y ij = µ + α i + ɛ ij,

 Garey Lindsey
 6 months ago
 Views:
Transcription
1 STAT 4 ANOVA Cotrasts ad Multiple Comparisos /3/04 Plaed comparisos vs uplaed comparisos Cotrasts Cofidece Itervals Multiple Comparisos: HSD Remark Alterate form of Model I y ij = µ + α i + ɛ ij, a i α i = 0 idetifiability costrait Plaed comparisos  sigle pairs of meas, or costraits specified i advace Differece of Meas e.g. µ i µ j : like a twosample test but, we have a ANOVA model ad hece the pooled variace estimate s for the commo variace σ. 00( α)%ci ȳ i ȳ j ± t α/[ν] SEȳi ȳ j, ν = a, SEȳi ȳ j = s + i j Ex: (Pea sectio data) Legth of pea sectios grow i tissue cultures [] Cotrol Glucose Fructose Gluc+ Fruc Sucrose peas=sca() pea.df=data.frame(peas,culture=as.factor(rep(:5,0))) culture=as.factor(rep(:5,0)) culture [46] Levels: pea.lm=lm(peas~culture,data=pea.df) aova(pea.lm) Respose: peas Df Sum Sq Mea Sq F value Pr(>F) culture e6 *** Residuals Sigif. codes: 0 *** 0.00 ** 0.0 * pea.resid=residuals(pea.lm) pea.fitted=fitted(pea.lm) matrix(roud(pea.resid,),col=5,byrow=t) [,] [,] [,3] [,4] [,5] [,]
2 [,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [0,] > sum(roud(pea.resid,)^) [] 45.5 matrix(roud(pea.fitted,),col=5,byrow=t) [,] [,] [,3] [,4] [,5] [,] [,] [3,] [4,] [5,] [6,] [7,] [8,] [9,] [0,] % CI for µ c µ g, differece betwee the cotrol group ad the glucose group: ȳ c ȳ g = = 0.8 s = s = MS withi = 5.46 =.34 SEȳc ȳ g = =.046 dof ν = a = 50 5 = 45 ; t.975[45] =.05 C.I. = 0.8 ± (.0)(.046) = [8.69,.9] Cotrast: A liear combiatio of meas where the coefficiets sum to zero: Populatio Sample a a γ = c i µ i c i = 0 i= i= c i ȳ i i Ex: sugars vs. cotrol γ = µ c 4 (µ g + µ f + µ g+f + µ s ), coefficiets (c i ) = (, 4, 4, 4, 4 ) Typically used to compare groups of meas or certai weighted combiatios ( orthogoal cotrasts ) such as liear or quadratic effects. Variace of a sample cotrast (assumig the sample meas are idepedet) Estimated SE c, SE c = s i c i i, Var c = Var ( c i ȳ i ) = c i Var(ȳ i ) = c i 00( α)%ci C ± t α/ [ν]se c σ i
3 Ex: C = 70. ( ) = 0. 4 c i = i 0 [ ] = = c 8, i = i 8 = SE c = (.34) (0.3536) = CI for C is 0. ± (.0) (0.873) = [8.53,.87] Hypothesis Test for Cotrast: e.g. H 0 : γ = γ 0 Form a tstatistic t = C γ 0 t [ν] if H 0 is true. SE c Remark: differeces betwee meas are a speacial case of cotrasts: e.g. µ c µ g = a i= c i µ i with (C i ) = (,, 0, 0, 0). These types of ivestigatios should be doe o combiatios of factors that were determied i advace of observig the experimetal results, or else the cofidece levels are ot as specified by the procedure. Also, doig several comparisos might chage the overall cofidece level. This ca be avoided by carefully selectig cotrasts to ivestigate i advace ad makig sure that: the umber of such cotrasts does ot exceed the umber of degrees of freedom betwee the treatmets *oly orthogoal cotrasts are chose. However, there are also several powerful multiple compariso procedures we ca use after observig the experimetal results. Uplaed comparisos After lookig at the data, we may wish to assess the sigificace of, or give C.I. s for certai differeces e.g. µ g µ f (i pea legth e.g.) or cotrasts e.g. µ s (µ 3 g + µ f + µ gf ) That looked iterestig a posteriori. Viewed a priori, however, there are may differeces or cotrasts that could potetially attract attetio. We eed to adjust our sigificace levels ad Pvalues (larger) or our C.I. s (wider) to allow for this search over all possibilities. Subject of multiple comparisos see books, e.g. Miller, R.G. Simulateous Statistic Iferece All pairs of differeces with a treatmets, there are ( ) a = a(a ) possible comparisos of differet meas: µ i µ j, i =,..., a; j =,..., i If we used titervals, would have may itervals of form I ij ȳ i ȳ j ± t α/[ν] SEȳi ȳ j But the chace that all itervals simultaeously cover all µ i µ j : P {I ij coverµ i µ j ; for all]i < j} < α To obtai a simultaeous coverage property, make itevals wider I T K ij ȳ i ȳ j ± Q α[a,ν] SEȳi ȳ j TK = Tukey Kramer Q α[a,ν] are percetage poits of studetized rage distributio. Formal defiitio: Q [a,ν] = max Z i Z j s where Z, Z,..., Z a N(0, ); νs χ (ν) ad all idepedet gives wider itervals Q α[a,ν] a=!) Ex. (pea legths) Q.95[5,45] = 4.0 =.84(>.0 = t.975[45] ) > t α/[ν] (uless 3
4 > qtukey(0.95,5,45) [] 4.0 simultaeous iterval for µ c µ g i 0.8 ± (.843)(.046) = [7.83, 3.8] Simultaeous coverage property if Model I holds, ad = =... = a ( balaced ), the P (Iij T K covers µ i µ j for all i < j) = α Remark: If the ANOVA is ubalaced (ot all i equal) the these TukeyKramer itervals are coservative (coverage prob α). Whe comparig the meas for the levels of a factor i a aalysis of variace, a simple compariso usig ttests will iflate the probability of declarig a sigificat differece whe it is ot i fact preset. This because the itervals are calculated with a give coverage probability for each iterval but the iterpretatio of the coverage is usually with respect to the etire family of itervals. Joh Tukey itroduced itervals based o the rage of the sample meas rather tha the idividual differeces. The itervals retured by this fuctio are based o this Studetized rage statistics. Techically the itervals costructed i this way would oly apply to balaced desigs where there are the same umber of observatios made at each level of the factor. This fuctio icorporates a adjustmet for sample size that produces sesible itervals for mildly ubalaced desigs. >peas.aov_aov(peas~gr) >TukeyHSD(peas.aov) Tukey multiple comparisos of meas 95% familywise cofidece level Fit: aov(formula = peas ~ gr) $gr diff lwr upr > peas.hsd_tukeyhsd(peas.aov) > plot(peas.hsd) % family wise cofidece level Differeces i mea levels of gr The term experimet wise error rate α arises because, if H 0 is true (all µ i equal), the the chace of falsely declarig as sigificat ay of the a(a ) pair wise diffs is (at most) α : P H0 {max ȳ i ȳ i SEȳi ȳ i > Q α/[a,ν] } α ( = α if all i equal) Balaced Case ad Hoestly Sigificat Differece (HSD) if all i =, the all SEȳi ȳ i = s ȳ i ȳ i > Q α/ [a, ν] s so just fid those pairs (ȳ i ȳ i ) separated by > HSD 4
5 Overlappig itervals picture  the ± HSD itervals overl ap if ad oly if ȳ i ȳ i HSD meas (µ i, µ i ) whose HSD itervals do t overlap are sigificatly differet at experimet wise error rate α. (Warig! ȳ i ± HSD is NOT a 00( α)% Cof. iterval! ) All cotrasts: The Scheffé itervals I s ± (a )F α,[a,ν] SE c have the simultaeous coverage property (for balaced or ubalaced cases) P {I s coverforallcotrasts} = a α Sice cotrasts are more geeral tha differeces, expect Scheffé itervals to be eve wider tha TukeyKramer Ex: γ = µ s (µ 3 g + µ f + µ gf )c = (0,,,, ) c i i ( ) = = c SE c = s i = (.34)(.365) = (a )F α[a,ν] = 4F.95[4,45] = 4 x (.58) = % Scheffé iterval for c = x s ( x 3 g + x f + x gf ) = = 5.6 has margi effor (3.)(0.8544) =.743 CI [5.6.74, ] = [.86, 8.34] (Note that Scheffé multiplier = 3. >.84 = Qα[a,ν] = TukeyKramer multiplier) Remark:  There is a versio of the TK itervals for cotrasts  these ca be better (shorter) tha the Scheffé method if a is larger ad relatively fewer c i are ozero cotr.peas=matrix(c(4,,,,,0,,,3,),col=) cotr.peas [,] [,] [,] 4 0 [,]   [3,]   [4,]  3 [5,]   cotrasts(culture)=cotr.peas 5
Recall the study where we estimated the difference between mean systolic blood pressure levels of users of oral contraceptives and nonusers, x  y.
Testig Statistical Hypotheses Recall the study where we estimated the differece betwee mea systolic blood pressure levels of users of oral cotraceptives ad ousers, x  y. Such studies are sometimes viewed
More informationChapter 13, Part A Analysis of Variance and Experimental Design
Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of
More informationSTA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:
STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform largesample ifereces (hypothesis test ad cofidece itervals) to compare two populatio
More informationStat 200 Testing Summary Page 1
Stat 00 Testig Summary Page 1 Mathematicias are like Frechme; whatever you say to them, they traslate it ito their ow laguage ad forthwith it is somethig etirely differet Goethe 1 Large Sample Cofidece
More informationMOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND.
XI1 (1074) MOST PEOPLE WOULD RATHER LIVE WITH A PROBLEM THEY CAN'T SOLVE, THAN ACCEPT A SOLUTION THEY CAN'T UNDERSTAND. R. E. D. WOOLSEY AND H. S. SWANSON XI2 (1075) STATISTICAL DECISION MAKING Advaced
More information71. Chapter 4. Part I. Sampling Distributions and Confidence Intervals
71 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7 Sectio 1. Samplig Distributio 73 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses
More informationSimple Linear Regression
Simple Liear Regressio 1. Model ad Parameter Estimatio (a) Suppose our data cosist of a collectio of pairs (x i, y i ), where x i is a observed value of variable X ad y i is the correspodig observatio
More informationStatistical inference: example 1. Inferential Statistics
Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either
More informationStatistics 20: Final Exam Solutions Summer Session 2007
1. 20 poits Testig for Diabetes. Statistics 20: Fial Exam Solutios Summer Sessio 2007 (a) 3 poits Give estimates for the sesitivity of Test I ad of Test II. Solutio: 156 patiets out of total 223 patiets
More informationSection 14. Simple linear regression.
Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo
More informationSTATISTICAL INFERENCE
STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample
More informationSection 11.8: Power Series
Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i
More informationStatisticians use the word population to refer the total number of (potential) observations under consideration
6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space
More informationChapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol DiscreteEvent System Simulation
Chapter Output Aalysis for a Sigle Model Baks, Carso, Nelso & Nicol DiscreteEvet System Simulatio Error Estimatio If {,, } are ot statistically idepedet, the S / is a biased estimator of the true variace.
More informationThe variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.
SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample
More information(all terms are scalars).the minimization is clearer in sum notation:
7 Multiple liear regressio: with predictors) Depedet data set: y i i = 1, oe predictad, predictors x i,k i = 1,, k = 1, ' The forecast equatio is ŷ i = b + Use matrix otatio: k =1 b k x ik Y = y 1 y 1
More information3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N.
3/3/04 CDS M Phil Old Least Squares (OLS) Vijayamohaa Pillai N CDS M Phil Vijayamoha CDS M Phil Vijayamoha Types of Relatioships Oly oe idepedet variable, Relatioship betwee ad is Liear relatioships Curviliear
More informationConfidence Level We want to estimate the true mean of a random variable X economically and with confidence.
Cofidece Iterval 700 Samples Sample Mea 03 Cofidece Level 095 Margi of Error 0037 We wat to estimate the true mea of a radom variable X ecoomically ad with cofidece True Mea μ from the Etire Populatio
More informationV. Nollau Institute of Mathematical Stochastics, Technical University of Dresden, Germany
PROBABILITY AND STATISTICS Vol. III  Correlatio Aalysis  V. Nollau CORRELATION ANALYSIS V. Nollau Istitute of Mathematical Stochastics, Techical Uiversity of Dresde, Germay Keywords: Radom vector, multivariate
More informationREVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION
REVIEW OF SIMPLE LINEAR REGRESSION SIMPLE LINEAR REGRESSION I liear regreio, we coider the frequecy ditributio of oe variable (Y) at each of everal level of a ecod variable (X). Y i kow a the depedet variable.
More informationEcon 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chisquare Distribution, Student s t distribution 1.
Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chisquare Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio
More informationMedian and IQR The median is the value which divides the ordered data values in half.
STA 666 Fall 2007 Webbased Course Notes 4: Describig Distributios Numerically Numerical summaries for quatitative variables media ad iterquartile rage (IQR) 5umber summary mea ad stadard deviatio Media
More informationSIMPLE LINEAR REGRESSION AND CORRELATION ANALYSIS
SIMPLE LINEAR REGRESSION AND CORRELATION ANALSIS INTRODUCTION There are lot of statistical ivestigatio to kow whether there is a relatioship amog variables Two aalyses: (1) regressio aalysis; () correlatio
More information62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +
62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of
More informationNCSS Statistical Software. Tolerance Intervals
Chapter 585 Itroductio This procedure calculates oe, ad two, sided tolerace itervals based o either a distributiofree (oparametric) method or a method based o a ormality assumptio (parametric). A twosided
More informationAnalysis of Algorithms Quicksort
Aalysis of Algorithms  Adreas Ermedahl MRTC (Mälardales RealTime Research Ceter) adreas.ermedahl@mdh.se Autum 2004 Proposed by C.A.R. Hoare i 962 Worst case ruig time: Θ( 2 ) Expected ruig time: Θ(
More informationChapter 22: What is a Test of Significance?
Chapter 22: What is a Test of Sigificace? Thought Questio Assume that the statemet If it s Saturday, the it s the weeked is true. followig statemets will also be true? Which of the If it s the weeked,
More informationInstructor: Judith Canner Spring 2010 CONFIDENCE INTERVALS How do we make inferences about the population parameters?
CONFIDENCE INTERVALS How do we make ifereces about the populatio parameters? The samplig distributio allows us to quatify the variability i sample statistics icludig how they differ from the parameter
More informationDefinitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.
Defiitios ad Theorems Remember the scalar form of the liear programmig problem, Miimize, Subject to, f(x) = c i x i a 1i x i = b 1 a mi x i = b m x i 0 i = 1,2,, where x are the decisio variables. c, b,
More informationOutput Analysis and RunLength Control
IEOR E4703: Mote Carlo Simulatio Columbia Uiversity c 2017 by Marti Haugh Output Aalysis ad RuLegth Cotrol I these otes we describe how the Cetral Limit Theorem ca be used to costruct approximate (1 α%
More informationTesting Statistical Hypotheses for Compare. Means with Vague Data
Iteratioal Mathematical Forum 5 o. 3 656 Testig Statistical Hypotheses for Compare Meas with Vague Data E. Baloui Jamkhaeh ad A. adi Ghara Departmet of Statistics Islamic Azad iversity Ghaemshahr Brach
More informationLesson 10: Limits and Continuity
www.scimsacademy.com Lesso 10: Limits ad Cotiuity SCIMS Academy 1 Limit of a fuctio The cocept of limit of a fuctio is cetral to all other cocepts i calculus (like cotiuity, derivative, defiite itegrals
More informationProbability and statistics: basic terms
Probability ad statistics: basic terms M. Veeraraghava August 203 A radom variable is a rule that assigs a umerical value to each possible outcome of a experimet. Outcomes of a experimet form the sample
More informationAssessment and Modeling of Forests. FR 4218 Spring Assignment 1 Solutions
Assessmet ad Modelig of Forests FR 48 Sprig Assigmet Solutios. The first part of the questio asked that you calculate the average, stadard deviatio, coefficiet of variatio, ad 9% cofidece iterval of the
More information18. Twosample problems for population means (σ unknown)
8. Twosamle roblems for oulatio meas (σ ukow) The Practice of Statistics i the Life Scieces Third Editio 04 W.H. Freema ad Comay Objectives (PSLS Chater 8) Comarig two meas (σ ukow) Twosamle situatios
More informationII. Descriptive Statistics D. Linear Correlation and Regression. 1. Linear Correlation
II. Descriptive Statistics D. Liear Correlatio ad Regressio I this sectio Liear Correlatio Cause ad Effect Liear Regressio 1. Liear Correlatio Quatifyig Liear Correlatio The Pearso productmomet correlatio
More informationStatistics. Chapter 10 TwoSample Tests. Copyright 2013 Pearson Education, Inc. publishing as Prentice Hall. Chap 101
Statistics Chapter 0 TwoSample Tests Copyright 03 Pearso Educatio, Ic. publishig as Pretice Hall Chap 0 Learig Objectives I this chapter, you lear How to use hypothesis testig for comparig the differece
More informationProbability, Expectation Value and Uncertainty
Chapter 1 Probability, Expectatio Value ad Ucertaity We have see that the physically observable properties of a quatum system are represeted by Hermitea operators (also referred to as observables ) such
More informationw (1) ˆx w (1) x (1) /ρ and w (2) ˆx w (2) x (2) /ρ.
2 5. Weighted umber of late jobs 5.1. Release dates ad due dates: maximimizig the weight of otime jobs Oce we add release dates, miimizig the umber of late jobs becomes a sigificatly harder problem. For
More informationCHAPTER III RESEARCH METHODOLOGY
CHAPTER III RESEARCH METHODOLOGY A. Method of the Research I this research the writer used the experimetal method. The experimetal research was aimed to kow if there were effect or ot for the populatio
More informationCS / MCS 401 Homework 3 grader solutions
CS / MCS 401 Homework 3 grader solutios assigmet due July 6, 016 writte by Jāis Lazovskis maximum poits: 33 Some questios from CLRS. Questios marked with a asterisk were ot graded. 1 Use the defiitio of
More informationIE 230 Probability & Statistics in Engineering I. Closed book and notes. No calculators. 120 minutes.
Closed book ad otes. No calculators. 120 miutes. Cover page, five pages of exam, ad tables for discrete ad cotiuous distributios. Score X i =1 X i / S X 2 i =1 (X i X ) 2 / ( 1) = [i =1 X i 2 X 2 ] / (
More informationGrouping 2: Spectral and Agglomerative Clustering. CS 510 Lecture #16 April 2 nd, 2014
Groupig 2: Spectral ad Agglomerative Clusterig CS 510 Lecture #16 April 2 d, 2014 Groupig (review) Goal: Detect local image features (SIFT) Describe image patches aroud features SIFT, SURF, HoG, LBP, Group
More informationThe standard deviation of the mean
Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider
More informationSome Properties of the Exact and Score Methods for Binomial Proportion and Sample Size Calculation
Some Properties of the Exact ad Score Methods for Biomial Proportio ad Sample Size Calculatio K. KRISHNAMOORTHY AND JIE PENG Departmet of Mathematics, Uiversity of Louisiaa at Lafayette Lafayette, LA 705041010,
More informationQuestion 1: Exercise 8.2
Questio 1: Exercise 8. (a) Accordig to the regressio results i colum (1), the house price is expected to icrease by 1% ( 100% 0.0004 500 ) with a additioal 500 square feet ad other factors held costat.
More informationLecture 9: Independent Groups & Repeated Measures ttest
Brittay s ote 4/6/207 Lecture 9: Idepedet s & Repeated Measures ttest Review: Sigle Sample ztest Populatio (otreatmet) Sample (treatmet) Need to kow mea ad stadard deviatio Problem with this? Sigle
More informationMA131  Analysis 1. Workbook 2 Sequences I
MA3  Aalysis Workbook 2 Sequeces I Autum 203 Cotets 2 Sequeces I 2. Itroductio.............................. 2.2 Icreasig ad Decreasig Sequeces................ 2 2.3 Bouded Sequeces..........................
More informationKLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions
We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give
More informationAdvanced Engineering Mathematics Exercises on Module 4: Probability and Statistics
Advaced Egieerig Mathematics Eercises o Module 4: Probability ad Statistics. A survey of people i give regio showed that 5% drak regularly. The probability of death due to liver disease, give that a perso
More information(a) (b) All real numbers. (c) All real numbers. (d) None. to show the. (a) 3. (b) [ 7, 1) (c) ( 7, 1) (d) At x = 7. (a) (b)
Chapter 0 Review 597. E; a ( + )( + ) + + S S + S + + + + + + S lim + l. D; a diverges by the Itegral l k Test sice d lim [(l ) ], so k l ( ) does ot coverge absolutely. But it coverges by the Alteratig
More informationIt should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.
Chapter 10 Variace Estimatio 10.1 Itroductio Variace estimatio is a importat practical problem i survey samplig. Variace estimates are used i two purposes. Oe is the aalytic purpose such as costructig
More informationRegression. Correlation vs. regression. The parameters of linear regression. Regression assumes... Random sample. Y = α + β X.
Regressio Correlatio vs. regressio Predicts Y from X Liear regressio assumes that the relatioship betwee X ad Y ca be described by a lie Regressio assumes... Radom sample Y is ormally distributed with
More informationMA 575, Linear Models : Homework 3
MA 575, Liear Models : Homework 3 Questio 1 RSS( ˆβ 0, ˆβ 1 ) (ŷ i y i ) Problem.7 Questio.7.1 ( ˆβ 0 + ˆβ 1 x i y i ) (ȳ SXY SXY x + SXX SXX x i y i ) ((ȳ y i ) + SXY SXX (x i x)) (ȳ y i ) SXY SXX SY
More informationActivity 3: Length Measurements with the FourSided Meter Stick
Activity 3: Legth Measuremets with the FourSided Meter Stick OBJECTIVE: The purpose of this experimet is to study errors ad the propagatio of errors whe experimetal data derived usig a foursided meter
More informationStat 400, section 5.4 supplement: The Central Limit Theorem
Stat, sectio 5. supplemet: The Cetral Limit Theorem otes by Tim Pilachowski Table of Cotets 1. Backgroud 1. Theoretical. Practical. The Cetral Limit Theorem 5. Homework Exercises 7 1. Backgroud Gatherig
More informationChapter Objectives. Bivariate Data. Terminology. Lurking Variable. Types of Relations. Chapter 3 Linear Regression and Correlation
Chapter Objectives Chapter 3 Liear Regressio ad Correlatio Descriptive Aalysis & Presetatio of Two Quatitative Data To be able to preset twovariables data i tabular ad graphic form Display the relatioship
More information7: Sampling Distributions
7: Samplig Distributios 7.1 You ca select a simple radom sample of size = 2 usig Table 1 i Appedix I. First choose a startig poit ad cosider the first three digits i each umber. Sice the experimetal uits
More informationAnalysis of Algorithms. Introduction. Contents
Itroductio The focus of this module is mathematical aspects of algorithms. Our mai focus is aalysis of algorithms, which meas evaluatig efficiecy of algorithms by aalytical ad mathematical methods. We
More informationCommutativity in Permutation Groups
Commutativity i Permutatio Groups Richard Wito, PhD Abstract I the group Sym(S) of permutatios o a oempty set S, fixed poits ad trasiet poits are defied Prelimiary results o fixed ad trasiet poits are
More informationPH 425 Quantum Measurement and Spin Winter SPINS Lab 1
PH 425 Quatum Measuremet ad Spi Witer 23 SPIS Lab Measure the spi projectio S z alog the zaxis This is the experimet that is ready to go whe you start the program, as show below Each atom is measured
More informationBinomial Distribution
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible
More informationTable 12.1: Contingency table. Feature b. 1 N 11 N 12 N 1b 2 N 21 N 22 N 2b. ... a N a1 N a2 N ab
Sectio 12 Tests of idepedece ad homogeeity I this lecture we will cosider a situatio whe our observatios are classified by two differet features ad we would like to test if these features are idepedet
More informationImportant Concepts not on the AP Statistics Formula Sheet
Part I: IQR = Q 3 Q 1 Test for a outlier: 1.5(IQR) above Q 3 or below Q 1 The calculator will ru the test for you as log as you choose the boplot with the oulier o it i STATPLOT Importat Cocepts ot o the
More informationCorrelation and Covariance
Correlatio ad Covariace Tom Ilveto FREC 9 What is Next? Correlatio ad Regressio Regressio We specify a depedet variable as a liear fuctio of oe or more idepedet variables, based o covariace Regressio
More informationDotting The Dot Map, Revisited. A. Jon Kimerling Dept. of Geosciences Oregon State University
Dottig The Dot Map, Revisited A. Jo Kimerlig Dept. of Geoscieces Orego State Uiversity Dot maps show the geographic distributio of features i a area by placig dots represetig a certai quatity of features
More informationDiscrete probability distributions
Discrete probability distributios I the chapter o probability we used the classical method to calculate the probability of various values of a radom variable. I some cases, however, we may be able to develop
More informationExample 2. Find the upper bound for the remainder for the approximation from Example 1.
Lesso 8 Error Approimatios 0 Alteratig Series Remaider: For a coverget alteratig series whe approimatig the sum of a series by usig oly the first terms, the error will be less tha or equal to the absolute
More informationSection 5.1 The Basics of Counting
1 Sectio 5.1 The Basics of Coutig Combiatorics, the study of arragemets of objects, is a importat part of discrete mathematics. I this chapter, we will lear basic techiques of coutig which has a lot of
More informationWHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? ABSTRACT
WHAT IS THE PROBABILITY FUNCTION FOR LARGE TSUNAMI WAVES? Harold G. Loomis Hoolulu, HI ABSTRACT Most coastal locatios have few if ay records of tsuami wave heights obtaied over various time periods. Still
More informationChapter 6 Principles of Data Reduction
Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a
More informationCTL.SC0x Supply Chain Analytics
CTL.SC0x Supply Chai Aalytics Key Cocepts Documet V1.1 This documet cotais the Key Cocepts documets for week 6, lessos 1 ad 2 withi the SC0x course. These are meat to complemet, ot replace, the lesso videos
More informationHashing and Amortization
Lecture Hashig ad Amortizatio Supplemetal readig i CLRS: Chapter ; Chapter 7 itro; Sectio 7.. Arrays ad Hashig Arrays are very useful. The items i a array are statically addressed, so that isertig, deletig,
More informationOverdispersion study of poisson and zeroinflated poisson regression for some characteristics of the data on lamda, n, p
Iteratioal Joural of Advaces i Itelliget Iformatics ISSN: 24426571 140 Overdispersio study of poisso ad zeroiflated poisso regressio for some characteristics of the data o lamda,, p Lili Puspita Rahayu
More informationMath 609/597: Cryptography 1
Math 609/597: Cryptography 1 The SolovayStrasse Primality Test 12 October, 1993 Burt Roseberg Revised: 6 October, 2000 1 Itroductio We describe the SolovayStrasse primality test. There is quite a bit
More informationTopic 6 Sampling, hypothesis testing, and the central limit theorem
CSE 103: Probability ad statistics Fall 2010 Topic 6 Samplig, hypothesis testig, ad the cetral limit theorem 61 The biomial distributio Let X be the umberofheadswhe acoiofbiaspistossedtimes The distributio
More informationsin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =
60. Ratio ad root tests 60.1. Absolutely coverget series. Defiitio 13. (Absolute covergece) A series a is called absolutely coverget if the series of absolute values a is coverget. The absolute covergece
More informationHomework for 4/9 Due 4/16
Name: ID: Homework for 4/9 Due 4/16 1. [ 136] It is covetioal wisdom i military squadros that pilots ted to father more girls tha boys. Syder 1961 gathered data for military fighter pilots. The sex of
More information4.1 Sigma Notation and Riemann Sums
0 the itegral. Sigma Notatio ad Riema Sums Oe strategy for calculatig the area of a regio is to cut the regio ito simple shapes, calculate the area of each simple shape, ad the add these smaller areas
More information(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?
MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle
More informationHOMEWORK 2 SOLUTIONS
HOMEWORK SOLUTIONS CSE 55 RANDOMIZED AND APPROXIMATION ALGORITHMS 1. Questio 1. a) The larger the value of k is, the smaller the expected umber of days util we get all the coupos we eed. I fact if = k
More informationSALES AND MARKETING Department MATHEMATICS. 2nd Semester. Bivariate statistics LESSONS
SALES AND MARKETING Departmet MATHEMATICS d Semester Bivariate statistics LESSONS Olie documet: http://jffduttc.weebly.com sectio DUT Maths S. IUT de SaitEtiee Départemet TC J.F.Ferraris Math S StatVar
More informationSequences I. Chapter Introduction
Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which
More informationComplex Numbers Solutions
Complex Numbers Solutios Joseph Zoller February 7, 06 Solutios. (009 AIME I Problem ) There is a complex umber with imagiary part 64 ad a positive iteger such that Fid. [Solutio: 697] 4i + + 4i. 4i 4i
More informationTRACEABILITY SYSTEM OF ROCKWELL HARDNESS C SCALE IN JAPAN
HARDMEKO 004 Hardess Measuremets Theory ad Applicatio i Laboratories ad Idustries  November, 004, Washigto, D.C., USA TRACEABILITY SYSTEM OF ROCKWELL HARDNESS C SCALE IN JAPAN Koichiro HATTORI, Satoshi
More informationARIMA Models. Dan Saunders. y t = φy t 1 + ɛ t
ARIMA Models Da Sauders I will discuss models with a depedet variable y t, a potetially edogeous error term ɛ t, ad a exogeous error term η t, each with a subscript t deotig time. With just these three
More informationREGRESSION (Physics 1210 Notes, Partial Modified Appendix A)
REGRESSION (Physics 0 Notes, Partial Modified Appedix A) HOW TO PERFORM A LINEAR REGRESSION Cosider the followig data poits ad their graph (Table I ad Figure ): X Y 0 3 5 3 7 4 9 5 Table : Example Data
More informationUCLA STAT 110B Applied Statistics for Engineering and the Sciences
UCLA STAT 110B Applied Statistics for Egieerig ad the Scieces Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistats: Bria Ng, UCLA Statistics Uiversity of Califoria, Los Ageles,
More informationStatistical Inference Procedures
Statitical Iferece Procedure Cofidece Iterval Hypothei Tet Statitical iferece produce awer to pecific quetio about the populatio of iteret baed o the iformatio i a ample. Iferece procedure mut iclude a
More informationJoint Probability Distributions and Random Samples. Jointly Distributed Random Variables. Chapter { }
UCLA STAT A Applied Probability & Statistics for Egieers Istructor: Ivo Diov, Asst. Prof. I Statistics ad Neurology Teachig Assistat: Neda Farziia, UCLA Statistics Uiversity of Califoria, Los Ageles, Sprig
More informationTables and Formulas for Sullivan, Fundamentals of Statistics, 2e Pearson Education, Inc.
Table ad Formula for Sulliva, Fudametal of Statitic, e. 008 Pearo Educatio, Ic. CHAPTER Orgaizig ad Summarizig Data Relative frequecy frequecy um of all frequecie Cla midpoit: The um of coecutive lower
More informationREGRESSION WITH QUADRATIC LOSS
REGRESSION WITH QUADRATIC LOSS MAXIM RAGINSKY Regressio with quadratic loss is aother basic problem studied i statistical learig theory. We have a radom couple Z = X, Y ), where, as before, X is a R d
More informationThe Sample Variance Formula: A Detailed Study of an Old Controversy
The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace
More informationZeros of Polynomials
Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree
More informationElement sampling: Part 2
Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig
More informationRecurrence Relations
Recurrece Relatios Aalysis of recursive algorithms, such as: it factorial (it ) { if (==0) retur ; else retur ( * factorial()); } Let t be the umber of multiplicatios eeded to calculate factorial(). The
More informationStat 3411 Spring 2011 Assignment 6 Answers
Stat 3411 Sprig 2011 Aigmet 6 Awer (A) Awer are give i 10 3 cycle (a) 149.1 to 187.5 Sice 150 i i the 90% 2ided cofidece iterval, we do ot reject H 0 : µ 150 v i favor of the 2ided alterative H a : µ
More informationIntroducing Sample Proportions
Itroducig Sample Proportios Probability ad statistics Aswers & Notes TINspire Ivestigatio Studet 60 mi 7 8 9 0 Itroductio A 00 survey of attitudes to climate chage, coducted i Australia by the CSIRO,
More informationR. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State
Bayesia Cotrol Charts for the Twoparameter Expoetial Distributio if the Locatio Parameter Ca Take o Ay Value Betwee Mius Iity ad Plus Iity R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com
More informationAsymptotic Results for the Linear Regression Model
Asymptotic Results for the Liear Regressio Model C. Fli November 29, 2000 1. Asymptotic Results uder Classical Assumptios The followig results apply to the liear regressio model y = Xβ + ε, where X is
More information