Chem 116 POGIL Worksheet - Week 8 Equilibrium Continued - Solutions

Size: px
Start display at page:

Download "Chem 116 POGIL Worksheet - Week 8 Equilibrium Continued - Solutions"

Transcription

1 Chem 116 POGIL Wrksheet - Week 8 Equilibrium Cntinued - Slutins Key Questins 1. Cnsider the fllwing reatin At 425 C, an equilibrium mixture has the fllwing nentratins What is the value f K? -2 [HI] = 1.01 x 10 ml/l -3 [H 2] = 1.25 x 10 ml/l -3 [I 2] = 1.49 x 10 ml/l At 500 C, K = 1.45 x 10 atm fr the Haber ress: N 2(g) + 3H 2(g) 2NH 3(g) When the reatin fr the Haber ress mes t equilibrium, des the equilibrium mixture ntain mstly reatants r rdut? 5 2 K = 1.45 x 10 atm < 1, s rdut amunts (in the numeratr f K ) are small mared t reatant amunts (in the denminatr f K ). This reatin, as written, favrs reatants ver rduts; i.e., it is reatant-favred. 3. Cnsider the reatin. A vessel is fund t have the fllwing nentratins at 425 C: [HI] = 2.50 ml/l [H 2] = [I 2] = ml/l Given that K = 54.8 fr the reatin H (g) + I (g) 2HI(g) at this temerature, is the system at equilibrium? If nt at equilibrium, hw an the system abve ahieve equilibrium?

2 Therefre the system is nt at equilibrium. Judging frm the rati Q = 48.2 < K, the denminatr is t big and/r the numeratr is t small. Thus, if the reatin reeds t frm HI while using u H and I, equilibrium an be reahed; i.e., shift right. 4. Fr the reatin (NH 3)B(CH 3) 3(g) NH 3(g) + B(CH 3) 3(g) at 100 C K = 4.62 atm. If the artial ressures f NH 3(g) and B(CH 3) 3(g) in an equilibrium mixture at 100 C are bth 1.52 atm, what is the artial ressure f (NH )B(CH ) (g) in the mixture? Fr simliity, let us write the reatin as AB(g) A(g) + B(g), fr whih K is defined as Let x =. Then substituting int K, AB 5. At 425 C, 1.00 ml f H 2(g) and 1.00 ml f I 2(g) are mixed in a ne liter vessel. What will be the nentratins f H (g), I (g), and HI(g) at equilibrium? At 425 C, K = Let x be the amunt f H 2(g) lst. Then, frm the stihimetry f the reatin, the amunt f I 2(g) lst is als x. Likewise frm the stihimetry, the amunt f HI(g) gained will be 2x. Add Change x x +2x At equilibrium x x 2x Taking the square rt f bth sides 2x = x 9.40x = 7.40

3 x = 7.40/9.40 = ml/l [H 2] = [I 2] = = 0.21 ml/l [HI] = (2)(0.787) = 1.57 ml/l 6. Chek the values yu fund in Key Questin 5 by alulating the value f Q. Des yur value agree with K = 54.8? This is aetable agreement. 7. Suse ml H 2(g), ml I 2(g), and ml HI(g) are mixed in a ne liter vessel at 425 C. K = 54.8 a. In whih diretin must the reatin run (frward r bakwards) t ahieve equilibrium? Calulate Q and mare t K. Q << K, s this reatin needs t run t the right t ahieve equilibrium. b. What are the nentratins f all seies at equilibrium? Let x be the number f ml/l f H 2 r I 2 that is lst t reah equilibrium. Add Change x x +2x At equilibrium x x x x + 4x = x x 50.8x x = 0 2 a b This is a quadrati equatin.

4 Rejet the rt x = 1.19, beause [H 2] = x and [I 2] = x wuld be negative, whih is imssible fr a nentratin. Thus, x = Frm this it fllws [HI] = (2)(0.6536) = ml/l = 1.41 ml/l [H 2] = = ml/l = ml/l Chek: [I 2] = = ml/l = ml/l 8. Fr eah f the fllwing reatins at equilibrium, redit the effet (if any) the indiated stress wuld have n the sitin f the equilibrium. Nte whether r nt the value f the equilibrium nstant hanges. a. H 2(g) + I 2(g) 2 HI(g) Mre HI(g) is added. The reatin shifts left t use u the exess HI(g) by refrming H 2(g) and I 2(g). The value f the equilibrium nstant (K r K ) remains the same. b. N 2(g) + 3 H 2(g) 2 NH 3(g) NH 3(g) is remved as it frms. The reatin shifts right t relae the lst rdut NH 3(g). The value f the equilibrium nstant (K r K ) remains the same.. 2 NO(g) + Cl 2(g) 2 NOCl(g) Overall ressure is inreased. The differene, Än, between the sum f effiients f gas rduts and the sum f the effiient f gas reatants is Än = 2 (2 + 1) = 1; i.e., smaller n the rdut side. Inreased ressure an be mitigated by shifting tward the side with fewer gas mleules. Therefre, the reatin shifts right. The value f the equilibrium nstant (K r K ) remains the same.

5 d. 2 NO(g) + Cl 2(g) 2 NOCl(g) ÄH = 75.5 kj/ml Temerature is inreased. The endthermi ress nsumes heat, s raising the temerature drives that diretin. The frward diretin is exthermi, s the reverse diretin is the endthermi ress. Raising the temerature will ause a shift left t frm mre NO(g) and Cl 2(g). The value f K at the higher temerature will be smaller, beause reatant amunts are nw greater than rdut amunts, relative t the lwer temerature K. e. H2O(g) + C(s) H 2(g) + CO(g) Overall ressure is inrease. Cunt nly the effiients f gases; i.e., ignre the C(s). Thus, Än = 2-1 = +1. Inreasing ressure an be mitigated by shifting left t use u sme f the H 2(g) and CO(g) and frm mre H2O(g). The value f the equilibrium nstant (K r K ) remains the same. f. C(s) + O 2(g) CO 2(g) Overall ressure is dereased. Again, unt nly effiients f gases. These are the same n bth sides, s Än = 0. Changing the ressure will have n effet n the sitin f the equilibrium. Of urse, the value f the equilibrium nstant (K r K ) remains the same. g. N2O 4(g) 2 NO 2(g) N 2(g) is added, inreasing verall ressure. Adding N 2(g) will inrease the verall ressure, but it will nt hange the artial ressures f the reatants r rduts. Beause N 2(g) is neither a reatant nr a rdut in this reatin, it has the same nn-effet as adding an inert gas (e.g., He, Ne, Ar). Again, the value f the equilibrium nstant (K r K ) remains the same. h. N 2(g) + 3 H 2(g) 2 NH 3(g) Irn wder is added as a atalyst. Adding a atalyst has n effet n the sitin f the equilibrium. In nly affets the rate at whih equilibrium is ahieved. Again, the value f the equilibrium nstant (K r K ) remains the same.

Test bank chapter (14)

Test bank chapter (14) Test bank hater (14) Choose the most orret answer 1. Whih is the orret equilibrium onstant exression for the following reation? Fe 2 O 3 (s) + 3H 2 (g) 2Fe(s) + 3H 2 O(g) a) K = [Fe 2 O 3 ] [H 2 ] 3 /[Fe]

More information

CHEM 1001 Problem Set #3: Entropy and Free Energy

CHEM 1001 Problem Set #3: Entropy and Free Energy CHEM 1001 Prblem Set #3: Entry and Free Energy 19.7 (a) Negative; A liquid (mderate entry) cmbines with a slid t frm anther slid. (b)psitive; One mle f high entry gas frms where n gas was resent befre.

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Chemical Equilibrium

Chemical Equilibrium 0.110/5.60 Fall 005 Lecture #10 age 1 Chemical Equilibrium Ideal Gases Questin: What is the cmsitin f a reacting miture f ideal gases? e.g. ½ N (g, T, ) + 3/ H (g, T, ) = NH 3 (g, T, ) What are N,, and

More information

SOLVED QUESTIONS 1 / 2. in a closed container at equilibrium. What would be the effect of addition of CaCO 3 on the equilibrium concentration of CO 2?

SOLVED QUESTIONS 1 / 2. in a closed container at equilibrium. What would be the effect of addition of CaCO 3 on the equilibrium concentration of CO 2? SOLVED QUESTIONS Multile Choie Questions. and are the veloity onstants of forward and bakward reations. The equilibrium onstant k of the reation is (A) (B) (C) (D). Whih of the following reations will

More information

2 How far? Equilibrium Answers

2 How far? Equilibrium Answers How far? Equilibrium Answers ratie: pages 37 39 1 Answer is D. Only a hange in temperature harges the value of the equilibrium onstant. Answer is D. [B] /[A] so [B] [A] or [B] [A] 1/ 3 Answer is B. Amounts

More information

Chapter 15: Chemical Equilibrium

Chapter 15: Chemical Equilibrium Chapter 5: Chemial Equilibrium ahoot!. At eq, the rate of the forward reation is the rate of the reverse reation. equal to, slower than, faster than, the reverse of. Selet the statement that BEST desribes

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

When a substance heats up (absorbs heat) it is an endothermic reaction with a (+)q

When a substance heats up (absorbs heat) it is an endothermic reaction with a (+)q Chemistry Ntes Lecture 15 [st] 3/6/09 IMPORTANT NOTES: -( We finished using the lecture slides frm lecture 14) -In class the challenge prblem was passed ut, it is due Tuesday at :00 P.M. SHARP, :01 is

More information

Final Exam: know your section, bring your ID!

Final Exam: know your section, bring your ID! Chapter 15: Equilibrium Part 1 Read: BLB 15.1 3 HW: BLB 15:13,14, 21 Supplemental 15:1 4 Know: Chemial Equilibrium Catalysts Equilibrium Constant Equilibrium onstant expression Homogeneous/Heterogeneous

More information

General Equilibrium. What happens to cause a reaction to come to equilibrium?

General Equilibrium. What happens to cause a reaction to come to equilibrium? General Equilibrium Chemial Equilibrium Most hemial reations that are enountered are reversible. In other words, they go fairly easily in either the forward or reverse diretions. The thing to remember

More information

Chapter 13, Chemical Equilibrium

Chapter 13, Chemical Equilibrium Chapter 13, Chemial Equilibrium You may have gotten the impression that when 2 reatants mix, the ensuing rxn goes to ompletion. In other words, reatants are onverted ompletely to produts. We will now learn

More information

BIT Chapters = =

BIT Chapters = = BIT Chapters 17-0 1. K w = [H + ][OH ] = 9.5 10 14 [H + ] = [OH ] =.1 10 7 ph = 6.51 The slutin is neither acidic nr basic because the cncentratin f the hydrnium in equals the cncentratin f the hydride

More information

CHAPTER PRACTICE PROBLEMS CHEMISTRY

CHAPTER PRACTICE PROBLEMS CHEMISTRY Chemical Kinetics Name: Batch: Date: Rate f reactin. 4NH 3 (g) + 5O (g) à 4NO (g) + 6 H O (g) If the rate f frmatin f NO is 3.6 0 3 ml L s, calculate (i) the rate f disappearance f NH 3 (ii) rate f frmatin

More information

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia:

University Chemistry Quiz /04/21 1. (10%) Consider the oxidation of ammonia: University Chemistry Quiz 3 2015/04/21 1. (10%) Cnsider the xidatin f ammnia: 4NH 3 (g) + 3O 2 (g) 2N 2 (g) + 6H 2 O(l) (a) Calculate the ΔG fr the reactin. (b) If this reactin were used in a fuel cell,

More information

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25 CHAPTER 17 1. Read Chapter 17, sectins 1,2,3. End f Chapter prblems: 25 2. Suppse yu are playing a game that uses tw dice. If yu cunt the dts n the dice, yu culd have anywhere frm 2 t 12. The ways f prducing

More information

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 ) + - Hmewrk 0 Slutin ) In the circuit belw: a. Find the magnitude and phase respnse. b. What kind f filter is it? c. At what frequency is the respnse 0.707 if the generatr has a ltage f? d. What is the

More information

Chem 116 POGIL Worksheet - Week 4 Properties of Solutions

Chem 116 POGIL Worksheet - Week 4 Properties of Solutions Chem 116 POGIL Wrksheet - Week 4 Prperties f Slutins Key Questins 1. Identify the principal type f slute-slvent interactin that is respnsible fr frming the fllwing slutins: (a) KNO 3 in water; (b) Br 2

More information

CHAPTER 16. Basic Concepts. Basic Concepts. The Equilibrium Constant. Reaction Quotient & Equilibrium Constant. Chemical Equilibrium

CHAPTER 16. Basic Concepts. Basic Concepts. The Equilibrium Constant. Reaction Quotient & Equilibrium Constant. Chemical Equilibrium Proerties of an Equilibrium System CHAPTER 6 Chemial Equilibrium Equilibrium systems are DYNAMIC (in onstant motion) REVERSIBLE an be aroahed from either diretion Pink to blue Co(H O) 6 Cl ---> > Co(H

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change? Name Chem 163 Sectin: Team Number: ALE 21. Gibbs Free Energy (Reference: 20.3 Silberberg 5 th editin) At what temperature des the spntaneity f a reactin change? The Mdel: The Definitin f Free Energy S

More information

Unit 14 Thermochemistry Notes

Unit 14 Thermochemistry Notes Name KEY Perid CRHS Academic Chemistry Unit 14 Thermchemistry Ntes Quiz Date Exam Date Lab Dates Ntes, Hmewrk, Exam Reviews and Their KEYS lcated n CRHS Academic Chemistry Website: https://cincchem.pbwrks.cm

More information

CHM 152 Practice Final

CHM 152 Practice Final CM 152 Practice Final 1. Of the fllwing, the ne that wuld have the greatest entrpy (if cmpared at the same temperature) is, [a] 2 O (s) [b] 2 O (l) [c] 2 O (g) [d] All wuld have the same entrpy at the

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

Chemistry 114 First Hour Exam

Chemistry 114 First Hour Exam Chemistry 114 First Hur Exam Please shw all wrk fr partial credit Name: (4 pints) 1. (12 pints) Espress is made by frcing very ht water under high pressure thrugh finely grund, cmpacted cffee. (Wikipedia)

More information

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes.

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes. Edexcel IGCSE Chemistry Tpic 1: Principles f chemistry Chemical frmulae, equatins and calculatins Ntes 1.25 write wrd equatins and balanced chemical equatins (including state symbls): fr reactins studied

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

Lecture 14 Chapter 16, Sections 3-4 Equilibrium. Nifty K eq math Q and K eq Connection with G Le Chatelier

Lecture 14 Chapter 16, Sections 3-4 Equilibrium. Nifty K eq math Q and K eq Connection with G Le Chatelier Lecture 14 Chater 16, Sectins 3-4 Equilibrium Nifty K math Q and K Cnnectin with G Le Chatelier Remember In general fr a reactin like aa + bb dd + ee K [ ] d D [ E] e [ ] a A [ ] b B K s can be cmbined

More information

Chem 111 Summer 2013 Key III Whelan

Chem 111 Summer 2013 Key III Whelan Chem 111 Summer 2013 Key III Whelan Questin 1 6 Pints Classify each f the fllwing mlecules as plar r nnplar? a) NO + : c) CH 2 Cl 2 : b) XeF 4 : Questin 2 The hypthetical mlecule PY 3 Z 2 has the general

More information

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 2/3/2014

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 2/3/2014 Amount of reatant/produt //01 quilibrium in Chemial Reations Lets look bak at our hypothetial reation from the kinetis hapter. A + B C Chapter 15 quilibrium [A] Why doesn t the onentration of A ever go

More information

AP Chemistry Assessment 2

AP Chemistry Assessment 2 AP Chemistry Assessment 2 DATE OF ADMINISTRATION: January 8 January 12 TOPICS COVERED: Fundatinal Tpics, Reactins, Gases, Thermchemistry, Atmic Structure, Peridicity, and Bnding. MULTIPLE CHOICE KEY AND

More information

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!**

**DO NOT ONLY RELY ON THIS STUDY GUIDE!!!** Tpics lists: UV-Vis Absrbance Spectrscpy Lab & ChemActivity 3-6 (nly thrugh 4) I. UV-Vis Absrbance Spectrscpy Lab Beer s law Relates cncentratin f a chemical species in a slutin and the absrbance f that

More information

Homework for Diffraction-MSE 603: Solutions May 2002

Homework for Diffraction-MSE 603: Solutions May 2002 Hmewrk fr Diffratin-MSE 603: Slutins May 00 1. An x-ray beam f 1.5 Å impinges n a Ge single rystal sample with an inient angle θ lse t the ritial angle θ f the Ge surfae. Taking int aunt the absrptin,

More information

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 5/27/2014

Chapter 15 Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium. Reversible Reactions & Equilibrium 5/27/2014 Amount of reatant/produt 5/7/01 quilibrium in Chemial Reations Lets look bak at our hypothetial reation from the kinetis hapter. A + B C Chapter 15 quilibrium [A] Why doesn t the onentration of A ever

More information

Hypothesis Tests for One Population Mean

Hypothesis Tests for One Population Mean Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information

Semester 2 AP Chemistry Unit 12

Semester 2 AP Chemistry Unit 12 Cmmn In Effect and Buffers PwerPint The cmmn in effect The shift in equilibrium caused by the additin f a cmpund having an in in cmmn with the disslved substance The presence f the excess ins frm the disslved

More information

Accelerated Chemistry POGIL: Half-life

Accelerated Chemistry POGIL: Half-life Name: Date: Perid: Accelerated Chemistry POGIL: Half-life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng as

More information

4 Fe + 3 O 2 2 Fe 2 O 3

4 Fe + 3 O 2 2 Fe 2 O 3 UNIT 7: STOICHIOMETRY NOTES (chapter 9) INTRO TO STOICHIOMETRY Reactin Stichimetry: Stichimetry is simply a way t shw f smething this is. Relatinship between a given and an unknwn: GIVEN UNKNOWN Type 1

More information

A Chemical Reaction occurs when the of a substance changes.

A Chemical Reaction occurs when the of a substance changes. Perid: Unit 8 Chemical Reactin- Guided Ntes Chemical Reactins A Chemical Reactin ccurs when the f a substance changes. Chemical Reactin: ne r mre substances are changed int ne r mre new substances by the

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t eep this site up and bring yu even mre cntent cnsider dnating via the lin n ur site. Still having truble understanding the material? Chec ut ur Tutring

More information

Cambridge Assessment International Education Cambridge Ordinary Level. Published

Cambridge Assessment International Education Cambridge Ordinary Level. Published Cambridge Assessment Internatinal Educatin Cambridge Ordinary Level ADDITIONAL MATHEMATICS 4037/1 Paper 1 Octber/Nvember 017 MARK SCHEME Maximum Mark: 80 Published This mark scheme is published as an aid

More information

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics Chapters 9 and 35 Thermchemistry and Chemical Thermdynamics 1 Cpyright (c) 011 by Michael A. Janusa, PhD. All rights reserved. Thermchemistry Thermchemistry is the study f the energy effects that accmpany

More information

SCHMIDT THEORY FOR STIRLING ENGINES

SCHMIDT THEORY FOR STIRLING ENGINES SHMIDT THOY FO STILING NGINS KOIHI HIATA Musashin-jjutaku 6-10, Gakuen -6-1, Musashimurayama, Tky 08, Japan Phne & Fax: +81-45-67-0086 e-mail: khirata@gem.bekkame.ne.jp url: http://www.bekkame.ne.jp/~khirata

More information

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions Chem 116 POGIL Wrksheet - Week 3 - Slutins Intermlecular Frces, Liquids, Slids, and Slutins Key Questins 1. Is the average kinetic energy f mlecules greater r lesser than the energy f intermlecular frces

More information

Lecture 10 Adiabatic Processes

Lecture 10 Adiabatic Processes ASME231 Atmsheri hermdynamis NC A& State U Deartment f Physis Dr. Yuh-Lang Lin htt://meslab.rg ylin@nat.edu Leture 10 Adiabati Presses (Se.3.5 f Hess) [Classial equatin editr: 0 dq ] Definitin: If a thermdynami

More information

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s

( ) kt. Solution. From kinetic theory (visualized in Figure 1Q9-1), 1 2 rms = 2. = 1368 m/s .9 Kinetic Mlecular Thery Calculate the effective (rms) speeds f the He and Ne atms in the He-Ne gas laser tube at rm temperature (300 K). Slutin T find the rt mean square velcity (v rms ) f He atms at

More information

Chapter 15 Chemical Equilibrium

Chapter 15 Chemical Equilibrium Chapter 5 Chemial Equilibrium 5. The Conept of Equilibrium Figure: 3. from Chemistry by MMurray & Fey Figure 3.(a) NO 4( g) NO( g) olorless brown we start with reatant, N O 4, so the solution is olorless

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

Chapter 17 Free Energy and Thermodynamics

Chapter 17 Free Energy and Thermodynamics Chemistry: A Mlecular Apprach, 1 st Ed. Nivald Tr Chapter 17 Free Energy and Thermdynamics Ry Kennedy Massachusetts Bay Cmmunity Cllege Wellesley Hills, MA 2008, Prentice Hall First Law f Thermdynamics

More information

MC Practice F2 Solubility Equilibrium, Ksp Name

MC Practice F2 Solubility Equilibrium, Ksp Name MC Pratie F Solubility Equilibrium, Ksp Name This is pratie - Do NOT heat yourself of finding out what you are apable of doing. Be sure you follow the testing onditions outlined below. DO NOT USE A CALCULATOR.

More information

REVIEW QUESTIONS Chapter 15

REVIEW QUESTIONS Chapter 15 hemistry 10 ANSWER EY REVIEW QUESTIONS hapter 15 1. A mixture of 0.10 mol of NO, 0.050 mol of H and 0.10 mol of HO is plaed in a 1.0-L flask and allowed to reah equilibrium as shown below: NO (g) + H (g)

More information

Lecture 16 Thermodynamics II

Lecture 16 Thermodynamics II Lecture 16 Thermdynamics II Calrimetry Hess s Law Enthalpy r Frmatin Cpyright 2013, 2011, 2009, 2008 AP Chem Slutins. All rights reserved. Fur Methds fr Finding H 1) Calculate it using average bnd enthalpies

More information

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References Khmelnik S. I. Lrentz Fre, Ampere Fre and Mmentum Cnservatin Law Quantitative. Analysis and Crllaries. Abstrat It is knwn that Lrentz Fre and Ampere fre ntradits the Third Newtn Law, but it des nt ntradit

More information

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way.

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way. Chapter 14 The Conept of Equilibrium and the Equilibrium Constant In hapter 1 we dealt with Physial Equilibrium Physial Changes HO 2 (l) HO 2 (g) In hapter 14 we will learn about Chemial Equilibrium. We

More information

1) What is the reflected angle 3 measured WITH RESPECT TO THE BOUNDRY as shown? a) 0 b) 11 c) 16 d) 50 e) 42

1) What is the reflected angle 3 measured WITH RESPECT TO THE BOUNDRY as shown? a) 0 b) 11 c) 16 d) 50 e) 42 Light in ne medium (n =.) enunters a bundary t a send medium (with n =. 8) where part f the light is transmitted int the send media and part is refleted bak int the first media. The inident angle is =

More information

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK CHEM 1413 Chapter 6 Hmewrk Questins TEXTBOOK HOMEWORK 6.25 A 27.7-g sample f the radiatr clant ethylene glycl releases 688 J f heat. What was the initial temperature f the sample if the final temperature

More information

General Chemistry II, Unit II: Study Guide (part 1)

General Chemistry II, Unit II: Study Guide (part 1) General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reactin Equilibrium in the Gas Phase General Chemistry II Unit II Part 1 1 Intrductin Sme chemical reactins have a significant amunt

More information

Exam Review Trigonometry

Exam Review Trigonometry Exam Review Trignmetry (Tyler, Chris, Hafsa, Nasim, Paniz,Tng) Similar Triangles Prving Similarity (AA, SSS, SAS) ~ Tyler Garfinkle 3 Types f Similarities: 1. Side Side Side Similarity (SSS) If three pairs

More information

Sample Teaching Sequence (Hong Kong Secondary 4 6 Chemistry)

Sample Teaching Sequence (Hong Kong Secondary 4 6 Chemistry) Revised (1 Sept 009 Sample Teahing Suene (Hong Kong Seondary 4 6 Chemistry Topi: Chemial Equilibrium Teahing Suene Content 1.1 Reversible reations Examples of reversible reation; forward reation; reverse

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Chemistry 1A Fall 2000

Chemistry 1A Fall 2000 Chemistry 1A Fall 2000 Midterm Exam III, versin B Nvember 14, 2000 (Clsed bk, 90 minutes, 155 pints) Name: SID: Sectin Number: T.A. Name: Exam infrmatin, extra directins, and useful hints t maximize yur

More information

CHEM 103 Calorimetry and Hess s Law

CHEM 103 Calorimetry and Hess s Law CHEM 103 Calrimetry and Hess s Law Lecture Ntes March 23, 2006 Prf. Sevian Annuncements Exam #2 is next Thursday, March 30 Study guide, practice exam, and practice exam answer key are already psted n the

More information

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References

Content 1. Introduction 2. The Field s Configuration 3. The Lorentz Force 4. The Ampere Force 5. Discussion References Khmelnik. I. Lrentz Fre, Ampere Fre and Mmentum Cnservatin Law Quantitative. Analysis and Crllaries. Abstrat It is knwn that Lrentz Fre and Ampere fre ntradits the Third Newtn Law, but it des nt ntradit

More information

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol Recitatin 06 Mixture f Ideal Gases 1. Chapter 5: Exercise: 69 The partial pressure f CH 4 (g) is 0.175 atm and that f O 2 (g) is 0.250 atm in a mixture f the tw gases. a. What is the mle fractin f each

More information

Math 105: Review for Exam I - Solutions

Math 105: Review for Exam I - Solutions 1. Let f(x) = 3 + x + 5. Math 105: Review fr Exam I - Slutins (a) What is the natural dmain f f? [ 5, ), which means all reals greater than r equal t 5 (b) What is the range f f? [3, ), which means all

More information

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law

Section 5.8 Notes Page Exponential Growth and Decay Models; Newton s Law Sectin 5.8 Ntes Page 1 5.8 Expnential Grwth and Decay Mdels; Newtn s Law There are many applicatins t expnential functins that we will fcus n in this sectin. First let s lk at the expnential mdel. Expnential

More information

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium

Lecture 17: Free Energy of Multi-phase Solutions at Equilibrium Lecture 17: 11.07.05 Free Energy f Multi-phase Slutins at Equilibrium Tday: LAST TIME...2 FREE ENERGY DIAGRAMS OF MULTI-PHASE SOLUTIONS 1...3 The cmmn tangent cnstructin and the lever rule...3 Practical

More information

" 1 = # $H vap. Chapter 3 Problems

 1 = # $H vap. Chapter 3 Problems Chapter 3 rblems rblem At 1 atmsphere pure Ge melts at 1232 K and bils at 298 K. he triple pint ccurs at =8.4x1-8 atm. Estimate the heat f vaprizatin f Ge. he heat f vaprizatin is estimated frm the Clausius

More information

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C?

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C? NOTES: Thermchemistry Part 1 - Heat HEAT- TEMPERATURE - Thermchemistry: the study f energy (in the frm f heat) changes that accmpany physical & chemical changes heat flws frm high t lw (ht cl) endthermic

More information

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition) Name Chem 163 Sectin: Team Number: ALE 24. Vltaic Cells and Standard Cell Ptentials (Reference: 21.2 and 21.3 Silberberg 5 th editin) What des a vltmeter reading tell us? The Mdel: Standard Reductin and

More information

Chem 116 POGIL Worksheet - Week 9 Equilibrium Continued Introduction to Acid-Base Concepts

Chem 116 POGIL Worksheet - Week 9 Equilibrium Continued Introduction to Acid-Base Concepts Chem 116 POGIL Worksheet - Week 9 Equilibrium Continued Introduction to Acid-Base Concepts Why? When a reaction reaches equilibrium we can calculate the concentrations of all species, both reactants and

More information

Gas Phase Equilibrium

Gas Phase Equilibrium Gas Phase Equilibrium Chemical Equilibrium Equilibrium Constant K eq Equilibrium constant expression Relationship between K p and K c Heterogeneous Equilibria Meaning of K eq Calculations of K c Solving

More information

Chem 75 February 16, 2017 Exam 2 Solutions

Chem 75 February 16, 2017 Exam 2 Solutions 1. (6 + 6 pints) Tw quick questins: (a) The Handbk f Chemistry and Physics tells us, crrectly, that CCl 4 bils nrmally at 76.7 C, but its mlar enthalpy f vaprizatin is listed in ne place as 34.6 kj ml

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

Chemistry/ Biotechnology Reference Sheets

Chemistry/ Biotechnology Reference Sheets Cmmn Metric Prefixes: Giga (G) = 1,000,000,000 = Kil (k) = 1,000 = Deci (d) =.1 = Milli (m) =.001 = Nan (n) =.000000001 = 9 6 1 10 Mega (M) = 1,000,000 = 1 10 0 1 10 Basic unit = meter, gram, liter, secnd

More information

Calculus Placement Review. x x. =. Find each of the following. 9 = 4 ( )

Calculus Placement Review. x x. =. Find each of the following. 9 = 4 ( ) Calculus Placement Review I. Finding dmain, intercepts, and asympttes f ratinal functins 9 Eample Cnsider the functin f ( ). Find each f the fllwing. (a) What is the dmain f f ( )? Write yur answer in

More information

Answer: Easiest way to determine equilibrium concentrations is to set up a table as follows: 2 SO 2 + O 2 2 SO 3 initial conc change

Answer: Easiest way to determine equilibrium concentrations is to set up a table as follows: 2 SO 2 + O 2 2 SO 3 initial conc change Problem #1 6 mol of SO and 4 mol of O are plaed into a 1 L flask at temperature, T. The equilibrium onentration of SO is found to be 4 mol/l. Determine K. SO (g) + O (g) SO (g) K = [SO ] / [SO ] [O ] Answer:

More information

ENGI 4430 Parametric Vector Functions Page 2-01

ENGI 4430 Parametric Vector Functions Page 2-01 ENGI 4430 Parametric Vectr Functins Page -01. Parametric Vectr Functins (cntinued) Any nn-zer vectr r can be decmpsed int its magnitude r and its directin: r rrˆ, where r r 0 Tangent Vectr: dx dy dz dr

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

More Tutorial at

More Tutorial at Answer each questin in the space prvided; use back f page if extra space is needed. Answer questins s the grader can READILY understand yur wrk; nly wrk n the exam sheet will be cnsidered. Write answers,

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes Chemistry 20 Lessn 11 Electrnegativity, Plarity and Shapes In ur previus wrk we learned why atms frm cvalent bnds and hw t draw the resulting rganizatin f atms. In this lessn we will learn (a) hw the cmbinatin

More information

Equilibrium point of any reaction is characterized by a single number: K eq is the equilibrium constant for the reaction

Equilibrium point of any reaction is characterized by a single number: K eq is the equilibrium constant for the reaction Lecture 19 Equilibrium Constant Equilibrium oint of any reaction is characterized by a single number: K eq is the equilibrium constant for the reaction In general: ja + kb R + qs K eq [ R] [ S] [ A] [

More information

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression 4th Indian Institute f Astrphysics - PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw

More information

CHAPTER 15 PRINCIPLES OF CHEMICAL EQUILIBRIUM

CHAPTER 15 PRINCIPLES OF CHEMICAL EQUILIBRIUM CHAPTER 15 PRINCIPLES OF CHEMICAL EQUILIBRIUM PRACTICE EXAMPLES 1A 1B (E) The reation is as follows: Cu (aq) Sn (aq) Cu (aq) Sn (aq) Therefore, the equilibrium exression is as follows: Cu Sn Cu Sn Rearranging

More information

N 2 (g) + 3H 2 (g) 2NH 3 (g) o Three mole ratios can be derived from the balanced equation above: Example: Li(s) + O 2 (g) Li 2 O(s)

N 2 (g) + 3H 2 (g) 2NH 3 (g) o Three mole ratios can be derived from the balanced equation above: Example: Li(s) + O 2 (g) Li 2 O(s) Chapter 9 - Stichimetry Sectin 9.1 Intrductin t Stichimetry Types f Stichimetry Prblems Given is in mles and unknwn is in mles. Given is in mles and unknwn is in mass (grams). Given is in mass and unknwn

More information

How can standard heats of formation be used to calculate the heat of a reaction?

How can standard heats of formation be used to calculate the heat of a reaction? Answer Key ALE 28. ess s Law and Standard Enthalpies Frmatin (Reerence: Chapter 6 - Silberberg 4 th editin) Imprtant!! Fr answers that invlve a calculatin yu must shw yur wrk neatly using dimensinal analysis

More information

3. Classify the following Numbers (Counting (natural), Whole, Integers, Rational, Irrational)

3. Classify the following Numbers (Counting (natural), Whole, Integers, Rational, Irrational) After yu cmplete each cncept give yurself a rating 1. 15 5 2 (5 3) 2. 2 4-8 (2 5) 3. Classify the fllwing Numbers (Cunting (natural), Whle, Integers, Ratinal, Irratinal) a. 7 b. 2 3 c. 2 4. Are negative

More information

CHEMICAL EQUILIBRIUM

CHEMICAL EQUILIBRIUM 14 CHAPTER CHEMICAL EQUILIBRIUM 14.1 The Nature f Chemical Equilibrium 14. The Empirical Law f Mass Actin 14.3 Thermdynamic Descriptin f the Equilibrium State 14.4 The Law f Mass Actin fr Related and Simultaneus

More information

Unit 9: The Mole- Guided Notes What is a Mole?

Unit 9: The Mole- Guided Notes What is a Mole? Unit 9: The Mle- Guided Ntes What is a Mle? A mle is a name fr a specific f things Similar t a r a One mle is equal t 602 602,000,000,000,000,000,000,000 That s 602 with zers A mle is NOT an abbreviatin

More information

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd NAME: DUE DATE: JULY 2 nd AP Chemistry SUMMER REV: Half-Life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng

More information

University of Waterloo DEPARTMENT OF CHEMISTRY CHEM 123 Test #2 Wednesday, March 11, 2009

University of Waterloo DEPARTMENT OF CHEMISTRY CHEM 123 Test #2 Wednesday, March 11, 2009 University f Waterl DEPARTMENT OF CHEMISTRY CHEM 13 Test # Wednesday, March 11, 009 This is test versin 001. Fill in vals 001 fr the Card Number (r Test Master) n yur cmputer answer card. Name (Print in

More information

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 15: Molecular Aspects of Polymer Rheology February 21, 2001

Chemical Engineering 160/260 Polymer Science and Engineering. Lecture 15: Molecular Aspects of Polymer Rheology February 21, 2001 Chemial Engineering 160/260 Plymer Siene and Engineering Leture 15: Mleular Aspets f Plymer Rhelgy February 21, 2001 Objetives! T intrdue the nept f saling analysis t aunt fr the nentratin and mleular

More information

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above

In the half reaction I 2 2 I the iodine is (a) reduced (b) oxidized (c) neither of the above 6.3-110 In the half reactin I 2 2 I the idine is (a) reduced (b) xidized (c) neither f the abve 6.3-120 Vitamin C is an "antixidant". This is because it (a) xidizes readily (b) is an xidizing agent (c)

More information

Cop yri ht 2006, Barr Mabillard.

Cop yri ht 2006, Barr Mabillard. Trignmetry II Cpyright Trignmetry II Standards 006, Test Barry ANSWERS Mabillard. 0 www.math0s.cm . If csα, where sinα > 0, and 5 cs α + β value f sin β, where tan β > 0, determine the exact 9 First determine

More information

Thermochemistry. Thermochemistry

Thermochemistry. Thermochemistry Thermchemistry Petrucci, Harwd and Herring: Chapter 7 CHEM 1000A 3.0 Thermchemistry 1 Thermchemistry The study energy in chemical reactins A sub-discipline thermdynamics Thermdynamics studies the bulk

More information

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity:

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity: [15.1B Energy Cycles Lattice Enthalpy] pg. 1 f 5 CURRICULUM Representative equatins (eg M+(g) M+(aq)) can be used fr enthalpy/energy f hydratin, inizatin, atmizatin, electrn affinity, lattice, cvalent

More information