Nonlinear System Analysis

Size: px
Start display at page:

Download "Nonlinear System Analysis"

Transcription

1 Nonlinear System Analysis Lyapunov Based Approach Lecture 4 Module 1 Dr. Laxmidhar Behera Department of Electrical Engineering, Indian Institute of Technology, Kanpur. January 4, 2003 Intelligent Control Lecture Series Page 1

2 Overview Non-linear Systems : An Introduction Linearization Lyapunov Stability Theory Examples Summary January 4, 2003 Intelligent Control Lecture Series Page 2

3 Model: Nonlinear Systems: An Introduction Properties: Don t follow the principle of superposition, i.e, January 4, 2003 Intelligent Control Lecture Series Page 3

4 Multiple equilibrium points Limit cycles : oscillations of constant amplitude and frequency Subharmonic, harmonic oscillations for constant frequency inputs Chaos: randomness, complicated steady state behaviours Multiple modes of behaviour January 4, 2003 Intelligent Control Lecture Series Page 4

5 Nonlinear Systems: An Introduction Autonomous Systems: the nonlinear function does not explicitly depend on time. Affine System: Unforced System: input, January 4, 2003 Intelligent Control Lecture Series Page 5

6 Nonlinear Systems: An Introduction Example: Pendulum: The state equations are January 4, 2003 Intelligent Control Lecture Series Page 6

7 Nonlinear Systems: An Introduction Exercise Identify the category to which the following differential equations belong to? Why? where is an external input January 4, 2003 Intelligent Control Lecture Series Page 7

8 Linearization Concept of Equilibrium Point: Consider a system where functions! are continuously differentiable. The equilibrium point this system is defined as for January 4, 2003 Intelligent Control Lecture Series Page 8

9 What is linearization? Linearization is the process of replacing the nonlinear system model by its linear counterpart in a small region about its equilibrium point. Why do we need it? We have well stablished tools to analyze and stabilize linear systems. January 4, 2003 Intelligent Control Lecture Series Page 9

10 # $ # $ # $ $ % # $ % # % # Linearization The method: Let us write the the general form of nonlinear system as: (1). January 4, 2003 Intelligent Control Lecture Series Page 10

11 $ % Linearization Let & that forces the system constant equilibrium state & holds true. ' ( ' ( be a constant input such that to settle into a January 4, 2003 Intelligent Control Lecture Series Page 11

12 Linearization We now perturb the equilibrium state by allowing: ) ) *)and * *. T aylor s expansion yields # ) # ) ) * * ) * + + ) ) * ) + + * ) * * January 4, 2003 Intelligent Control Lecture Series Page 12

13 Linearization where + + ) ) *,,, -./ -0 / / / * ) *,,, -./ - 7 / / / are the Jacobian matrices of January 4, 2003 Intelligent Control Lecture Series Page 13

14 # ) * # ) + ) + * * * ) ) + + ) * ) # # # # # ) # ) # # ) ) Linearization Note that because Let is constant. Furthermore,. and Neglecting higher order terms, we arrive at the linear approximation January 4, 2003 Intelligent Control Lecture Series Page 14

15 ; < ) * : $ $ $ : % % % Linearization Similarly, if the outputs of the nonlinear system model are of the form. or in vector notation January 4, 2003 Intelligent Control Lecture Series Page 15

16 ; ) * ; ; ; Linearization Taylor s series expansion can again be used to yield the linear approximation of the above output equations. Indeed, if we let then we obtain January 4, 2003 Intelligent Control Lecture Series Page 16

17 = A = Linearization Example Consider a first order system: where Linearize it about origin Its solution is : initial state the state will settle at. Whatever may be the as B, which is the only equilibrium point that this linearized system has. January 4, 2003 Intelligent Control Lecture Series Page 17

18 Linearization However, the solution of actual nonlinear system is = C A A For various initial conditions, the system has two equilibrium points: in the following figure. and Cas can be seen January 4, 2003 Intelligent Control Lecture Series Page 18

19 Linearization F F Stable and Unstable Equilibrium Points x 0 =1.1 x 0 =1.01 x 0 =0.5 x(t)=x 0 e -t /(1-x 0 +x 0 e -t ) X(t) x 0 = x 0 = Time(seconds) =is a Stable while is an unstable equilibrium point. January 4, 2003 Intelligent Control Lecture Series Page 19

20 Lyapunov Stability Theory The concept of stability: Consider the nonlinear system G G Let an equilibrium point of the system be, January 4, 2003 Intelligent Control Lecture Series Page 20

21 I I G We say that is stable in the sense of Lyapunov if there exists positive quantity Hsuch that for every J JLK J JLK H we have G J G = B G = H I G G for all if it is stable and. we say that is asymptotically stable J as We call unstable if it is not stable. January 4, 2003 Intelligent Control Lecture Series Page 21

22 G Lyapunov Stability Theory How to determine the stability or instability of without explicitly solving the dynamic equations? Lyapunov s first or indirect method: Start with a nonlinear system G G Expand in Taylor series around redefine ) (we also January 4, 2003 Intelligent Control Lecture Series Page 22

23 R = 0 QPO J G Lyapunov Stability Theory where is the Jacobian matrix of 4NM evaluated at contains the higher order terms, i.e., and RTS J J J Then the nonlinear system asymptotically stable if and only if the linear system is stable, i.e., if all eigenvalues of have negative real parts. is January 4, 2003 Intelligent Control Lecture Series Page 23

24 G Lyapunov Stability Theory Advantage: Easy to apply Disadvantages: If some eigenvalues of are zero, then we cannot draw any conclusion about stability of the nonlinear system. It is valid only if initial conditions are close to the equilibrium. This method provides no indication as to how close is close. January 4, 2003 Intelligent Control Lecture Series Page 24

25 Lyapunov Stability Theory ULyapunov s second or direct method: Consider the nonlinear system B G G Suppose that there exists a function, called Lyapunov function, properties: with following 1. 2., for :Positive definite 3. K along trajectories of : Negative January 4, 2003 Intelligent Control Lecture Series Page 25

26 G Lyapunov Stability Theory Definite Then, is asymptotically stable. The method hinges on the existence of a Lyapunov function, which is an energy-like function. $ $ # 1 + # January 4, 2003 Intelligent Control Lecture Series Page 26

27 Lyapunov Stability Theory Advantages: answers stability of nonlinear systems without explicitly solving dynamic equations can easily handle time varying systems can determine asymptotic stability as well as plain stability can determine the region of asymtotic stability or the domain of attraction of an equilibrium January 4, 2003 Intelligent Control Lecture Series Page 27

28 V Lyapunov Stability Theory Example Oscillator with a nonlinear spring: W V V Linearize this system, The characteristic equation of linearized system is. January 4, 2003 Intelligent Control Lecture Series Page 28

29 Lyapunov Stability Theory The Vcharacteristic root corresponds to the damping term but notice the existence of aroot from the lack of a linear term in the spring restoring force. The linearized version of the system cannot recognize the existence of a nonlinear spring term and it fails to produce a non-zero characteristic root related to the restoring force. January 4, 2003 Intelligent Control Lecture Series Page 29

30 V Lyapunov Stability Theory Let s look at Lyapunov based approach. Consider the state space model W G G with equilibrium. Let s try for a Lyapunov function Y B X C C We can see that for all,. January 4, 2003 Intelligent Control Lecture Series Page 30

31 Lyapunov Stability Theory The time derivative of is W V W V K It follows then that G is asymptotically stable. January 4, 2003 Intelligent Control Lecture Series Page 31

32 Lyapunov Stability Theory Disadvantage of Lyapunov based Approach There is no systematic way of obtaining Lyapunov functions Lyapunov stability criterion provides only sufficient condition for stability. January 4, 2003 Intelligent Control Lecture Series Page 32

33 References 1. Nonlinear Systems, Hassan K. Khalil, Third Edition, Prentice Hall. 2. Applied Nonlinear Control, J. J. E. Slotine and W. Li, Prentice Hall 3. Nonlinear System Analysis, M. Vidyasagar, Second Edition, Prentice Hall January 4, 2003 Intelligent Control Lecture Series Page 33

34 Nonlinear System Analysis Lyapunov Based Approach Lecture 5 Module 1 Dr. Laxmidhar Behera Department of Electrical Engineering, Indian Institute of Technology, Kanpur. January 4, 2003 Intelligent Control Lecture Series Page 34

35 Lyapunov Stability Theory Stability of Linear Systems Consider a linear system in the form Choose as Lyapunov function the quadratic form ( where is a symmetric positive definite matrix. January 4, 2003 Intelligent Control Lecture Series Page 35

36 Lyapunov Stability Theory Then we have ( ( ( ( ( ( ( ( ( ( ( where Lyapunov Matrix Equation January 4, 2003 Intelligent Control Lecture Series Page 36

37 Z ( Lyapunov Stability Theory If the matrix is positive definite, then the system is asymptotically stable. Therefore, we could pick Z, the identity matrix and solve for and see if is positive definite January 4, 2003 Intelligent Control Lecture Series Page 37

38 Lyapunov Stability Theory Note: The usefulness of Lyapunov s matrix equation for linear systems is that it can provide an initial estimate for a Lyapunov function for a nonlinear system in cases where this is done computationally. Furthermore, it can be used to show stability of the linear quadratic regulator design. January 4, 2003 Intelligent Control Lecture Series Page 38

39 + + Let Let Lyapunov Stability Theory LaSalle-Yoshizawa Theorem be an equilibrium point of. be a continuously differentiable, positive definite and radially unbounded function such that [SA QPO where solutions of is a continuous function. Then, all bounded and satisfy are globally uniformly January 4, 2003 Intelligent Control Lecture Series Page 39

40 Lyapunov Stability Theory In addition, if equilibrium asymptotically stable. is positive definite, then the is globally uniformly January 4, 2003 Intelligent Control Lecture Series Page 40

41 Lyapunov Stability Theory More Examples We will discuss three examples that demonstrate applications of Lyapunov s method, namely 1. How to assess the importance of nonlinear terms in stability or instability. 2. How to estimate the domain of attraction of an equilibrium point. 3. How to design a control law that guarantees global asymptotic stability January 4, 2003 Intelligent Control Lecture Series Page 41

42 Lyapunov Stability Theory: Examples Example.1 Consider the system with. Find the equilibrium of the system by solving following equations: G G G G G G January 4, 2003 Intelligent Control Lecture Series Page 42

43 Lyapunov Stability Theory: Examples Multiply the first equation by G, the second by G and add them to get G G Hence, the equilibrium point is G G. The linearized system is C C January 4, 2003 Intelligent Control Lecture Series Page 43

44 ># Lyapunov Stability Theory: Examples The characteristic equation is C \ C 4 4 C 4 Since the characteristic roots are purely imaginary, we can not draw any conclusion on the stability of the nonlinear system. Now we resort to Lyapunov based approach. Choose the Lyapunov function to be the sum of the kinetic and potential energy of the linear system January 4, 2003 Intelligent Control Lecture Series Page 44

45 Lyapunov Stability Theory: Examples (this does not work always!): C C We see that B for all,. Then January 4, 2003 Intelligent Control Lecture Series Page 45

46 B K Lyapunov Stability Theory: Examples Therefore, we see that b if, the system is asymptotically stable if, the system is unstable b this result can not be obtained obtained by linearization January 4, 2003 Intelligent Control Lecture Series Page 46

47 Lyapunov Stability Theory: Examples Example.2 Suppose we want to determine the stability of the origin of the nonlinear system (Show that this is the equilibrium of the system.), January 4, 2003 Intelligent Control Lecture Series Page 47

48 C C C C Lyapunov Stability Theory: Examples The easiest way to show the stability is by linearization. The linearized form of the system is The characteristic equation is We can see that the system is stable. Wait! since this result is based on linearization, it says that if initial condition is close to the equilibrium point January 4, 2003 Intelligent Control Lecture Series Page 48

49 Lyapunov Stability Theory: Examples then the solution will tend to the equilibrium as. To find how close is close we need to get an estimate of the domain of attraction. We can do this by using Lyapunov theory. Let s try a Lyapunov function candidate C C January 4, 2003 Intelligent Control Lecture Series Page 49

50 Lyapunov Stability Theory: Examples Take its time derivative W Y Y Y Y C We can see, therefore, that stability is guaranteed if K or K C January 4, 2003 Intelligent Control Lecture Series Page 50

51 Lyapunov Stability Theory: Examples This means that the domain of attraction of the equilibrium is a circular disk of radius 1. As long as the initial conditions are inside the disk, it is guaranteed that the solution will end up at the stable equilibrium. In case, the initial conditions lie outside the disk then convergence is not guaranteed. January 4, 2003 Intelligent Control Lecture Series Page 51

52 Lyapunov Stability Theory: Examples Note: It should be mentioned that the above disk is an estimate of the domain attraction based on the particular Lyapunov function we selected. A different Lyapunov function could have produced a different estimate of the domain of attraction. January 4, 2003 Intelligent Control Lecture Series Page 52

53 Lyapunov Stability Theory: Examples Example.3 Trajectory Tracking Consider a single link manipulator > > ^] ` ` > ^] _ Now we want to find a control so that tracks a desired trajectory. Define. Then above equation may be written as _error dynamic equation January 4, 2003 Intelligent Control Lecture Series Page 53

54 > C C Lyapunov Stability Theory: Examples Choose a Lyapunov Function Candidate : > > > Take its time derivative : > : > > ^] > > January 4, 2003 Intelligent Control Lecture Series Page 54

55 > > > K a a B > a ^] Lyapunov Stability Theory: Examples We can choose our control input as : > >. Then assume This implies that imply that and dynamic equation, we get. But, it does not. Substituting the control into error : > > a > > This implies that : >. January 4, 2003 Intelligent Control Lecture Series Page 55

56 Lyapunov Stability Theory: Examples Consider the system Example.4 Back-Stepping W Start with the scalar system W Design the feedback control the origin. to stabilize January 4, 2003 Intelligent Control Lecture Series Page 56

57 Lyapunov Stability Theory: Examples We cancel the nonlinear term by taking Thus we obtain W K Taking Lyapunov function candidate as, its time derivative satisfies Y dc b Hence, the origin is globally asymptotically stable. January 4, 2003 Intelligent Control Lecture Series Page 57

58 Lyapunov Stability Theory: Examples Now to back step, we use the change of variable e So the transformed system W e e C W e January 4, 2003 Intelligent Control Lecture Series Page 58

59 Lyapunov Stability Theory: Examples Taking f e as a composite Lyapunov Function, we obtain f W e e & C W e ' Y e & C W e ' January 4, 2003 Intelligent Control Lecture Series Page 59

60 Lyapunov Stability Theory: Examples Choosing control input as C W e e C W we get f Y e Hence with this control law, the origin is globally asymptotically stable. January 4, 2003 Intelligent Control Lecture Series Page 60

61 References 1. Nonlinear Systems, Hassan K. Khalil, Third Edition, Prentice Hall. 2. Applied Nonlinear Control, J. J. E. Slotine and W. Li, Prentice Hall 3. Nonlinear System Analysis, M. Vidyasagar, Second Edition, Prentice Hall January 4, 2003 Intelligent Control Lecture Series Page 61

EN Nonlinear Control and Planning in Robotics Lecture 3: Stability February 4, 2015

EN Nonlinear Control and Planning in Robotics Lecture 3: Stability February 4, 2015 EN530.678 Nonlinear Control and Planning in Robotics Lecture 3: Stability February 4, 2015 Prof: Marin Kobilarov 0.1 Model prerequisites Consider ẋ = f(t, x). We will make the following basic assumptions

More information

Georgia Institute of Technology Nonlinear Controls Theory Primer ME 6402

Georgia Institute of Technology Nonlinear Controls Theory Primer ME 6402 Georgia Institute of Technology Nonlinear Controls Theory Primer ME 640 Ajeya Karajgikar April 6, 011 Definition Stability (Lyapunov): The equilibrium state x = 0 is said to be stable if, for any R > 0,

More information

Nonlinear Control Lecture 1: Introduction

Nonlinear Control Lecture 1: Introduction Nonlinear Control Lecture 1: Introduction Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2011 Farzaneh Abdollahi Nonlinear Control Lecture 1 1/15 Motivation

More information

Lyapunov Stability Theory

Lyapunov Stability Theory Lyapunov Stability Theory Peter Al Hokayem and Eduardo Gallestey March 16, 2015 1 Introduction In this lecture we consider the stability of equilibrium points of autonomous nonlinear systems, both in continuous

More information

Using Lyapunov Theory I

Using Lyapunov Theory I Lecture 33 Stability Analysis of Nonlinear Systems Using Lyapunov heory I Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Outline Motivation Definitions

More information

3 Stability and Lyapunov Functions

3 Stability and Lyapunov Functions CDS140a Nonlinear Systems: Local Theory 02/01/2011 3 Stability and Lyapunov Functions 3.1 Lyapunov Stability Denition: An equilibrium point x 0 of (1) is stable if for all ɛ > 0, there exists a δ > 0 such

More information

2 Lyapunov Stability. x(0) x 0 < δ x(t) x 0 < ɛ

2 Lyapunov Stability. x(0) x 0 < δ x(t) x 0 < ɛ 1 2 Lyapunov Stability Whereas I/O stability is concerned with the effect of inputs on outputs, Lyapunov stability deals with unforced systems: ẋ = f(x, t) (1) where x R n, t R +, and f : R n R + R n.

More information

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 8: Basic Lyapunov Stability Theory

MCE/EEC 647/747: Robot Dynamics and Control. Lecture 8: Basic Lyapunov Stability Theory MCE/EEC 647/747: Robot Dynamics and Control Lecture 8: Basic Lyapunov Stability Theory Reading: SHV Appendix Mechanical Engineering Hanz Richter, PhD MCE503 p.1/17 Stability in the sense of Lyapunov A

More information

Control of Mobile Robots

Control of Mobile Robots Control of Mobile Robots Regulation and trajectory tracking Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Organization and

More information

MCE693/793: Analysis and Control of Nonlinear Systems

MCE693/793: Analysis and Control of Nonlinear Systems MCE693/793: Analysis and Control of Nonlinear Systems Lyapunov Stability - I Hanz Richter Mechanical Engineering Department Cleveland State University Definition of Stability - Lyapunov Sense Lyapunov

More information

Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 3 : Analytical Solutions of Linear ODE-IVPs

Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 3 : Analytical Solutions of Linear ODE-IVPs Module 6 : Solving Ordinary Differential Equations - Initial Value Problems (ODE-IVPs) Section 3 : Analytical Solutions of Linear ODE-IVPs 3 Analytical Solutions of Linear ODE-IVPs Before developing numerical

More information

Solution of Additional Exercises for Chapter 4

Solution of Additional Exercises for Chapter 4 1 1. (1) Try V (x) = 1 (x 1 + x ). Solution of Additional Exercises for Chapter 4 V (x) = x 1 ( x 1 + x ) x = x 1 x + x 1 x In the neighborhood of the origin, the term (x 1 + x ) dominates. Hence, the

More information

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. EE 533 Homeworks Spring 07 Updated: Saturday, April 08, 07 DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. Some homework assignments refer to the textbooks: Slotine

More information

Handout 2: Invariant Sets and Stability

Handout 2: Invariant Sets and Stability Engineering Tripos Part IIB Nonlinear Systems and Control Module 4F2 1 Invariant Sets Handout 2: Invariant Sets and Stability Consider again the autonomous dynamical system ẋ = f(x), x() = x (1) with state

More information

Lecture 4. Chapter 4: Lyapunov Stability. Eugenio Schuster. Mechanical Engineering and Mechanics Lehigh University.

Lecture 4. Chapter 4: Lyapunov Stability. Eugenio Schuster. Mechanical Engineering and Mechanics Lehigh University. Lecture 4 Chapter 4: Lyapunov Stability Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 4 p. 1/86 Autonomous Systems Consider the autonomous system ẋ

More information

STRICT LYAPUNOV FUNCTION AND CHETAEV FUNCTION FOR STABILITY/INSTABILITY ANALYSIS OF THE PENDULUM 1

STRICT LYAPUNOV FUNCTION AND CHETAEV FUNCTION FOR STABILITY/INSTABILITY ANALYSIS OF THE PENDULUM 1 STRICT LYAPUNOV FUNCTION AND CHETAEV FUNCTION FOR STABILITY/INSTABILITY ANALYSIS OF THE PENDULUM Rafael Kelly and Victor Santibañez Dirección de Telemática, CICESE Apdo Postal 65, Adm, Carretera Tijuana

More information

STABILITY. Phase portraits and local stability

STABILITY. Phase portraits and local stability MAS271 Methods for differential equations Dr. R. Jain STABILITY Phase portraits and local stability We are interested in system of ordinary differential equations of the form ẋ = f(x, y), ẏ = g(x, y),

More information

Lecture 9 Nonlinear Control Design

Lecture 9 Nonlinear Control Design Lecture 9 Nonlinear Control Design Exact-linearization Lyapunov-based design Lab 2 Adaptive control Sliding modes control Literature: [Khalil, ch.s 13, 14.1,14.2] and [Glad-Ljung,ch.17] Course Outline

More information

Control of Robotic Manipulators

Control of Robotic Manipulators Control of Robotic Manipulators Set Point Control Technique 1: Joint PD Control Joint torque Joint position error Joint velocity error Why 0? Equivalent to adding a virtual spring and damper to the joints

More information

Lyapunov stability ORDINARY DIFFERENTIAL EQUATIONS

Lyapunov stability ORDINARY DIFFERENTIAL EQUATIONS Lyapunov stability ORDINARY DIFFERENTIAL EQUATIONS An ordinary differential equation is a mathematical model of a continuous state continuous time system: X = < n state space f: < n! < n vector field (assigns

More information

LECTURE 8: DYNAMICAL SYSTEMS 7

LECTURE 8: DYNAMICAL SYSTEMS 7 15-382 COLLECTIVE INTELLIGENCE S18 LECTURE 8: DYNAMICAL SYSTEMS 7 INSTRUCTOR: GIANNI A. DI CARO GEOMETRIES IN THE PHASE SPACE Damped pendulum One cp in the region between two separatrix Separatrix Basin

More information

GLOBAL ANALYSIS OF PIECEWISE LINEAR SYSTEMS USING IMPACT MAPS AND QUADRATIC SURFACE LYAPUNOV FUNCTIONS

GLOBAL ANALYSIS OF PIECEWISE LINEAR SYSTEMS USING IMPACT MAPS AND QUADRATIC SURFACE LYAPUNOV FUNCTIONS GLOBAL ANALYSIS OF PIECEWISE LINEAR SYSTEMS USING IMPACT MAPS AND QUADRATIC SURFACE LYAPUNOV FUNCTIONS Jorge M. Gonçalves, Alexandre Megretski y, Munther A. Dahleh y California Institute of Technology

More information

Converse Lyapunov theorem and Input-to-State Stability

Converse Lyapunov theorem and Input-to-State Stability Converse Lyapunov theorem and Input-to-State Stability April 6, 2014 1 Converse Lyapunov theorem In the previous lecture, we have discussed few examples of nonlinear control systems and stability concepts

More information

BIBO STABILITY AND ASYMPTOTIC STABILITY

BIBO STABILITY AND ASYMPTOTIC STABILITY BIBO STABILITY AND ASYMPTOTIC STABILITY FRANCESCO NORI Abstract. In this report with discuss the concepts of bounded-input boundedoutput stability (BIBO) and of Lyapunov stability. Examples are given to

More information

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1

Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems. p. 1/1 Nonlinear Systems and Control Lecture # 12 Converse Lyapunov Functions & Time Varying Systems p. 1/1 p. 2/1 Converse Lyapunov Theorem Exponential Stability Let x = 0 be an exponentially stable equilibrium

More information

MCE693/793: Analysis and Control of Nonlinear Systems

MCE693/793: Analysis and Control of Nonlinear Systems MCE693/793: Analysis and Control of Nonlinear Systems Systems of Differential Equations Phase Plane Analysis Hanz Richter Mechanical Engineering Department Cleveland State University Systems of Nonlinear

More information

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz

Theoretical physics. Deterministic chaos in classical physics. Martin Scholtz Theoretical physics Deterministic chaos in classical physics Martin Scholtz scholtzzz@gmail.com Fundamental physical theories and role of classical mechanics. Intuitive characteristics of chaos. Newton

More information

Intelligent Control. Module I- Neural Networks Lecture 7 Adaptive Learning Rate. Laxmidhar Behera

Intelligent Control. Module I- Neural Networks Lecture 7 Adaptive Learning Rate. Laxmidhar Behera Intelligent Control Module I- Neural Networks Lecture 7 Adaptive Learning Rate Laxmidhar Behera Department of Electrical Engineering Indian Institute of Technology, Kanpur Recurrent Networks p.1/40 Subjects

More information

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis

Topic # /31 Feedback Control Systems. Analysis of Nonlinear Systems Lyapunov Stability Analysis Topic # 16.30/31 Feedback Control Systems Analysis of Nonlinear Systems Lyapunov Stability Analysis Fall 010 16.30/31 Lyapunov Stability Analysis Very general method to prove (or disprove) stability of

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

Stability lectures. Stability of Linear Systems. Stability of Linear Systems. Stability of Continuous Systems. EECE 571M/491M, Spring 2008 Lecture 5

Stability lectures. Stability of Linear Systems. Stability of Linear Systems. Stability of Continuous Systems. EECE 571M/491M, Spring 2008 Lecture 5 EECE 571M/491M, Spring 2008 Lecture 5 Stability of Continuous Systems http://courses.ece.ubc.ca/491m moishi@ece.ubc.ca Dr. Meeko Oishi Electrical and Computer Engineering University of British Columbia,

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

Control Systems. Internal Stability - LTI systems. L. Lanari

Control Systems. Internal Stability - LTI systems. L. Lanari Control Systems Internal Stability - LTI systems L. Lanari outline LTI systems: definitions conditions South stability criterion equilibrium points Nonlinear systems: equilibrium points examples stable

More information

Modeling II Linear Stability Analysis and Wave Equa9ons

Modeling II Linear Stability Analysis and Wave Equa9ons Modeling II Linear Stability Analysis and Wave Equa9ons Nondimensional Equa9ons From previous lecture, we have a system of nondimensional PDEs: (21.1) (21.2) (21.3) where here the * sign has been dropped

More information

Lecture 9 Nonlinear Control Design. Course Outline. Exact linearization: example [one-link robot] Exact Feedback Linearization

Lecture 9 Nonlinear Control Design. Course Outline. Exact linearization: example [one-link robot] Exact Feedback Linearization Lecture 9 Nonlinear Control Design Course Outline Eact-linearization Lyapunov-based design Lab Adaptive control Sliding modes control Literature: [Khalil, ch.s 13, 14.1,14.] and [Glad-Ljung,ch.17] Lecture

More information

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems

Nonlinear Control. Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Nonlinear Control Lecture # 8 Time Varying and Perturbed Systems Time-varying Systems ẋ = f(t,x) f(t,x) is piecewise continuous in t and locally Lipschitz in x for all t 0 and all x D, (0 D). The origin

More information

There is a more global concept that is related to this circle of ideas that we discuss somewhat informally. Namely, a region R R n with a (smooth)

There is a more global concept that is related to this circle of ideas that we discuss somewhat informally. Namely, a region R R n with a (smooth) 82 Introduction Liapunov Functions Besides the Liapunov spectral theorem, there is another basic method of proving stability that is a generalization of the energy method we have seen in the introductory

More information

Automatic Control 2. Nonlinear systems. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Nonlinear systems. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Nonlinear systems Prof. Alberto Bemporad University of Trento Academic year 2010-2011 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 2010-2011 1 / 18

More information

(Refer Slide Time: 00:32)

(Refer Slide Time: 00:32) Nonlinear Dynamical Systems Prof. Madhu. N. Belur and Prof. Harish. K. Pillai Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 12 Scilab simulation of Lotka Volterra

More information

Robotics. Control Theory. Marc Toussaint U Stuttgart

Robotics. Control Theory. Marc Toussaint U Stuttgart Robotics Control Theory Topics in control theory, optimal control, HJB equation, infinite horizon case, Linear-Quadratic optimal control, Riccati equations (differential, algebraic, discrete-time), controllability,

More information

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems

Chapter #4 EEE8086-EEE8115. Robust and Adaptive Control Systems Chapter #4 Robust and Adaptive Control Systems Nonlinear Dynamics.... Linear Combination.... Equilibrium points... 3 3. Linearisation... 5 4. Limit cycles... 3 5. Bifurcations... 4 6. Stability... 6 7.

More information

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

More information

3. Fundamentals of Lyapunov Theory

3. Fundamentals of Lyapunov Theory Applied Nonlinear Control Nguyen an ien -.. Fundamentals of Lyapunov heory he objective of this chapter is to present Lyapunov stability theorem and illustrate its use in the analysis and the design of

More information

TTK4150 Nonlinear Control Systems Solution 6 Part 2

TTK4150 Nonlinear Control Systems Solution 6 Part 2 TTK4150 Nonlinear Control Systems Solution 6 Part 2 Department of Engineering Cybernetics Norwegian University of Science and Technology Fall 2003 Solution 1 Thesystemisgivenby φ = R (φ) ω and J 1 ω 1

More information

Applied Nonlinear Control

Applied Nonlinear Control Applied Nonlinear Control JEAN-JACQUES E. SLOTINE Massachusetts Institute of Technology WEIPING LI Massachusetts Institute of Technology Pearson Education Prentice Hall International Inc. Upper Saddle

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 6 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING QESTION BANK ME-Power Systems Engineering I st Year SEMESTER I IN55- SYSTEM THEORY Regulation

More information

Nonlinear Control Lecture 5: Stability Analysis II

Nonlinear Control Lecture 5: Stability Analysis II Nonlinear Control Lecture 5: Stability Analysis II Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2010 Farzaneh Abdollahi Nonlinear Control Lecture 5 1/41

More information

Hybrid Systems Course Lyapunov stability

Hybrid Systems Course Lyapunov stability Hybrid Systems Course Lyapunov stability OUTLINE Focus: stability of an equilibrium point continuous systems decribed by ordinary differential equations (brief review) hybrid automata OUTLINE Focus: stability

More information

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED.

DO NOT DO HOMEWORK UNTIL IT IS ASSIGNED. THE ASSIGNMENTS MAY CHANGE UNTIL ANNOUNCED. EE 5 Homewors Fall 04 Updated: Sunday, October 6, 04 Some homewor assignments refer to the textboos: Slotine and Li, etc. For full credit, show all wor. Some problems require hand calculations. In those

More information

Nonlinear Control Lecture 4: Stability Analysis I

Nonlinear Control Lecture 4: Stability Analysis I Nonlinear Control Lecture 4: Stability Analysis I Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2010 Farzaneh Abdollahi Nonlinear Control Lecture 4 1/70

More information

Achieve asymptotic stability using Lyapunov's second method

Achieve asymptotic stability using Lyapunov's second method IOSR Journal of Mathematics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X Volume 3, Issue Ver I (Jan - Feb 07), PP 7-77 wwwiosrjournalsorg Achieve asymptotic stability using Lyapunov's second method Runak

More information

Stability Analysis for ODEs

Stability Analysis for ODEs Stability Analysis for ODEs Marc R Roussel September 13, 2005 1 Linear stability analysis Equilibria are not always stable Since stable and unstable equilibria play quite different roles in the dynamics

More information

4. Complex Oscillations

4. Complex Oscillations 4. Complex Oscillations The most common use of complex numbers in physics is for analyzing oscillations and waves. We will illustrate this with a simple but crucially important model, the damped harmonic

More information

Dynamical Systems & Lyapunov Stability

Dynamical Systems & Lyapunov Stability Dynamical Systems & Lyapunov Stability Harry G. Kwatny Department of Mechanical Engineering & Mechanics Drexel University Outline Ordinary Differential Equations Existence & uniqueness Continuous dependence

More information

EML5311 Lyapunov Stability & Robust Control Design

EML5311 Lyapunov Stability & Robust Control Design EML5311 Lyapunov Stability & Robust Control Design 1 Lyapunov Stability criterion In Robust control design of nonlinear uncertain systems, stability theory plays an important role in engineering systems.

More information

Modeling & Control of Hybrid Systems Chapter 4 Stability

Modeling & Control of Hybrid Systems Chapter 4 Stability Modeling & Control of Hybrid Systems Chapter 4 Stability Overview 1. Switched systems 2. Lyapunov theory for smooth and linear systems 3. Stability for any switching signal 4. Stability for given switching

More information

Chapter III. Stability of Linear Systems

Chapter III. Stability of Linear Systems 1 Chapter III Stability of Linear Systems 1. Stability and state transition matrix 2. Time-varying (non-autonomous) systems 3. Time-invariant systems 1 STABILITY AND STATE TRANSITION MATRIX 2 In this chapter,

More information

Modeling and Analysis of Dynamic Systems

Modeling and Analysis of Dynamic Systems Modeling and Analysis of Dynamic Systems Dr. Guillaume Ducard Fall 2017 Institute for Dynamic Systems and Control ETH Zurich, Switzerland G. Ducard c 1 / 57 Outline 1 Lecture 13: Linear System - Stability

More information

A plane autonomous system is a pair of simultaneous first-order differential equations,

A plane autonomous system is a pair of simultaneous first-order differential equations, Chapter 11 Phase-Plane Techniques 11.1 Plane Autonomous Systems A plane autonomous system is a pair of simultaneous first-order differential equations, ẋ = f(x, y), ẏ = g(x, y). This system has an equilibrium

More information

Chapter 13 Internal (Lyapunov) Stability 13.1 Introduction We have already seen some examples of both stable and unstable systems. The objective of th

Chapter 13 Internal (Lyapunov) Stability 13.1 Introduction We have already seen some examples of both stable and unstable systems. The objective of th Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology 1 1 c Chapter

More information

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos Stephen Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition With 250 Figures 4jj Springer I Series Preface v L I Preface to the Second Edition vii Introduction 1 1 Equilibrium

More information

Automatic Control Systems theory overview (discrete time systems)

Automatic Control Systems theory overview (discrete time systems) Automatic Control Systems theory overview (discrete time systems) Prof. Luca Bascetta (luca.bascetta@polimi.it) Politecnico di Milano Dipartimento di Elettronica, Informazione e Bioingegneria Motivations

More information

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait

Prof. Krstic Nonlinear Systems MAE281A Homework set 1 Linearization & phase portrait Prof. Krstic Nonlinear Systems MAE28A Homework set Linearization & phase portrait. For each of the following systems, find all equilibrium points and determine the type of each isolated equilibrium. Use

More information

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar Video 8.1 Vijay Kumar 1 Definitions State State equations Equilibrium 2 Stability Stable Unstable Neutrally (Critically) Stable 3 Stability Translate the origin to x e x(t) =0 is stable (Lyapunov stable)

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture.1 Dynamic Behavior Richard M. Murray 6 October 8 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12

Chapter 6 Nonlinear Systems and Phenomena. Friday, November 2, 12 Chapter 6 Nonlinear Systems and Phenomena 6.1 Stability and the Phase Plane We now move to nonlinear systems Begin with the first-order system for x(t) d dt x = f(x,t), x(0) = x 0 In particular, consider

More information

Problem Sheet 1.1 First order linear equations;

Problem Sheet 1.1 First order linear equations; Problem Sheet 1 First order linear equations; In each of Problems 1 through 8 find the solution of the given initial value problem 5 6 7 8 In each of Problems 9 and 10: (a) Let be the value of for which

More information

16.30/31, Fall 2010 Recitation # 13

16.30/31, Fall 2010 Recitation # 13 16.30/31, Fall 2010 Recitation # 13 Brandon Luders December 6, 2010 In this recitation, we tie the ideas of Lyapunov stability analysis (LSA) back to previous ways we have demonstrated stability - but

More information

CDS 101/110a: Lecture 2.1 Dynamic Behavior

CDS 101/110a: Lecture 2.1 Dynamic Behavior CDS 11/11a: Lecture 2.1 Dynamic Behavior Richard M. Murray 6 October 28 Goals: Learn to use phase portraits to visualize behavior of dynamical systems Understand different types of stability for an equilibrium

More information

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XII - Lyapunov Stability - Hassan K. Khalil

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XII - Lyapunov Stability - Hassan K. Khalil LYAPUNO STABILITY Hassan K. Khalil Department of Electrical and Computer Enigneering, Michigan State University, USA. Keywords: Asymptotic stability, Autonomous systems, Exponential stability, Global asymptotic

More information

Stability of Nonlinear Systems An Introduction

Stability of Nonlinear Systems An Introduction Stability of Nonlinear Systems An Introduction Michael Baldea Department of Chemical Engineering The University of Texas at Austin April 3, 2012 The Concept of Stability Consider the generic nonlinear

More information

Stability of Dynamical systems

Stability of Dynamical systems Stability of Dynamical systems Stability Isolated equilibria Classification of Isolated Equilibria Attractor and Repeller Almost linear systems Jacobian Matrix Stability Consider an autonomous system u

More information

Stability in the sense of Lyapunov

Stability in the sense of Lyapunov CHAPTER 5 Stability in the sense of Lyapunov Stability is one of the most important properties characterizing a system s qualitative behavior. There are a number of stability concepts used in the study

More information

1 / 5. Stability of 2 2 Systems of Differential Equations April 2014

1 / 5. Stability of 2 2 Systems of Differential Equations April 2014 / 5 Stability of Systems of Differential Equations April 04 Alecos Papadopoulos Department of Economics Athens University of Economics and Business papadopalex@aueb.gr http://alecospapadopoulos.wordpress.com

More information

Output Regulation of the Arneodo Chaotic System

Output Regulation of the Arneodo Chaotic System Vol. 0, No. 05, 00, 60-608 Output Regulation of the Arneodo Chaotic System Sundarapandian Vaidyanathan R & D Centre, Vel Tech Dr. RR & Dr. SR Technical University Avadi-Alamathi Road, Avadi, Chennai-600

More information

Nonlinear Control Lecture 2:Phase Plane Analysis

Nonlinear Control Lecture 2:Phase Plane Analysis Nonlinear Control Lecture 2:Phase Plane Analysis Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Fall 2010 r. Farzaneh Abdollahi Nonlinear Control Lecture 2 1/53

More information

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11 sc46 - Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be

More information

EE222 - Spring 16 - Lecture 2 Notes 1

EE222 - Spring 16 - Lecture 2 Notes 1 EE222 - Spring 16 - Lecture 2 Notes 1 Murat Arcak January 21 2016 1 Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Essentially Nonlinear Phenomena Continued

More information

STABILITY ANALYSIS OF DYNAMIC SYSTEMS

STABILITY ANALYSIS OF DYNAMIC SYSTEMS C. Melchiorri (DEI) Automatic Control & System Theory 1 AUTOMATIC CONTROL AND SYSTEM THEORY STABILITY ANALYSIS OF DYNAMIC SYSTEMS Claudio Melchiorri Dipartimento di Ingegneria dell Energia Elettrica e

More information

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves).

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves). Lecture 1 Notes: 06 / 27 The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves). These systems are very common in nature - a system displaced from equilibrium

More information

Lecture 19: Calculus of Variations II - Lagrangian

Lecture 19: Calculus of Variations II - Lagrangian Lecture 19: Calculus of Variations II - Lagrangian 1. Key points Lagrangian Euler-Lagrange equation Canonical momentum Variable transformation Maple VariationalCalculus package EulerLagrange 2. Newton's

More information

Simple Harmonic Motion Concept Questions

Simple Harmonic Motion Concept Questions Simple Harmonic Motion Concept Questions Question 1 Which of the following functions x(t) has a second derivative which is proportional to the negative of the function d x! " x? dt 1 1. x( t ) = at. x(

More information

Additive resonances of a controlled van der Pol-Duffing oscillator

Additive resonances of a controlled van der Pol-Duffing oscillator Additive resonances of a controlled van der Pol-Duffing oscillator This paper has been published in Journal of Sound and Vibration vol. 5 issue - 8 pp.-. J.C. Ji N. Zhang Faculty of Engineering University

More information

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur

Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur Intelligent Systems and Control Prof. Laxmidhar Behera Indian Institute of Technology, Kanpur Module - 2 Lecture - 4 Introduction to Fuzzy Logic Control In this lecture today, we will be discussing fuzzy

More information

INTEGRAL BACKSTEPPING SLIDING MODE CONTROL OF CHAOTIC FORCED VAN DER POL OSCILLATOR

INTEGRAL BACKSTEPPING SLIDING MODE CONTROL OF CHAOTIC FORCED VAN DER POL OSCILLATOR INTEGRAL BACKSTEPPING SLIDING MODE CONTROL OF CHAOTIC FORCED VAN DER POL OSCILLATOR Ismaila Adeniyi Kamil and Samuel Oyelekan Oladipo Department of Electrical & Electronic Engineering,University of Ibadan,

More information

EC744 Lecture Notes: Economic Dynamics. Prof. Jianjun Miao

EC744 Lecture Notes: Economic Dynamics. Prof. Jianjun Miao EC744 Lecture Notes: Economic Dynamics Prof. Jianjun Miao 1 Deterministic Dynamic System State vector x t 2 R n State transition function x t = g x 0 ; t; ; x 0 = x 0 ; parameter 2 R p A parametrized dynamic

More information

Mechanical Resonance and Chaos

Mechanical Resonance and Chaos Mechanical Resonance and Chaos You will use the apparatus in Figure 1 to investigate regimes of increasing complexity. Figure 1. The rotary pendulum (from DeSerio, www.phys.ufl.edu/courses/phy483l/group_iv/chaos/chaos.pdf).

More information

Hybrid Control and Switched Systems. Lecture #7 Stability and convergence of ODEs

Hybrid Control and Switched Systems. Lecture #7 Stability and convergence of ODEs Hybrid Control and Switched Systems Lecture #7 Stability and convergence of ODEs João P. Hespanha University of California at Santa Barbara Summary Lyapunov stability of ODEs epsilon-delta and beta-function

More information

Nonlinear systems. Lyapunov stability theory. G. Ferrari Trecate

Nonlinear systems. Lyapunov stability theory. G. Ferrari Trecate Nonlinear systems Lyapunov stability theory G. Ferrari Trecate Dipartimento di Ingegneria Industriale e dell Informazione Università degli Studi di Pavia Advanced automation and control Ferrari Trecate

More information

Output Feedback and State Feedback. EL2620 Nonlinear Control. Nonlinear Observers. Nonlinear Controllers. ẋ = f(x,u), y = h(x)

Output Feedback and State Feedback. EL2620 Nonlinear Control. Nonlinear Observers. Nonlinear Controllers. ẋ = f(x,u), y = h(x) Output Feedback and State Feedback EL2620 Nonlinear Control Lecture 10 Exact feedback linearization Input-output linearization Lyapunov-based control design methods ẋ = f(x,u) y = h(x) Output feedback:

More information

Hybrid Control and Switched Systems. Lecture #11 Stability of switched system: Arbitrary switching

Hybrid Control and Switched Systems. Lecture #11 Stability of switched system: Arbitrary switching Hybrid Control and Switched Systems Lecture #11 Stability of switched system: Arbitrary switching João P. Hespanha University of California at Santa Barbara Stability under arbitrary switching Instability

More information

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fourth Edition Richard Haberman Department of Mathematics Southern Methodist University PEARSON Prentice Hall PEARSON

More information

Distributed Adaptive Consensus Protocol with Decaying Gains on Directed Graphs

Distributed Adaptive Consensus Protocol with Decaying Gains on Directed Graphs Distributed Adaptive Consensus Protocol with Decaying Gains on Directed Graphs Štefan Knotek, Kristian Hengster-Movric and Michael Šebek Department of Control Engineering, Czech Technical University, Prague,

More information

Control of the MARES Autonomous Underwater Vehicle

Control of the MARES Autonomous Underwater Vehicle Control of the MARES Autonomous Underwater Vehicle Bruno Ferreira, Miguel Pinto, Aníbal Matos, Nuno Cruz FEUP DEEC Rua Dr. Roberto Frias, s/n 4200-465 Porto PORTUGAL ee04018@fe.up.pt, ee04134@fe.up.pt,

More information

Nonlinear Autonomous Systems of Differential

Nonlinear Autonomous Systems of Differential Chapter 4 Nonlinear Autonomous Systems of Differential Equations 4.0 The Phase Plane: Linear Systems 4.0.1 Introduction Consider a system of the form x = A(x), (4.0.1) where A is independent of t. Such

More information

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems

Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 1/5 Introduction to Nonlinear Control Lecture # 3 Time-Varying and Perturbed Systems p. 2/5 Time-varying Systems ẋ = f(t, x) f(t, x) is piecewise continuous in t and locally Lipschitz in x for all t

More information

Hybrid Systems - Lecture n. 3 Lyapunov stability

Hybrid Systems - Lecture n. 3 Lyapunov stability OUTLINE Focus: stability of equilibrium point Hybrid Systems - Lecture n. 3 Lyapunov stability Maria Prandini DEI - Politecnico di Milano E-mail: prandini@elet.polimi.it continuous systems decribed by

More information

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part I: Theoretical Techniques. Lecture 4: Discrete systems + Chaos. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part I: Theoretical Techniques Lecture 4: Discrete systems + Chaos Ilya Potapov Mathematics Department, TUT Room TD325 Discrete maps x n+1 = f(x n ) Discrete time steps. x 0

More information

1 2 predators competing for 1 prey

1 2 predators competing for 1 prey 1 2 predators competing for 1 prey I consider here the equations for two predator species competing for 1 prey species The equations of the system are H (t) = rh(1 H K ) a1hp1 1+a a 2HP 2 1T 1H 1 + a 2

More information

Feedback Linearization Lectures delivered at IIT-Kanpur, TEQIP program, September 2016.

Feedback Linearization Lectures delivered at IIT-Kanpur, TEQIP program, September 2016. Feedback Linearization Lectures delivered at IIT-Kanpur, TEQIP program, September 216 Ravi N Banavar banavar@iitbacin September 24, 216 These notes are based on my readings o the two books Nonlinear Control

More information