurations of Homonuclear Diatomic Molecules Chap Moleular Eletroni Struture Table of Contents. The orn-oppenheimer pproximation -. The Hydrogen Moleule Ion.3 Calulation of the Energy of the Hydrogen Moleule Ion.4 Moleular Orbital Desription of the

More information

Momentum and Energy of a Mass Consisting of. Confined Photons and Resulting Quantum. Mechanical Implications

Momentum and Energy of a Mass Consisting of. Confined Photons and Resulting Quantum. Mechanical Implications Adv. Studies Theor. Phys., Vol. 7, 03, no., 555 583 HIKARI Ltd, www.m-hikari.om Momentum and Energy of a Mass Consisting of Confined Photons and Resulting Quantum Mehanial Impliations Christoph Shultheiss

More information

arxiv: v1 [cond-mat.mes-hall] 17 Nov 2011

arxiv: v1 [cond-mat.mes-hall] 17 Nov 2011 Commutator formalism for pairs correlated through Schmidt decomposition as used in Quantum Information Monique Combescot Institut des NanoSciences de Paris, CNRS, Université Pierre et Marie Curie, 4 place

More information

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν INTRODUCTION So far, the only information we have been able to get about the universe beyond the solar system is from the eletromagneti radiation that reahes us (and a few osmi rays). So doing Astrophysis

More information

Let s move to Bound States

Let s move to Bound States Let s move to Bound States When we disuss bound states of two objets in entral-fore potential, kineti energy and potential energy are ~the same. How does this ompare to the rest energy of the objets? Hydrogen

More information

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009 Radiation proesses and mehanisms in astrophysis R Subrahmanyan Notes on ATA letures at UWA, Perth May 009 Synhrotron radiation - 1 Synhrotron radiation emerges from eletrons moving with relativisti speeds

More information

Chapter 8 Thermodynamic Relations

Chapter 8 Thermodynamic Relations Chapter 8 Thermodynami Relations 8.1 Types of Thermodynami roperties The thermodynami state of a system an be haraterized by its properties that an be lassified as measured, fundamental, or deried properties.

More information

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3.

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3. Solutions to HW 10 Problems and Exerises: 37.. Visualize: At t t t 0 s, the origins of the S, S, and S referene frames oinide. Solve: We have 1 ( v/ ) 1 (0.0) 1.667. (a) Using the Lorentz transformations,

More information

n n=1 (air) n 1 sin 2 r =

n n=1 (air) n 1 sin 2 r = Physis 55 Fall 7 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.4, 7.6, 7.8 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with index

More information

Breakdown of the Slowly Varying Amplitude Approximation: Generation of Backward Traveling Second Harmonic Light

Breakdown of the Slowly Varying Amplitude Approximation: Generation of Backward Traveling Second Harmonic Light Claremont Colleges Sholarship @ Claremont All HMC Faulty Publiations and Researh HMC Faulty Sholarship 1-1-003 Breakdown of the Slowly Varying Amplitude Approximation: Generation of Bakward Traveling Seond

More information

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE?

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? The stars are spheres of hot gas. Most of them shine beause they are fusing hydrogen into helium in their entral parts. In this problem we use onepts of

More information

Gravity from the Uncertainty Principle.

Gravity from the Uncertainty Principle. Gravity from the Unertainty Priniple. M.E. MCulloh Otober 29, 2013 Abstrat It is shown here that Newton's gravity law an be derived from the unertainty priniple. The idea is that as the distane between

More information

Answers to test yourself questions

Answers to test yourself questions Answers to test yoursel questions Topi.1 Osilliations 1 a A n osillation is any motion in whih the displaement o a partile rom a ixed point keeps hanging diretion and there is a periodiity in the motion

More information

Simple Considerations on the Cosmological Redshift

Simple Considerations on the Cosmological Redshift Apeiron, Vol. 5, No. 3, July 8 35 Simple Considerations on the Cosmologial Redshift José Franiso Garía Juliá C/ Dr. Maro Mereniano, 65, 5. 465 Valenia (Spain) E-mail: jose.garia@dival.es Generally, the

More information

CHAPTER 26 The Special Theory of Relativity

CHAPTER 26 The Special Theory of Relativity CHAPTER 6 The Speial Theory of Relativity Units Galilean-Newtonian Relativity Postulates of the Speial Theory of Relativity Simultaneity Time Dilation and the Twin Paradox Length Contration Four-Dimensional

More information

Berry s phase for coherent states of Landau levels

Berry s phase for coherent states of Landau levels Berry s phase for oherent states of Landau levels Wen-Long Yang 1 and Jing-Ling Chen 1, 1 Theoretial Physis Division, Chern Institute of Mathematis, Nankai University, Tianjin 300071, P.R.China Adiabati

More information

finalsol.nb In my frame, I am at rest. So the time it takes for the missile to reach me is just 8µ106 km

finalsol.nb In my frame, I am at rest. So the time it takes for the missile to reach me is just 8µ106 km finalsol.n Physis D, Winter 005 Final Exam Solutions Top gun a v enemy = 0.4 in my enemy's frame, v' missile = 0.7 0.4 + 0.7 so, in my frame, v missile = Å º 0.859 +H0.4 H0.7 (it must e less than!) In

More information

PID: ToF principle. PID: ToF principle

PID: ToF principle. PID: ToF principle 16 16 PID: ToF priniple PID: ToF priniple It requires very good time resolution and a suffiient path L Given partiles m 1 and m with veloities β 1 and β : Sine from p = γmv = γmβ and E = γm Given a beam

More information

Class XII - Physics Electromagnetic Waves Chapter-wise Problems

Class XII - Physics Electromagnetic Waves Chapter-wise Problems Class XII - Physis Eletromagneti Waves Chapter-wise Problems Multiple Choie Question :- 8 One requires ev of energy to dissoiate a arbon monoxide moleule into arbon and oxygen atoms The minimum frequeny

More information

PAST YEAR EXAM PAPER SOLUTION SEMESTER II, ACADEMIC YEAR PAP261 Introduction to Lasers (Solution by: Phann Sophearin)

PAST YEAR EXAM PAPER SOLUTION SEMESTER II, ACADEMIC YEAR PAP261 Introduction to Lasers (Solution by: Phann Sophearin) SPMS Physis Club PAST YEAR EXAM PAPER SOLUTION SEMESTER II, ACADEMIC YEAR 009-0 PAP6 Introdution to Lasers (Solution by: Phann Sophearin) Question (a) - Three basi eleents required: avity, gain, and pup.

More information

Answer: Easiest way to determine equilibrium concentrations is to set up a table as follows: 2 SO 2 + O 2 2 SO 3 initial conc change

Answer: Easiest way to determine equilibrium concentrations is to set up a table as follows: 2 SO 2 + O 2 2 SO 3 initial conc change Problem #1 6 mol of SO and 4 mol of O are plaed into a 1 L flask at temperature, T. The equilibrium onentration of SO is found to be 4 mol/l. Determine K. SO (g) + O (g) SO (g) K = [SO ] / [SO ] [O ] Answer:

More information

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become Relativity and quantum mehanis: Jorgensen 1 revisited 1. Introdution Bernhard Rothenstein, Politehnia University of Timisoara, Physis Department, Timisoara, Romania. brothenstein@gmail.om Abstrat. We first

More information

Evaluation of effect of blade internal modes on sensitivity of Advanced LIGO

Evaluation of effect of blade internal modes on sensitivity of Advanced LIGO Evaluation of effet of blade internal modes on sensitivity of Advaned LIGO T0074-00-R Norna A Robertson 5 th Otober 00. Introdution The urrent model used to estimate the isolation ahieved by the quadruple

More information

Atomic and Nuclear Physics

Atomic and Nuclear Physics Atomi and Nulear Physis X-ray physis Compton effet and X-ray physis LD Physis Leaflets P6.3.7. Compton effet: Measuring the energy of the sattered photons as a funtion of the sattering angle Objets of

More information

Supplementary Information. Infrared Transparent Visible Opaque Fabrics (ITVOF) for Personal Cooling

Supplementary Information. Infrared Transparent Visible Opaque Fabrics (ITVOF) for Personal Cooling Supplementary Information Infrared Transparent Visible Opaque Fabris (ITVOF) for Personal Cooling Jonathan K. Tong 1,Ɨ, Xiaopeng Huang 1,Ɨ, Svetlana V. Boriskina 1, James Loomis 1, Yanfei Xu 1, and Gang

More information

Accelerator Physics Particle Acceleration. G. A. Krafft Old Dominion University Jefferson Lab Lecture 4

Accelerator Physics Particle Acceleration. G. A. Krafft Old Dominion University Jefferson Lab Lecture 4 Aelerator Physis Partile Aeleration G. A. Krafft Old Dominion University Jefferson Lab Leture 4 Graduate Aelerator Physis Fall 15 Clarifiations from Last Time On Crest, RI 1 RI a 1 1 Pg RL Pg L V Pg RL

More information

Excitonic quasi-molecule consisting of two semiconductor quantum dots: A theory

Excitonic quasi-molecule consisting of two semiconductor quantum dots: A theory xitoni quasi-moleule onsisting of two semiondutor quantum dots: A theory Pokutnyi S.I. and Salejda W.. Introdution Chuіko Institute of Surfae Chemistry, National Aademy of Sienes of Ukraine, 7 General

More information

Plasma effects on electromagnetic wave propagation

Plasma effects on electromagnetic wave propagation Plasma effets on eletromagneti wave propagation & Aeleration mehanisms Plasma effets on eletromagneti wave propagation Free eletrons and magneti field (magnetized plasma) may alter the properties of radiation

More information