Chapter 15: Chemical Equilibrium

Size: px
Start display at page:

Download "Chapter 15: Chemical Equilibrium"

Transcription

1 Chapter 5: Chemial Equilibrium ahoot!. At eq, the rate of the forward reation is the rate of the reverse reation. equal to, slower than, faster than, the reverse of. Selet the statement that BEST desribes a system at equilibrium. The reation stops sine all reatants have beome produts. The reation stops sine all of the atalyst has been used. As soon produt forms other moleules form reatants. The reation stops beause equilibrium amounts havebeen reahed. 3. The eq expression for 4A + 3B < > C + D is. = [C][D]/[A][B ], = [A][B ]/[C][D], = [C] [D]/[A] 4 [B ] 3, = [A] 4 [B ] 3 /[C] [D] 4. The reverse eq expression for the 4A + 3B < > C + D is. = [C][D]/[A][B ], = [A][B ]/[C][D], = [C] [D]/[A] 4 [B ] 3, = [A] 4 [B ] 3 /[C] [D] 5. Equilibrium onstants typially have units of. M, M, M, None of the above 6. p = when. the reation is at eq, the reation is exothermi, all of the gases present are at the same pressure, n gas_produts = n gas_reatants 7. What is the p of Cl (g) + CO (g) < > COCl (g) at 35C given is 5.0?.0, 0.0, 0.0, What is the for 3O < > O 3 if the original was 5 for 4O 3 < > 6O? 5, 0., If the value of the is large, then at equilibrium mostly will be present. reatants, produts, atalysts, water 0. HA < > H + + A [HA] =.65 0 M, & [H + ] = [A ] = M at eq. =..79 0, , , The reation quotient Q is usually represented by. [reatants]/[produts], [produts]/[reatants], [reatants] x [produts], [reatants] + [produts]. Co(s) + H + (aq) < > Co + (aq) + H (g) Whih Q is orret? Q = [Co][H + ] /[Co + ][H ], Q = [Co + ][H ]/[H + ], Q = [Co + ][H ]/[Co][H + ], Q = [H + ] /[Co + ][H ] 3. Whih of the following is true if reation quotient Q is at eq? Q >, Q <, Q =, Q = 4. If =.39 and Q = 5. whih diretion do we go in to reah equilibrium? reverse, forward, remain the same, annot be predited. 5. Q for heterogeneous equilibria do not inlude onentrations of. pure liquids, pure solids, both, neither 6. CO + H < > CO + H O If H is added, [CO] eq will. inrease, derease, remain unhanged, 7. CO + H < > CO + H O If all speies are gases & the ontainer is ompressed, [CO] eq will. inrease, derease, remain unhanged, 8. CO + H < > CO + H O If H O is added, [CO] eq will. inrease, derease, remain unhanged, 9. CO + H < > CO + H O If CO is removed, [CO] eq will. inrease, derease, remain unhanged, 0. CO + H < > CO + H O Adding a atalyst will ause [CO] eq to. inrease, derease, remain unhanged,. CO + H < > CO + H O If this is an endothermi reation and T is inreased, [CO] eq will. inrease, derease, remain unhanged,. CO + H < > CO + H O If this is an endothermi reation and T is inreased, the value of will. inrease, derease, remain unhanged, 3. CO + H < > CO + H O Adding a Ne to this reation will ause the will ause [CO] eq to. inrease, derease, remain unhanged, 4. Ni(CO) 4(g) < > Ni (s) + 4 CO (g) Adding nikel to this reation will ause the equilibrium to. Shift toward produts, shift toward reatants, remain unhanged, hange based on the amount added Numeri Example: A reation vessel ontains an eq mix of the following: P SO = atm, P O = atm, and P SO3 = atm. What is the eq onstant for the following reation? SO( g) O( g) SO3( g)

2 PSO SO O atm 3 4 p.66 0 P P (0.008 atm) (0.003 atm) Another Example: What is the p of the reation below at 35C given = 5.0? Cl CO COCl ( g) ( g) ( g) [ COCl] L units are [ Cl ][ CO] mol n L Latm p ( RT) ( ) mol mol p 0.0 Appliation of Mass Ation Rules I: Calulate the eq onst for D A Bgiven the info below. AB C 3.3 C D 0.04 we need to look from the reverse diretion for both of these reations C AB D C D AB Appliation of Mass Ation Rules II: If the eq. onstant at a given temperature is.4 x 0 3 for SO O SO what is the eq. onstant for the reations below? ( g) ( g) 3( g) a.) SO O SO ( g) ( g) 3( g) b.) SO3( g) SO( g) O( g) = (.4 x 0 ) = (.4 x 0 ) 47.) SO3( g) SO( g) O ( g) = (.4 x 0 ) 0.4 Calulating Equilibrium Constant when all eq onentrations are known: What is the for SO( g) O( g) SO3( g) if their equilibrium onentrations are [SO ]=0.5 M, [O ]=0.68, [SO 3 ]=.5. Write down the equilibrium expression symbolially: 3 SO SO O. Plug the give equilibrium values into the expression and solve: SO O SO Calulating Eq Constant with both initial and some eq onentrations known: we use an "ICE" table, "I"nitial, "C"hange, "E"q & stoihiometry -- Ex: What is the for SO( g) O( g) SO3( g) if the initial onentrations of reatants were [SO ]=0.50M and [O ]=0.680M and the equilibrium onentration of the produt is [SO 3 ]=0.050M?. Setup the ICE table SO O SO 3 Initial Change x x +x Eq??

3 . Use the given equilibrium onentration to identify x x x Plug x into the table to get the missing equilibrium onentrations SO O SO 3 Initial Change (0.05) x Eq Write down the equilibrium expression symbolially and plug in values SO O SO Calulating Equilibrium onstant when the initial onentrations and %dissoiation is known: -- Ex: What is the for SO( g) O( g) SO3( g) if 0.500M of both reatants will be 0.5% dissoiated in order to reah equilibrium?. Setup the ICE table SO O SO 3 Initial Change x x +x Eq???. Use the given %dissoiation to identify x % dissoiation x initial _ onentration x Plug x into the table to get the missing equilibrium onentrations SO O SO 3 Initial Change (0.005) x Eq Write down the equilibrium expression symbolially and plug in values SO O SO Example with Q: Given the data below is the reation in equilibrium and if not in whih diretion will need to go in order to reah eq? A B =, [A] = 0.0 M, [B] =.0 M [ B].0 Q 0 < = therefore it will go in the forward diretion [ A] 0. Calulating Equilibrium Conentrations using "ICE" table, "I"nitial, "C"hange, "E"q ICE Example I: The value of = at 98 for the reation below, determine the eq onentrations if initially [H O] = M and [Cl O] = M. H O( g ) Cl O( g) HOCl( g). Write down the ICE table H O Cl O HOCl Initial Change x x +x Eq x x +x. Write down the equilibrium expression symbolially [ HOCl] [ H O] Cl O 3. Fill in the expression and get the quadrati equation 3

4 x 4x x x xx ( xx ) 4x x0.0900x 4x x x Use the quadrati equation to find x (hoose the positive value) Reall the quadrati equation: b b 4a for ax bx 0 x a in our ase, a = 3.900, b = , = x x x x or 4 x Plug the x value into the E row of the table and find the onentrations: x must be greater than zero therefore x = 5.70x0 4 Using this value we an determine what the onentrations are at eq: [H O] = x = = M [Cl O] = x = M [HOCl] = x = M ICE Example II: The value of for the thermal deomposition of hydrogen sulfide HS H S ( g ) ( g) ( g) is. x 0 6 at 400. A sample of gas in whih [H S] = 0.600M is heated to 400 in a sealed vessel. After hemial eq has been ahieved, what is the value of [H S]? Assume no H and S was present in the original sample.. Write down the ICE table H S H S Initial Change x +x +x Eq x +x +x. Write down the equilibrium expression symbolially: [ H][ S] HS 3. Fill in the expression x x 3 4x x x Here we annot use quadrati so instead we must use an assumption to find x: assume >> x0.600 x x 6 4x.0 x M x Verify assumption: %.94% 5% valid Use the E row to find the equilibrium onentrations:

5 Using x = M we an determine what the onentrations are at eq: [H S] = x = * = M [H ] = x = 0.07 M and [S ] = M ICE Example III: What are the eq onentrations of eah of the speies in the following reation, given the = 5. at 700 and the initial onentration of all speies is M? CO( g ) H O( g) CO( g) H( g) CO H O CO H Initial Change x x +x +x Eq x x x x [ CO][ H] (0.050 x)(0.050 x) (0.050 x) 5. [ CO][ HO] (0.050 x)(0.050 x) (0.050 x) (0.050 x) (0.050 x) (0.050 x) (0.050 x).58(0.050 x) x x x x M using this value we determine the onentrations: [CO] = [H O] = ( )M = 0.03 M [CO ] = [H ] = ( )M = M LCP Example I: For eah senario predit the diretion the reation goes to attain eq: CO(g) H(g) CH3 OH(g) a.) CO is added. reation goes toward produt (forward) b.) CH 3 OH is added. reation goes toward reatants (reverse).) Pressure is redued. n reatants = 3, n produts = reation goes toward reatants (reverse) d.) Volume is inreased. reation goes toward reatant (forward) LCP Example II: In what diretion will the eq shift when eah of the following hanges are made to the system at eq? NO 4 NO H 58.0kJ g g (a) NO 4g is added. reation goes toward produt (b) NO g is removed. reation goes toward produt () the total pressure is inreased by adding N g. reation remains unhanged sine the partial pressures of the reating speies is onstant at onstant volume (d) the volume is dereased. reation goes toward reatant sine n reatants =, n produts = (e) the temperature is dereased. reation goes toward reatant sine the proess is endothermi or NO 58.0 kj NO 4 g g 5

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Chapter 5 Chemial Equilibrium 5. The Conept of Equilibrium Figure: 3. from Chemistry by MMurray & Fey Figure 3.(a) NO 4( g) NO( g) olorless brown we start with reatant, N O 4, so the solution is olorless

More information

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way.

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way. Chapter 14 The Conept of Equilibrium and the Equilibrium Constant In hapter 1 we dealt with Physial Equilibrium Physial Changes HO 2 (l) HO 2 (g) In hapter 14 we will learn about Chemial Equilibrium. We

More information

General Equilibrium. What happens to cause a reaction to come to equilibrium?

General Equilibrium. What happens to cause a reaction to come to equilibrium? General Equilibrium Chemial Equilibrium Most hemial reations that are enountered are reversible. In other words, they go fairly easily in either the forward or reverse diretions. The thing to remember

More information

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 2/3/2014

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 2/3/2014 Amount of reatant/produt //01 quilibrium in Chemial Reations Lets look bak at our hypothetial reation from the kinetis hapter. A + B C Chapter 15 quilibrium [A] Why doesn t the onentration of A ever go

More information

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 5/27/2014

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 5/27/2014 Amount of reatant/produt 5/7/01 quilibrium in Chemial Reations Lets look bak at our hypothetial reation from the kinetis hapter. A + B C Chapter 15 quilibrium [A] Why doesn t the onentration of A ever

More information

Chapter 13, Chemical Equilibrium

Chapter 13, Chemical Equilibrium Chapter 13, Chemial Equilibrium You may have gotten the impression that when 2 reatants mix, the ensuing rxn goes to ompletion. In other words, reatants are onverted ompletely to produts. We will now learn

More information

2 How far? Equilibrium Answers

2 How far? Equilibrium Answers How far? Equilibrium Answers ratie: pages 37 39 1 Answer is D. Only a hange in temperature harges the value of the equilibrium onstant. Answer is D. [B] /[A] so [B] [A] or [B] [A] 1/ 3 Answer is B. Amounts

More information

Answer: Easiest way to determine equilibrium concentrations is to set up a table as follows: 2 SO 2 + O 2 2 SO 3 initial conc change

Answer: Easiest way to determine equilibrium concentrations is to set up a table as follows: 2 SO 2 + O 2 2 SO 3 initial conc change Problem #1 6 mol of SO and 4 mol of O are plaed into a 1 L flask at temperature, T. The equilibrium onentration of SO is found to be 4 mol/l. Determine K. SO (g) + O (g) SO (g) K = [SO ] / [SO ] [O ] Answer:

More information

REVIEW QUESTIONS Chapter 15

REVIEW QUESTIONS Chapter 15 hemistry 10 ANSWER EY REVIEW QUESTIONS hapter 15 1. A mixture of 0.10 mol of NO, 0.050 mol of H and 0.10 mol of HO is plaed in a 1.0-L flask and allowed to reah equilibrium as shown below: NO (g) + H (g)

More information

Sample Teaching Sequence (Hong Kong Secondary 4 6 Chemistry)

Sample Teaching Sequence (Hong Kong Secondary 4 6 Chemistry) Revised (1 Sept 009 Sample Teahing Suene (Hong Kong Seondary 4 6 Chemistry Topi: Chemial Equilibrium Teahing Suene Content 1.1 Reversible reations Examples of reversible reation; forward reation; reverse

More information

Test bank chapter (14)

Test bank chapter (14) Test bank hater (14) Choose the most orret answer 1. Whih is the orret equilibrium onstant exression for the following reation? Fe 2 O 3 (s) + 3H 2 (g) 2Fe(s) + 3H 2 O(g) a) K = [Fe 2 O 3 ] [H 2 ] 3 /[Fe]

More information

MC Practice F2 Solubility Equilibrium, Ksp Name

MC Practice F2 Solubility Equilibrium, Ksp Name MC Pratie F Solubility Equilibrium, Ksp Name This is pratie - Do NOT heat yourself of finding out what you are apable of doing. Be sure you follow the testing onditions outlined below. DO NOT USE A CALCULATOR.

More information

CHAPTER 16. Basic Concepts. Basic Concepts. The Equilibrium Constant. Reaction Quotient & Equilibrium Constant. Chemical Equilibrium

CHAPTER 16. Basic Concepts. Basic Concepts. The Equilibrium Constant. Reaction Quotient & Equilibrium Constant. Chemical Equilibrium Proerties of an Equilibrium System CHAPTER 6 Chemial Equilibrium Equilibrium systems are DYNAMIC (in onstant motion) REVERSIBLE an be aroahed from either diretion Pink to blue Co(H O) 6 Cl ---> > Co(H

More information

2. Failure to submit this paper in its entirety at the end of the examination may result in disqualification.

2. Failure to submit this paper in its entirety at the end of the examination may result in disqualification. Memorial University of Newfoundland St. John s, Newfoundland and Labrador Chemistry 101 Intersession 007 Midterm Exam May 8 th, 007 Time: 0 Minutes Name: MUN #: Dr. Peter Warburton READ THE FOLLOWING CAREFULLY!

More information

Final Exam: know your section, bring your ID!

Final Exam: know your section, bring your ID! Chapter 15: Equilibrium Part 1 Read: BLB 15.1 3 HW: BLB 15:13,14, 21 Supplemental 15:1 4 Know: Chemial Equilibrium Catalysts Equilibrium Constant Equilibrium onstant expression Homogeneous/Heterogeneous

More information

Module 4 Lesson 2 Exercises Answer Key squared square root

Module 4 Lesson 2 Exercises Answer Key squared square root Module Lesson Eerises Answer Key 1. The volume is 1 L so onentrations an be done by inspetion. Just substitute values and solve for K [ CO][ HO] K CO H (0.8)(0.8) (0.55) (0.55) K 0.659. [CH ][HS] K [H

More information

SOLVED QUESTIONS 1 / 2. in a closed container at equilibrium. What would be the effect of addition of CaCO 3 on the equilibrium concentration of CO 2?

SOLVED QUESTIONS 1 / 2. in a closed container at equilibrium. What would be the effect of addition of CaCO 3 on the equilibrium concentration of CO 2? SOLVED QUESTIONS Multile Choie Questions. and are the veloity onstants of forward and bakward reations. The equilibrium onstant k of the reation is (A) (B) (C) (D). Whih of the following reations will

More information

CHAPTERS 8-12 BOOKLET-3

CHAPTERS 8-12 BOOKLET-3 CHEMISTRY XI CHAPTERS 8-1 BKLET- Contents: Page No. Chapter 8 Chemial Equilibrium 181-199 Chapter 9 Redox Reations 00-19 Chapter 10 s & p Blok Elements part 1 0-49 Chapter 11 s & p Blok Elements part 50-77

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Equilibrium To be in equilibrium is to be in a state of balance: Chapter 15 Chemical Equilibrium - Static Equilibrium (nothing happens; e.g. a tug of war). - Dynamic Equilibrium (lots of things happen,

More information

Equilibrium 07 M07_CHSL_SB_IBD_9069_U07.indd /07/ :21

Equilibrium 07 M07_CHSL_SB_IBD_9069_U07.indd /07/ :21 07 Equilibrium Essential ideas 7.1 Many reations are reversible. These reations will reah a state of equilibrium when the rates of the forward reation and reverse reation are equal. The position of equilibrium

More information

Part II SECTION I : One or more options correct Type

Part II SECTION I : One or more options correct Type [1] JEE Advaned 2013/ Paper -2 Part II SECTION I : One or more options orret Type This setion ontains 8 multiple hoie questions. Eah question has four hoies (A), (B), (C) and (D), out of whih ONE or MORE

More information

CHAPTER 15 PRINCIPLES OF CHEMICAL EQUILIBRIUM

CHAPTER 15 PRINCIPLES OF CHEMICAL EQUILIBRIUM CHAPTER 15 PRINCIPLES OF CHEMICAL EQUILIBRIUM PRACTICE EXAMPLES 1A 1B (E) The reation is as follows: Cu (aq) Sn (aq) Cu (aq) Sn (aq) Therefore, the equilibrium exression is as follows: Cu Sn Cu Sn Rearranging

More information

JF Physical Chemistry JF CH 1101: Introduction to Physical Chemistry.

JF Physical Chemistry JF CH 1101: Introduction to Physical Chemistry. JF Physial Chemistry 010-011. JF CH 1101: Introdution to Physial Chemistry. Dr Mike Lyons. Shool of Chemistry Trinity College Dublin. melyons@td.ie A ompendium of past examination questions set on Physial

More information

Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene

Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene Exerpt from the Proeedings of the OMSOL onferene 010 Paris Improvements in the Modeling of the Self-ignition of Tetrafluoroethylene M. Bekmann-Kluge 1 *,. errero 1, V. Shröder 1, A. Aikalin and J. Steinbah

More information

Notation 2, 8, 1 2, 8, 2 2, 8

Notation 2, 8, 1 2, 8, 2 2, 8 Page 90 Atomi struture 2 1 a Contains 3 protons (1); and 4 neutrons (1) Page 90 Eletroni struture 2 a 2, 8 Type of reation Ionisation Nulear fission Nulear fusion Change in mass of nuleus Stays the same

More information

Chemical Equilibrium. Chapter

Chemical Equilibrium. Chapter Chemical Equilibrium Chapter 14 14.1-14.5 Equilibrium Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: 1.) the rates of the forward

More information

CEE 670 TRANSPORT PROCESSES IN ENVIRONMENTAL AND WATER RESOURCES ENGINEERING. Kinetics Lecture #1

CEE 670 TRANSPORT PROCESSES IN ENVIRONMENTAL AND WATER RESOURCES ENGINEERING. Kinetics Lecture #1 Updated: 8 Deember 0 Print version CEE 670 TRNSPORT PROCESSES IN ENVIRONMENTL ND WTER RESOURCES ENGINEERING Kinetis Leture # Introdution: Simple Rate Laws Clark, 9.-9.6 Brezonik, pp.-39 Introdution Kinetis

More information

Determination of the reaction order

Determination of the reaction order 5/7/07 A quote of the wee (or amel of the wee): Apply yourself. Get all the eduation you an, but then... do something. Don't just stand there, mae it happen. Lee Iaoa Physial Chemistry GTM/5 reation order

More information

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012

The Equilibrium State. Chapter 13 - Chemical Equilibrium. The Equilibrium State. Equilibrium is Dynamic! 5/29/2012 Chapter 13 - Chemical Equilibrium The Equilibrium State Not all chemical reactions go to completion; instead they attain a state of equilibrium. When you hear equilibrium, what do you think of? Example:

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

The Concept of Equilibrium

The Concept of Equilibrium The Concept of Equilibrium Reversible reactions As the concentrations of the reactants decrease the rate of reaction in the forward direction decreases. As the concentrations of the products increase the

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Chemical equilibrium is the point at which the concentrations of all species are constant. A dynamic equilibrium exists when the rates of

More information

9.4 Determination of the reaction order

9.4 Determination of the reaction order 0,1 0,2 0,3 r 0,1 r 0,2 r 0,3 t Signifiane r = k [A] [B] [C] One we determine the order of a reation, we an write out the rate equation of the reation and tell the details of the kineti harateristis of

More information

Chemical Equilibrium Basics

Chemical Equilibrium Basics Chemical Equilibrium Basics Reading: Chapter 16 of Petrucci, Harwood and Herring (8th edition) Problem Set: Chapter 16 questions 25, 27, 31, 33, 35, 43, 71 York University CHEM 1001 3.0 Chemical Equilibrium

More information

EQUILIBRIA. e Q = a D B

EQUILIBRIA. e Q = a D B I. Basis of Equilibrium. A. Q and equilibrium. EQUILIBRIA 1. Consider the general reaction bb + cc dd + ee a. Αs time elapses, [B] and [C] decrease causing the rate of the forward reaction to decrease.

More information

Chem 116 POGIL Worksheet - Week 8 Equilibrium Continued - Solutions

Chem 116 POGIL Worksheet - Week 8 Equilibrium Continued - Solutions Chem 116 POGIL Wrksheet - Week 8 Equilibrium Cntinued - Slutins Key Questins 1. Cnsider the fllwing reatin At 425 C, an equilibrium mixture has the fllwing nentratins What is the value f K? -2 [HI] = 1.01

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6. The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

Chemistry (Physical chemistry) Lecture 10.

Chemistry (Physical chemistry) Lecture 10. Chemistry (Physial hemistry) Leture 0. EPM, semester II by Wojieh Chrzanowsi, PhD, DS Wyłady współfinansowane ze środów Unii Europejsiej w ramah EFS, UDA-POKL 04.0.02.-00-37/-00 Absolwent Wydziału Chemiznego

More information

Chemical equilibrium. As you read ask yourself

Chemical equilibrium. As you read ask yourself Chemical equilibrium Reading: Chapter 15 (omit 15.7) As you read ask yourself What is meant by chemical equilibrium? How does the equilibrium constant expression depend on the nature of the species (liquids,

More information

Chem chemical reactions can go forward as well as in the reverse direction. concentrations of reactants and products become constant over time

Chem chemical reactions can go forward as well as in the reverse direction. concentrations of reactants and products become constant over time Chemical equilibrium Reading: Chapter 15 (omit 15.7) As you read ask yourself What is meant by chemical equilibrium? How does the equilibrium constant expression depend on the nature of the species (liquids,

More information

15.1 The Concept of Equilibrium

15.1 The Concept of Equilibrium Lecture Presentation Chapter 15 Chemical Yonsei University 15.1 The Concept of N 2 O 4 (g) 2NO 2 (g) 2 Chemical equilibrium occurs when a reaction and its reverse reaction proceed at the same rate. The

More information

Homework #5 Chapter 6 Chemical Equilibrium

Homework #5 Chapter 6 Chemical Equilibrium Homework #5 Chapter 6 Chemical Equilibrium 2. Assume the reaction is A + B C + D. It is given that K9 and K [C][D]. At the start of [A][B] the reaction, before equilibrium is reached, there are 8 A molecules,

More information

properties via a simple hydrolysis-based approach

properties via a simple hydrolysis-based approach Eletroni Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is The Royal Soiety of Chemistry 01 Supporting Information Salable synthesis of hollow O nanoubes with unique optial

More information

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g)

Equilibrium. Forward and Backward Reactions. Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) Equilibrium Forward and Backward Reactions Hydrogen reacts with iodine to make hydrogen iodide: H 2 (g) + I 2 (g) 2HI(g) forward rate = k f [H 2 ][I 2 ] 2HI(g) H 2 (g) + I 2 (g) backward rate = k b [HI]

More information

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011

University of Washington Department of Chemistry Chemistry 452/456 Summer Quarter 2011 Homework Assignment #4: Due at 500 pm Monday 8 July,. University of Washington Department of Chemistry Chemistry 45/456 Summer Quarter 0 ) o a very good approximation, ammonia obeys the Bertholet equation

More information

Review of classical thermodynamics

Review of classical thermodynamics Review of lassial thermodynamis Fundamental Laws, roperties and roesses () First Law - Energy Balane hermodynami funtions of state Internal energy, heat and work ypes of paths (isobari, isohori, isothermal,

More information

16. Hydrogen Shell Burning

16. Hydrogen Shell Burning 16. Hydrogen Shell Burning a) Chandrasekhar-Shönberg Limit After ignition of H-burning in shell, entral He-ore is inert : T too low for ignition of He ( 17) no nulear energy generation in ore dt/dr ~ 0

More information

Chemical Equilibrium - Chapter 15

Chemical Equilibrium - Chapter 15 Chemical Equilibrium - Chapter 15 1. Dynamic Equilibrium a A + b B c C + d D At Equilibrium: Reaction is proceeding in both directions at the same rate. There is no net change in concentrations of reactants

More information

(i.e., equilibrium is established) leads to: K = k 1

(i.e., equilibrium is established) leads to: K = k 1 CHEMISTRY 104 Help Sheet #8 Chapter 12 Equilibrium Do the topics appropriate for your lecture http://www.chem.wisc.edu/areas/clc (Resource page) Prepared by Dr. Tony Jacob Nuggets: Equilibrium Constant

More information

C h a p t e r 13. Chemical Equilibrium

C h a p t e r 13. Chemical Equilibrium C h a p t e r 13 Chemical Equilibrium Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are equal and the concentrations of the reactants and products remain constant

More information

EQUILIBRIUM GENERAL CONCEPTS

EQUILIBRIUM GENERAL CONCEPTS 017-11-09 WHEN THE REACTION IS IN EQUILIBRIUM EQUILIBRIUM GENERAL CONCEPTS The concentrations of all species remain constant over time, but both the forward and reverse reaction never cease When a system

More information

Chapter 8 Thermodynamic Relations

Chapter 8 Thermodynamic Relations Chapter 8 Thermodynami Relations 8.1 Types of Thermodynami roperties The thermodynami state of a system an be haraterized by its properties that an be lassified as measured, fundamental, or deried properties.

More information

An excess of concentrated hydrochloric acid is added to separate aqueous solutions containing [Cu(H 2 O) 6 ] 2 and [Co(H 2 O) 6 ] 2.

An excess of concentrated hydrochloric acid is added to separate aqueous solutions containing [Cu(H 2 O) 6 ] 2 and [Co(H 2 O) 6 ] 2. 1 An exess of a given reagent is added to eah of the following pairs of aqueous metal ions. For eah metal ion, state the initial olour of the solution and the final oservation that you would make. In eah

More information

Lecture 4. Professor Hicks Inorganic Chemistry (CHE152) Add the following homework problems Chapter 14: 61, 63, 69, 71. Equilibrium for a Multistep

Lecture 4. Professor Hicks Inorganic Chemistry (CHE152) Add the following homework problems Chapter 14: 61, 63, 69, 71. Equilibrium for a Multistep Lecture 4 Professor Hicks Inorganic Chemistry (CHE152) Add the following homework problems Chapter 14: 61, 63, 69, 71 Equilibrium for a Multistep Mechanism A + 2B k 1F k 1R C At equilibrium forward and

More information

Chapter 15 Equilibrium

Chapter 15 Equilibrium Chapter 15. Chemical Equilibrium Common Student Misconceptions Many students need to see how the numerical problems in this chapter are solved. Students confuse the arrows used for resonance ( )and equilibrium

More information

Chem 1B Dr. White 1 Chapter 13: Chemical Equilibrium Outline Chemical Equilibrium. A. Definition:

Chem 1B Dr. White 1 Chapter 13: Chemical Equilibrium Outline Chemical Equilibrium. A. Definition: Chem 1B Dr. White 1 Chapter 13: Chemical Equilibrium Outline 13.1. Chemical Equilibrium A. Definition: B. Consider: N 2 O 4 (g, colorless) 2NO 2 (g, brown) C. 3 Main Characteristics of Equilibrium 13.2-13.4.

More information

January 03, Ch 13 SB equilibrium.notebook

January 03, Ch 13 SB equilibrium.notebook Ch 13: Chemical Equilibrium exists when 2 opposing reactions occur simultaneously at the same rate (dynamic rather than static) Forward rate = reverse rate https://www.youtube.com/watch?v=wld_imyqagq The

More information

Heat exchangers: Heat exchanger types:

Heat exchangers: Heat exchanger types: Heat exhangers: he proess of heat exhange between two fluids that are at different temperatures and separated by a solid wall ours in many engineering appliations. he devie used to implement this exhange

More information

(g) + 3 H 2. (g) 2 NH 3. 1) Only gases and dissolved species appear in an equilibrium expression. 4 NH 3. O(g) K c = (s) + 2N 2.

(g) + 3 H 2. (g) 2 NH 3. 1) Only gases and dissolved species appear in an equilibrium expression. 4 NH 3. O(g) K c = (s) + 2N 2. Chapter 16: Chemical Equilibrium What is meant by an equilibrium system? What is an equilibrium expression? N 2 +3 H 2 2 NH 3 1) Only gases and dissolved species appear in an equilibrium expression. 4

More information

Chemical Kinetics and Equilibrium

Chemical Kinetics and Equilibrium Chemical Kinetics and Equilibrium 1 Which statement incorrectly describes a chemical reaction approaching equilibrium? As a chemical reaction approaches equilibrium, the net change in the amount of reactants

More information

Chapter 14: Chemical Equilibrium. Mrs. Brayfield

Chapter 14: Chemical Equilibrium. Mrs. Brayfield Chapter 14: Chemical Equilibrium Mrs. Brayfield 14.2: Dynamic Equilibrium Remember from chapter 13 that reaction rates generally increase with increasing concentration of the reactions and decreases with

More information

CHAPTER 3: CHEMICAL EQUILIBRIUM

CHAPTER 3: CHEMICAL EQUILIBRIUM CHAPTER 3: CHEMICAL EQUILIBRIUM 1 LESSON OUTCOME Write & explain the concepts of chemical equilibrium Derive the equilibrium constant Kc or Kp Solving the problem using the ICE table 2 Equilibrium is a

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS

15/04/2018 EQUILIBRIUM- GENERAL CONCEPTS 15/04/018 EQUILIBRIUM- GENERAL CONCEPTS When a system is at equilibrium, the forward and reverse reactions are proceeding at the same rate. The concentrations of all species remain constant over time,

More information

Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make?

Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make? Chapter 15: Chemical Equilibrium: How Much Product Does a Reaction Really Make? End-of-Chapter Problems: 15.1-15.10, 15.13-15.14, 15.17-15.91, 15.94-99, 15.10-15.103 Example: Ice melting is a dynamic process:

More information

Chapter 13: Chemical Equilibrium

Chapter 13: Chemical Equilibrium Chapter 13: Chemical Equilibrium 13.1 The Equilibrium Condition Equilibrium: a state in which no observable changes occur H 2 O (l) H 2 O (g) Physical equilibrium: no chemical change. N 2(g) + 3H 2(g)

More information

Chapter 6: Chemical Equilibrium

Chapter 6: Chemical Equilibrium Chapter 6: Chemical Equilibrium 6.1 The Equilibrium Condition 6.2 The Equilibrium Constant 6.3 Equilibrium Expressions Involving Pressures 6.4 The Concept of Activity 6.5 Heterogeneous Equilibria 6.6 Applications

More information

UNIT 11 Practice Test Page 1 of 13 Equilibrium

UNIT 11 Practice Test Page 1 of 13 Equilibrium UNIT 11 Practice Test Page 1 of 13 Do NOT write on this test. $0.10/page lost or damaged fee. 1. In which of the following does the reaction go farthest to completion? A. K = 10 5 B. K = 10 5 C. K = 1000

More information

KINETICS OF IRON OXIDE DIRECT REDUCTION BY COAL E.R. ABRIL 1

KINETICS OF IRON OXIDE DIRECT REDUCTION BY COAL E.R. ABRIL 1 KINETICS OF IRON OXIDE DIRECT REDUCTION BY COAL E.R. ABRIL 1 CIMM- Av.Velez Sarsfield 1561 C.P.5000 Córdoba, Argentina. aabril@intiemor.gov.ar Abstrat - A new interpretation to the kinetis of iron oxide

More information

Name Chem 6 Section #

Name Chem 6 Section # Equilibrium Constant and its Meaning 1. Write the expressions for K eq for the following reactions. a) CH 4 (g) + 2 H 2 S(g) CS 2 (g) + 4 H 2 (g) b) 2 N 2 O 5 (g) 4 NO 2 (g) + O 2 (g) c) 3 O 2 (g) 2 O

More information

Mechanistic Model for Reactive Transport of Radionuclides on Iron-(Oxy)Hydroxide Colloids at the Yucca Mountain Repository

Mechanistic Model for Reactive Transport of Radionuclides on Iron-(Oxy)Hydroxide Colloids at the Yucca Mountain Repository U.S. Department of Energy Offie of Civilian Radioative Waste Management Mehanisti Model for Reative Transport of Radionulides on Iron-(Oxy)Hydroxide Colloids at the Yua Mountain Repository Presented to:

More information

CHAPTER 7: Chemical Equilibrium

CHAPTER 7: Chemical Equilibrium CHAPTER 7: Chemical Equilibrium Chemical Reactions and Equilibrium Calculating Equilibrium Constants The Reaction Quotient Calculation of Gas-Phase Equilibria The effect of External Stresses: Le Châtelier

More information

Equilibrium means that the rxn rates are equal. evaporation H20(l) condensation

Equilibrium means that the rxn rates are equal. evaporation H20(l) condensation Reversible reactions Most chemical reactions are reversible they can occur backwards as well as forwards reactants products Consider an open container of water (non-equilibrium) A closed water bottle is

More information

Chapter 14: Chemical Equilibrium

Chapter 14: Chemical Equilibrium Chapter 14: Chemical Equilibrium Chemical Equilibrium What does is mean to describe a chemical reaction as being in a state of dynamic equilibrium? What are the characteristics and requirements of dynamic

More information

III. SURFACE PROPERTIES III.A. SURFACE TENSION SURFACE PROPERTIES

III. SURFACE PROPERTIES III.A. SURFACE TENSION SURFACE PROPERTIES III. SURFACE PROPERTIES III.A. SURFACE TENSION GOAL: To investigate the influene of the solution onentration and/or the kind of the solute on the surfae tension INTRODUCTION Liquids tend to adopt shapes

More information

Chemical Equilibrium. Chapter 8

Chemical Equilibrium. Chapter 8 Chemical Equilibrium Chapter 8 Equilibrium is a state in which there are no observable changes as time goes by. Chemical equilibrium is achieved when: the rates of the forward and reverse reactions are

More information

CHAPTER 13 CHEMICAL EQUILIBRIUM. Questions. The Equilibrium Constant

CHAPTER 13 CHEMICAL EQUILIBRIUM. Questions. The Equilibrium Constant CHATER 1 CHEMICAL EQUILIBRIUM Questions 10. a. This experiment starts with only H and N, and no NH present. From the initial mixture diagram, there is three times as many H as N molecules. So the green

More information

CHEMICAL EQUILIBRIUM Chapter 13

CHEMICAL EQUILIBRIUM Chapter 13 1 CHEMICAL EQUILIBRIUM Chapter 13 Pb 2+ (aq) + 2 Cl (aq) PbCl 2 (s) 1 Objectives Briefly review what we know of equilibrium Define the Equilibrium Constant (K eq ) and Reaction Quotient (Q) Determining

More information

Chapter 15. Chemical Equilibrium

Chapter 15. Chemical Equilibrium Chapter 15. Chemical Equilibrium 15.1 The Concept of Equilibrium Consider colorless frozen N 2 O 4. At room temperature, it decomposes to brown NO 2. N 2 O 4 (g) 2NO 2 (g) At some time, the color stops

More information

Mass Transfer 2. Diffusion in Dilute Solutions

Mass Transfer 2. Diffusion in Dilute Solutions Mass Transfer. iffusion in ilute Solutions. iffusion aross thin films and membranes. iffusion into a semi-infinite slab (strength of weld, tooth deay).3 Eamples.4 ilute diffusion and onvetion Graham (85)

More information

Singular Event Detection

Singular Event Detection Singular Event Detetion Rafael S. Garía Eletrial Engineering University of Puerto Rio at Mayagüez Rafael.Garia@ee.uprm.edu Faulty Mentor: S. Shankar Sastry Researh Supervisor: Jonathan Sprinkle Graduate

More information

Journal of Chemical and Pharmaceutical Research, 2014, 6(10): Research Article

Journal of Chemical and Pharmaceutical Research, 2014, 6(10): Research Article Available online www.jopr.om Journal of Chemial and Pharmaeutial Researh, 014, 6(10:441-449 Researh Artile ISSN : 0975-7384 CODEN(USA : JCPRC5 Modeling and simulation of a wetted-wall olumn for SO absorption

More information

Equilibrium point of any reaction is characterized by a single number: K eq is the equilibrium constant for the reaction

Equilibrium point of any reaction is characterized by a single number: K eq is the equilibrium constant for the reaction Lecture 19 Equilibrium Constant Equilibrium oint of any reaction is characterized by a single number: K eq is the equilibrium constant for the reaction In general: ja + kb R + qs K eq [ R] [ S] [ A] [

More information

Math 151 Introduction to Eigenvectors

Math 151 Introduction to Eigenvectors Math 151 Introdution to Eigenvetors The motivating example we used to desrie matrixes was landsape hange and vegetation suession. We hose the simple example of Bare Soil (B), eing replaed y Grasses (G)

More information

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level.

Chemical Equilibrium. A state of no net change in reactant & product concentrations. There is a lot of activity at the molecular level. Chemical Equilibrium A state of no net change in reactant & product concentrations. BUT There is a lot of activity at the molecular level. 1 Kinetics Equilibrium For an elementary step in the mechanism:

More information

Chapter 9. Chemical Equilibrium

Chapter 9. Chemical Equilibrium Chapter 9. Chemical Equilibrium 9.1 The Nature of Chemical Equilibrium -Approach to Equilibrium [Co(H 2 O) 6 ] 2+ + 4 Cl- [CoCl 4 ] 2- + 6 H 2 O Characteristics of the Equilibrium State example) H 2 O(l)

More information

Equilibrium Practice Problems page 1

Equilibrium Practice Problems page 1 Equilibrium Practice Problems page 1 1988 D NH 4 HS(s) NH 3 (g) + H 2 S(g) ΔHº = +93 kilojoules The equilibrium above is established by placing solid NH 4 HS in an evacuated container at 25ºC. At equilibrium,

More information

ELECTROCHEMISTRY Lecture/Lession Plan -1

ELECTROCHEMISTRY Lecture/Lession Plan -1 Chapter 4 ELECTROCHEMISTRY Leture/Lession Plan -1 ELECTROCHEMISTRY 4.1 Conept of eletrohemistry Eletrohemistry is a branh of hemistry where we will study how hemial energy an be transformed into eletrial

More information

Solutions to Self Check Exercises

Solutions to Self Check Exercises hapter elf hek Exerise.1 357 5 3.57 3 10 0.0055 5 5.5 3 10 3 elf hek Exerise. a. hree signifiant figures. he leading zeros (to the left of the 1) do not ount, but the trailing zeros do. b. ive signifiant

More information

A.P. Chemistry. Unit #11. Chemical Equilibrium

A.P. Chemistry. Unit #11. Chemical Equilibrium A.P. Chemistry Unit #11 Chemical Equilibrium I. Chemical Equilibrium the point in a reaction at which the concentrations of products and reactants remain constant Dynamic Equilibrium the equilibrium condition

More information

Section 7.2: Equilibrium Law and the Equilibrium Constant Tutorial 1 Practice, page (a) 2 CO 2 (g) #!!"

Section 7.2: Equilibrium Law and the Equilibrium Constant Tutorial 1 Practice, page (a) 2 CO 2 (g) #!! Section 7.: Equilibrium Law and the Equilibrium Constant Tutorial Practice, page 4. (a) CO (g) #!!"! CO(g) + O (g) Products: CO(g); O (g) Reactant: CO (g) [CO [O Equilibrium law equation: [CO (b) Cl (g)

More information

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y]

3. Indicate the mass action expression for the following reaction: 2X(g) + Y(g) 3W(g) + V(g) a) [X] 2 [Y][W] 3 [V] [W] 3 [V] [X] 2 [Y] [3W][V] [2X][Y] 1. Which of the following statements concerning equilibrium is not true? a) A system that is disturbed from an equilibrium condition responds in a manner to restore equilibrium. b) Equilibrium in molecular

More information

9.4 Determination of the reaction order

9.4 Determination of the reaction order 0,1 0,2 0,3 r 0,1 r 0,2 r 0,3 t Signifiane r = k [A] [B] [C] One we determine the order of a reation, we an write out the rate equation of the reation and tell the details of the kineti harateristis of

More information

Solutions to Chem 203 TT1 Booklet

Solutions to Chem 203 TT1 Booklet Solutions to Chem 03 TT1 Booklet Chem03 TT1 Booklet Solutions to Gases Practice Problems Problem 1. Answer: C Increasing the temperature increases the kinetic energy of the molecules in the liquid causing

More information

AIIMS,CBSE,AIPMT, AFMC,Bio.Tech & PMT, Contact : , Mail at :- by AKB

AIIMS,CBSE,AIPMT, AFMC,Bio.Tech & PMT, Contact : , Mail at :- by AKB 1 Ioni solids are haraterized y (a) low melting points () good ondutivity in solid state () high vapour pressure (d) soluility in polar solvents 2 Amorphous solids. (a) have sharp melting points () undergo

More information

Some facts you should know that would be convenient when evaluating a limit:

Some facts you should know that would be convenient when evaluating a limit: Some fats you should know that would be onvenient when evaluating a it: When evaluating a it of fration of two funtions, f(x) x a g(x) If f and g are both ontinuous inside an open interval that ontains

More information

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease?

UNIT II - REVIEW EQUILIBRIA. Part I - Multiple Choice. 1. In which of the following does the entropy decrease? CHEMISTRY 12 UNIT II - REVIEW EQUILIBRIA Part I - Multiple Choice 1. In which of the following does the entropy decrease? A. NaCl (s) Na + (aq) + Cl (aq) B. 4 NO (g) + 6 H 2 O (g) 4 NH 3 (g) + 5 O 2 (g)

More information

Write a balanced reaction.. then write the equation.. then solve for something!!

Write a balanced reaction.. then write the equation.. then solve for something!! Chapter 13 - Equilibrium Study Guide Purpose: This is a guide for your as you work through the chapter. The major topics are provided so that you can write notes on each topic and work the corresponding

More information

3 Tidal systems modelling: ASMITA model

3 Tidal systems modelling: ASMITA model 3 Tidal systems modelling: ASMITA model 3.1 Introdution For many pratial appliations, simulation and predition of oastal behaviour (morphologial development of shorefae, beahes and dunes) at a ertain level

More information