Leptogenesis and Colliders

Size: px
Start display at page:

Download "Leptogenesis and Colliders"

Transcription

1 Leptogenesis and Coiders Bhupa Dev Washington University in St. Louis ACFI Workshop on Neutrinos at the High Energy Frontier UMass Amherst Juy 19, 2017

2 Matter-Antimatter Asymmetry η B n B n B n γ One number BSM Physics Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 2 / 45

3 Leptogenesis [Fukugita, Yanagida 86] A cosmoogica consequence of the seesaw mechanism. Provides a common ink between neutrino mass and baryon asymmetry. Naturay satisfies a the Sakharov conditions. L vioation due to the Majorana nature of heavy RH neutrinos. New source of CP vioation in the eptonic sector (through compex Dirac Yukawa coupings and/or PMNS CP phases). Departure from therma equiibrium when Γ N H. Freey avaiabe: /L /B through EW sphaeron interactions. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 3 / 45

4 Popuarity of Leptogenesis [INSPIRE Database] Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 4 / 45

5 Popuarity of Leptogenesis [INSPIRE Database] Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 5 / 45

6 Leptogenesis for Pedestrians [Buchmüer, Di Bari, Pümacher 05] Three basic steps: 1 Generation of L asymmetry by heavy Majorana neutrino decay: 2 Partia washout of the asymmetry due to inverse decay (and scatterings): 3 Conversion of the eft-over L asymmetry to B asymmetry at T > T sph. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 6 / 45

7 Botzmann Equations [Buchmüer, Di Bari, Pümacher 02] dn N dz dn L dz = (D + S)(N N N eq N ), = εd(n N N eq N ) N LW, (where z = m N1 /T and D, S, W = Γ D,S,W /Hz for decay, scattering and washout rates.) FIna baryon asymmetry: d η B = d ε κ f 0.02 (/L /B conversion at Tc + entropy diution from Tc to Trecombination). κ f κ(z f ) is the fina efficiency factor, where κ(z) = z z i dz D D + S dn N dz e z z dz W (z ) Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 7 / 45

8 CP Asymmetry N N ε = Φ L C N Φ L N β tree (a) sef-energy (b) vertex (c) Φ L C N L Φ Φ N β L C Γ(N L Φ) Γ(N L c Φ c ) [ Γ(N L k Φ) + Γ(N L c k Φc ) ] ĥ 2 ĥ c 2 (ĥ ĥ) + (ĥc ĥ c ) k rtance of sef-energy effects (when m N1 m N2 m N1,2 ) with the one-oop resummed Yukawa coupings [Piaftsis, Underwood [J. Liu, 03] G. Segré, PRD48 (1993) 460 M. Fanz, E. Paschos, U. Sarkar, PLB345 (1995) 24 ĥ = ĥ i ɛ βγ ĥ β L. Covi, E. Rouet, F. Vissani, PLB384 (1996) 16 β,γ. J. R. Eis, M. Raida, T. Yanagida, PLB546 (2002) 228 m(ma β + m β A β ) ir γ [m A γβ (m A γ + m γ A γ) + m β A βγ (m A γ + m γ A γ )] m 2 m2 β + 2im2 A ββ + 2iIm(R γ )[m 2 A βγ 2 + m β m γ Re(A 2 βγ )], rtance of the heavy-neutrino width effects: Γ N R β = m 2 m 2 m2 β + 2im2 A ; A β (ĥ) = 1 ββ 16π [A.P., PRD56 (1997) 5431; A.P. and T. Underwood, NPB692 (2004) 303 ĥ ĥ β. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 8 / 45

9 Testabiity of Seesaw [Drewes 15] Figure 4: In Aa bottom-up schematic iustration approach, of nothe definite reation prediction between of rmtrf the seesaw F and Mscae. I imposed by neutrino osciation data (pot taken from Ref. [22]). Individua eements of F can deviate consideraby from F 0 if there are canceations in (6). Cosmoogica constraints aow to Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 9 / 45

10 Testabiity of Leptogenesis Three regions of interest: High scae: 10 9 GeV m N GeV. Can be fasified with an LNV signa at LHC. see Juia s tak Coider-friendy scae: 100 GeV m N few TeV. Can be tested in coider and/or ow-energy (0νββ, LFV) searches. this tak Low-scae: 1 GeV m N 5 GeV. Can be tested at the intensity frontier: SHiP, DUNE or B-factories (LHCb, Bee-II). see Jacobo s tak Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 10 / 45

11 Testabiity of Leptogenesis Three regions of interest: GUT/high scae: 10 9 GeV m N GeV. Can be fasified with an LNV signa at LHC. [Deppisch, Harz, Hirsch 14] see Juia s tak Coider-friendy scae: 100 GeV m N few TeV. Can be tested in coider and/or ow-energy (0νββ, LFV) searches. this tak Low-scae: 1 GeV m N 5 GeV. Can be tested at the intensity frontier: SHiP, DUNE or B-factories (LHCb, Bee-II). see Jacobo s tak Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 11 / 45

12 Testabiity of Leptogenesis Three regions of interest: GUT/high scae: 10 9 GeV m N GeV. Can be fasified with an LNV signa at LHC. [Deppisch, Harz, Hirsch 14] see Juia s tak Coider-friendy scae: 100 GeV m N few TeV. Can be tested in coider and/or ow-energy (0νββ, LFV) searches. this tak Low-scae: 1 GeV m N 5 GeV. Can be tested at the intensity frontier: SHiP, DUNE or B-factories (LHCb, Bee-II). see Jacobo s tak Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 12 / 45

13 Vania Leptogenesis Hierarchica heavy neutrino spectrum (m N1 m N2 < m N3 ). Both vertex correction and sef-energy diagrams are reevant. For type-i seesaw, the maxima CP asymmetry is given by matm 2 ε max 1 = 3 16π m N1 v 2 Lower bound on m N1 : [Davidson, Ibarra 02; Buchmüer, Di Bari, Pümacher 02] ( ) ( ) m N1 > η B 0.05 ev GeV κ f m 2 atm Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 13 / 45

14 Vania Leptogenesis Hierarchica heavy neutrino spectrum (m N1 m N2 < m N3 ). Both vertex correction and sef-energy diagrams are reevant. For type-i seesaw, the maxima CP asymmetry is given by matm 2 ε max 1 = 3 16π m N1 v 2 Lower bound on m N1 : [Davidson, Ibarra 02; Buchmüer, Di Bari, Pümacher 02] ( ) ( ) m N1 > η B 0.05 ev GeV κ f m 2 atm Experimentay inaccessibe! Aso eads to a ower imit on the reheating temperature T rh 10 9 GeV. In supergravity modes, need T rh GeV to avoid the gravitino probem. [Khopov, Linde 84; Eis, Kim, Nanopouos 84; Cyburt, Eis, Fieds, Oive 02; Kawasaki, Kohri, Moroi, Yotsuyanagi 08] Aso in confict with the Higgs naturaness bound m N 10 7 GeV. [Vissani 97; Carke, Foot, Vokas 15; Bambhaniya, BD, Goswami, Khan, Rodejohann 16] Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 13 / 45

15 Resonant Leptogenesis L (k, r) N (p, s) ε ε Φ(q) Dominant sef-energy effects on the CP-asymmetry (ε-type) [Fanz, Paschos, Sarkar 95; Covi, Rouet, Vissani 96]. Resonanty enhanced, even up to order 1, when m N Γ N /2 m N1,2. [Piaftsis 97; Piaftsis, Underwood 03] The quasi-degeneracy can be naturay motivated as due to approximate breaking of some symmetry in the eptonic sector. Heavy neutrino mass scae can be as ow as the EW scae. [Piaftsis, Underwood 05; Deppisch, Piaftsis 10; BD, Miington, Piaftsis, Teresi 14] A testabe eptogenesis scenario at both Energy and Intensity Frontiers. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 14 / 45

16 Favor-diagona Rate Equations n γ H N z n γ H N z dη N dz dδη L dz ( ) = 1 ηn η N eq γ N L Φ ( ) η N = 1 ε 2 3 δηl L k (k,r) η N eq k L k(k,r) [ γ L Φ L c k Φc + γ L Φ L n (k2,r2) Lk(k1,r1) L (k1,r1) γ N L k bh Φ n [ h c b ] k n (q1)[n L (k1)] k r1 [ h c b ] k bn (p) L k Φ + ( δηl L k γ k ) ] (q2) (q1) Φ γ L L c k Φ Φc L Φ L [L c (k,r) (k2,r2)]m L (k,r) (a) (q1) L = 0 scattering, n [n L ] k n [ (L! L )] km. [L c (k1,r1)] [L c (k1,r1)]k bn (p) bn (p,s) [ h c b ] m bh n (q1)[ n L (k1)] r1 k bn (p,s) n (q)[n L n (q)[n L [ h c b r (k)] k bn (p,s) [ h c b r (k)] k bn (p) bn (p,s) ] ] (q2) k [ h c b ] k [ h c b ] (q1) c (q1) bh k bn (q) (q) (q) (q) (b) L = 0 scattering, n [ n L ] k [ (L c c! L c c )] n km. L n (k2,r2) Lk(k1,r1) (a) Inverse heavy-neutrino decay, L n [n L (k1,r1) ] k [ (L! N)] k (a) Inverse heavy-neutrino decay, n [n L ] k. Lm(k2,r2) (k2,r2)]m [ (L! N)] Lk(k1,r1) k. bh n [ h c b ] k n (q1)[n L (k1)] k r1 bh (q2) bn (p) [L c (k,r)] [L c (k,r)] (q1) [ h c b ][ h c b ] m [ h c b ] k m n (q1)[n L (k1)] k r1 [L c bn (p) bn (p) (k,r)] k [L c (q1) (k,r)] c (q2) k (q1) (q2) L (k1,r1) (q1) [ b h c ] bn ( bn (p,s) (a) L = 0 scattering, n (q)[ n n [n bh r L (k)] ] k k n [ (L! L )] km. (c) L = 2 scattering, bn (p,s) n [n L ] k bh k bn [ (L! L c c )] n km. (p,s) n (q)[ n L bh r (k)] k bn (p,s) c (q) c (q) bh [L c k (k2,r2)]m [L c (k1,r1)] L n (k2,r2) [L c (k1,r1)]k [L c (k1,r1)] [L c (k2,r2)] n [L c (k1,r1)]k Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 15 / 45

17 Anaytic Soution L ðzþ ¼ 3 2 K eff z : (4.38) to be B ¼ 2 5 [Deppisch, Piaftsis 11] N 1 3 L, N L z 1 z 2 z c z FIG. 1 (coor onine). Numerica soutions to BEs (4.32) and (4.35) for η N1 ¼ N1 = eq N 1 and L (z) 3 ε L,(z respectivey, in a RL 2z K mode with m N ¼ 220 GeV, eff 2 < z < z 3 ) 1 ¼ 10 6, K eff ¼ 10 2, ¼ 10 6 and z c ¼ m N =T c ¼ 1:6. z We note t estimate of regime of a right-hande weak scae given in (4. In the next 2 The onse the reative 2=3ðz 3 Þ3 K 1 ð anayticay which z 3 i approximati Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 16 / 45

18 Favordynamics Mi 1012 GeV 109 GeV Mi 1012 GeV 109 GeV Figure 1: The ten di erent three RH neutrino mass patterns requiring 10 di erent sets of Botzmann equations for the cacuation of the asymmetry [17]. component, escapes the washout from a ighter RH neutrino species [6]. Second, parts of the favour asymmetries (phantom terms) produced in the one or two favour regimes do not contribute to the tota asymmetry at the production but can contribute to the fina asymmetry [18]. Therefore, it is necessary to extend the density matrix formaism beyond the traditiona N1 -dominated scenario [6, 11, 19] and account for heavy neutrino favours e ects in Bhupa Dev order (Washington U.) Leptogenesis andarbitrary Coiders Workshop to cacuate the fina asymmetry for an choice of the RH neutrinoacfi masses. 17 / 45

19 Favordynamics Mi 1012 GeV 109 GeV Mi 1012 GeV 109 GeV Favor Figure effects at ow [Abada, mass Davidson, Ibarra,requiring Josse-Michaux, Losada, Riotto 1: important The ten di erent threescae RH neutrino patterns 10 di erent sets of 06; Nardi, Nir, Rouet,Botzmann Racker 06; equations De Simone,for Riotto Banchet, of Di the Bari,asymmetry Jones, Marzoa 12; BD, Miington, Piaftsis, Teresi 14] the 06; cacuation [17]. Two sources of favor effects: Heavy neutrino Yukawa coupings h [Piaftsis 04; Endoh, Morozumi, Xiong 04] component, escapes the washout from a ighter RH neutrino species [6]. Second, parts of Charged epton Yukawa coupings y k [Barbieri, Creminei, Strumia, Tetradis 00] the favour asymmetries (phantom terms) produced in the one or two favour regimes do Three distinct physica osciation and decoherence. not contribute to the phenomena: tota asymmetry mixing, at the production but can contribute to the fina asymmetry [18]. Captured consistenty in the Botzmann approach by the fuy favor-covariant Therefore, it is necessary to extend the density matrix formaism beyond the tradiformaism. [BD, Miington, Piaftsis, Teresi 14; 15] tiona N1 -dominated scenario [6, 11, 19] and account for heavy neutrino favours e ects in Leptogenesis andarbitrary Coiders Workshop the fina asymmetry for an choice of the RH neutrinoacfi masses. Bhupa Dev order (Washington U.) to cacuate 17 / 45

20 Master Equation for Transport Phenomena In quantum statistica mechanics, n X (t) ň X ( t; t i ) t { } = Tr ρ( t; t i ) ň X ( t; t i ). Differentiate w.r.t. the macroscopic time t = t t i : { } { } dn X (t) = Tr ρ( t; t i ) dňx ( t; t i ) dρ( t; t i ) + Tr ň X ( t; t i ) dt d t d t I 1 + I 2.. Use the Heisenberg EoM for I 1 and Liouvie-von Neumann equation for I 2. Markovian master equation for the number density matrix: d dt nx (k, t) i [H X 0, ň X (k, t)] t dt [H int(t ), [H int(t), ň X (k, t)]] t. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 18 / 45

21 Master Equation for Transport Phenomena In quantum statistica mechanics, n X (t) ň X ( t; t i ) t { } = Tr ρ( t; t i ) ň X ( t; t i ). Differentiate w.r.t. the macroscopic time t = t t i : { } { } dn X (t) = Tr ρ( t; t i ) dňx ( t; t i ) dρ( t; t i ) + Tr ň X ( t; t i ) dt d t d t I 1 + I 2.. Use the Heisenberg EoM for I 1 and Liouvie-von Neumann equation for I 2. Markovian master equation for the number density matrix: d dt nx (k, t) i [H X 0, ň X (k, t)] t dt [H int(t ), [H int(t), ň X (k, t)]] t. (Osciation) (Mixing) Generaization of the density matrix formaism. [Sig, Raffet 93] Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 18 / 45

22 Coision Rates for Decay and Inverse Decay n Φ [n L ] k [γ(lφ N)] β k L N β [ĥ c ] β k [ĥ c ] N Φ L k (k, r) L (k, r) N β (p, s) [ĥ c ] β k n Φ (q)[n L r (k)] k [ĥ c ] N (p, s) Φ(q) Φ(q) Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 19 / 45

23 Coision Rates for 2 2 Scattering n Φ [n L ] k [γ(lφ LΦ)] n k m [ĥ c ] β k N β L [ĥ c ] N L n ĥ n β Φ ĥ m L m Φ L n (k 2, r 2 ) L k (k 1, r 1 ) L (k 1, r 1 ) L m (k 2, r 2 ) ĥ n β N β (p) [ĥ c ] β k n Φ (q 1 )[n L r 1 (k 1 )] k [ĥ c ] N (p) ĥ m Φ(q 2 ) Φ(q 1 ) Φ(q 1 ) Φ(q 2 ) Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 20 / 45

24 Fina Rate Equations H N n γ z H N n γ z d[η N ] β dz d[δη N ] β dz = i nγ 2 [E N, δη N ] β = 2 i n γ [ E N, η N ] β 1 { δη N N, Re(γ 2 ηeq N LΦ ) + [ N Re(γLΦ ) ] β 1 { } β η N N, Re(γ 2 ηeq N LΦ ) + 2 i [ Im(δγ N LΦ ) ] β } β η N eq i { } β η N, Im(δγ N LΦ ) H N n γ z d[δη L ] m dz = [δγlφ] N m { [ηn ] β ηeq N δη L, γ LΦ + L c Φ c γ LΦ LΦ [δγlφ] N m β + [δηn ] β 2 ηeq N } m 2 3 [δηl ] n k [γlφ] N m β ( [γ LΦ ] k m [γ LΦ L c Φ c n LΦ] k m n ) 2 3 {δη L, γ dec } m + [δγ back dec ] m Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 21 / 45

25 Fina Rate Equations: Mixing H N n γ z H N n γ z d[η N ] β dz d[δη N ] β dz = i nγ 2 [E N, δη N ] β = 2 i n γ [ E N, η N ] β 1 { δη N N, Re(γ 2 ηeq N LΦ ) + [ N Re(γLΦ ) ] β 1 { } β η N N, Re(γ 2 ηeq N LΦ ) + 2 i [ Im(δγ N LΦ ) ] β } β η N eq i { } β η N, Im(δγ N LΦ ) H N n γ z d[δη L ] m dz = [δγlφ] N m { [ηn ] β ηeq N δη L, γ LΦ + L c Φ c γ LΦ LΦ [δγlφ] N m β + [δηn ] β 2 ηeq N } m 2 3 [δηl ] n k [γlφ] N m β ( [γ LΦ ] k m [γ LΦ L c Φ c n LΦ] k m n ) 2 3 {δη L, γ dec } m + [δγ back dec ] m Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 21 / 45

26 Fina Rate Equations: Osciation H N n γ z H N n γ z d[η N ] β dz d[δη N ] β dz = i nγ 2 [E N, δη N ] β = 2 i n γ [ E N, η N ] β 1 { δη N N, Re(γ 2 ηeq N LΦ ) + [ N Re(γLΦ ) ] β 1 { } β η N N, Re(γ 2 ηeq N LΦ ) + 2 i [ Im(δγ N LΦ ) ] β } β η N eq i { } β η N, Im(δγ N LΦ ) H N n γ z d[δη L ] m dz = [δγlφ] N m { [ηn ] β ηeq N δη L, γ LΦ + L c Φ c γ LΦ LΦ [δγlφ] N m β + [δηn ] β 2 ηeq N } m 2 3 [δηl ] n k [γlφ] N m β ( [γ LΦ ] k m [γ LΦ L c Φ c n LΦ] k m n ) 2 3 {δη L, γ dec } m + [δγ back dec ] m Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 21 / 45

27 Fina Rate Equations: Charged Lepton Decoherence H N n γ z H N n γ z d[η N ] β dz d[δη N ] β dz = i nγ 2 [E N, δη N ] β = 2 i n γ [ E N, η N ] β 1 { δη N N, Re(γ 2 ηeq N LΦ ) + [ N Re(γLΦ ) ] β 1 { } β η N N, Re(γ 2 ηeq N LΦ ) + 2 i [ Im(δγ N LΦ ) ] β } β η N eq i { } β η N, Im(δγ N LΦ ) H N n γ z d[δη L ] m dz = [δγlφ] N m { [ηn ] β ηeq N δη L, γ LΦ + L c Φ c γ LΦ LΦ [δγlφ] N m β + [δηn ] β 2 ηeq N } m 2 3 [δηl ] n k [γlφ] N m β ( [γ LΦ ] k m [γ LΦ L c Φ c n LΦ] k m n ) 2 3 {δη L, γ dec } m + [δγ back dec ] m Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 21 / 45

28 Fied-Theoretic Transport Phenomena KeyMixing Resut and Osciations 10-6 dh L L dh mix L dh osc dh L 10-7 δη L mix δη L osc z = mnêt Combination g N 3 L I ( ( ĥ ĥ) = osc L 2 β M + mix L 2 yieds N, MN, a factor β) 2 MN Γ(0) ββ of 2 enhancement 2 2Kz compared β to the (ĥ ĥ)(ĥ ĥ) ( isoated contributions ββ M 2 N, Mfor 2 2 ( ) 2, N, weaky-resonant β) + MN Γ(0) ββ RL. g N 3 I ( ( ĥ ĥ) 2 β M 2 N, MN, β) 2 ( Γ(0) MN 2 2Kz (ĥ ĥ)(ĥ ĥ) ββ β + Γ(0) ββ ( M 2 N, M 2 N, β) 2 + M 2 N ( Γ(0) + Γ(0) ββ )2 I[(ĥ ĥ) β ] 2 (ĥ ĥ) (ĥ ĥ) β Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 22 / 45 )

29 Testabe Modes Need m N O(TeV). Naive type-i seesaw requires mixing with ight neutrinos to be Coider signa suppressed in the minima set-up (SM+RH neutrinos). Two ways out: Construct a TeV seesaw mode with arge mixing (specia textures of m D and m N ). Go beyond the minima SM seesaw (e.g. U(1) B L, Left-Right). Observabe ow-energy signatures (LFV, 0νββ) possibe in any case. Compementarity between high-energy and high-intensity frontiers. Leptogenesis brings in additiona powerfu constraints in each case. Can be used to test/fasify eptogenesis. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 23 / 45

30 A Minima Mode of RL O(N)-symmetric heavy neutrino sector at a high scae µ X. Radiative RL: Sma mass spitting at ow scae from RG effects. [Branco, Gonzaez Feipe, Joaquim, Masina, Rebeo, Savoy 03] M N = m N 1 + M RG N, with M RG N = m N 8π 2 n ( µx m N ) Re [ h (µ X )h(µ X ) ]. A specific reaization: Resonant -genesis (RL ). [Piaftsis 04; Deppisch, Piaftsis 11] An exampe of RL τ with U(1) Le+L µ U(1) Lτ favor symmetry: 0 ae iπ/4 ae iπ/4 h = 0 be iπ/4 be iπ/4 + δh, ɛ e 0 0 δh = ɛ µ 0 0, ɛ τ κ 1 e i(π/4 γ 1) κ 2 e i(π/4 γ 2) But CP asymmetry vanishes up to O(h 4 ). [BD, Miington, Piaftsis, Teresi 15] Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 24 / 45

31 A Next-to-minima Mode [BD, Miington, Piaftsis, Teresi 15] Add an additiona favor-breaking M N : M N = m N 1 + M N + M RG N, with M N = M /2 M 2 0, 0 0 M 2 /2 h = 0 a e iπ/4 a e iπ/4 0 b e iπ/4 b e iπ/4 0 c e iπ/4 c e iπ/4 + ɛ e 0 0 ɛ µ 0 0 ɛ τ 0 0. Light neutrino mass constraint: M ν v 2 2 hm 1 N ht v 2 2m N m N m N a 2 ɛ 2 e m N ab ɛ m N eɛ µ ɛ eɛ τ m N ab ɛ m N eɛ µ m N b 2 ɛ 2 m µ N ɛ µɛ τ ɛ eɛ τ ɛ µɛ τ ɛ 2 τ, where m N 2 [ M N ] 23 + i ( [ M N ] 33 [ M N ] 22 ) = i M2. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 25 / 45

32 Benchmark Points Parameters BP1 BP2 BP3 m N 120 GeV 400 GeV 5 TeV c M 1 /m N M 2 /m N ( i) 10 8 ( i) 10 9 ( i) 10 8 a ( i) 10 4 ( i) 10 3 ( i) 10 3 b ( i) 10 3 ( i) 10 3 ( i) 10 3 ɛ e 3.31 i i i 10 7 ɛ µ 2.33 i i i 10 6 ɛ τ 3.50 i i i 10 6 Observabes BP1 BP2 BP3 Current Limit BR(µ eγ) < BR(τ µγ) < BR(τ eγ) < BR(µ 3e) < R Ti µ e < R Au µ e < R Pb µ e < Ω eµ < Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 26 / 45

33 A Discrete Favor Mode for RL Based on residua eptonic favor G f = (3n 2 ) or (6n 2 ) (with n even, 3 n, 4 n) and CP symmetries. [Luhn, Nasri, Ramond 07; Escobar, Luhn 08; Ferugio, Hagedorn, Ziegar 12] LH epton doubets L transform in a faithfu compex irrep 3, RH neutrinos N in an unfaithfu rea irrep 3 and RH charged eptons R in a singet 1 of G f. CP symmetry is given by the transformation X(s)(r) in the representation r and depends on the integer parameter s, 0 s n 1. [Hagedorn, Meroni, Moinaro 14] Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 27 / 45

34 A Discrete Favor Mode for RL Based on residua eptonic favor G f = (3n 2 ) or (6n 2 ) (with n even, 3 n, 4 n) and CP symmetries. [Luhn, Nasri, Ramond 07; Escobar, Luhn 08; Ferugio, Hagedorn, Ziegar 12] LH epton doubets L transform in a faithfu compex irrep 3, RH neutrinos N in an unfaithfu rea irrep 3 and RH charged eptons R in a singet 1 of G f. CP symmetry is given by the transformation X(s)(r) in the representation r and depends on the integer parameter s, 0 s n 1. [Hagedorn, Meroni, Moinaro 14] Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 27 / 45

35 A Discrete Favor Mode for RL Based on residua eptonic favor G f = (3n 2 ) or (6n 2 ) (with n even, 3 n, 4 n) and CP symmetries. [Luhn, Nasri, Ramond 07; Escobar, Luhn 08; Ferugio, Hagedorn, Ziegar 12] LH epton doubets L transform in a faithfu compex irrep 3, RH neutrinos N in an unfaithfu rea irrep 3 and RH charged eptons R in a singet 1 of G f. CP symmetry is given by the transformation X(s)(r) in the representation r and depends on the integer parameter s, 0 s n 1. [Hagedorn, Meroni, Moinaro 14] One exampe: [BD, Hagedorn, Moinaro (in prep)] y Y D = Ω(s)(3) R 13 (θ L ) 0 y 2 0 R13 ( θ R ) Ω(s)(3 ). 0 0 y M R = M N θ L 0.18(2.96) gives sin 2 θ (0.395), sin 2 θ and sin 2 θ (within 3σ of current goba-fit). [Hagedorn, Moinaro 16] Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 27 / 45

36 Fixing Mode Parameters Light neutrino masses given by the type-i seesaw: y1 2 cos 2θ R 0 y 1 y 3 sin 2θ R 0 y2 2 0 (s even), Mν 2 = v 2 y 1 y 3 sin 2θ R 0 y3 2 cos 2θ R M N y1 2 cos 2θ R 0 y 1 y 3 sin 2θ R 0 y2 2 0 (s odd). y 1 y 3 sin 2θ R 0 y3 2 cos 2θ R For y 1 = 0 (y 3 = 0), we get strong norma (inverted) ordering, with m ightest = 0. M N m 2 m atm so M 2 N cos 2 θ NO : y 1 = 0, y 2 = ±, y 3 = ± R IO : y 3 = 0, y 2 = ± Ony free parameters: M N and θ R. v M N m 2 atm v, y 1 = ± v M N ( m 2 atm m 2 so) cos 2 θ R v Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 28 / 45

37 Low Energy CP Phases and 0νββ Dirac phase is trivia: δ = 0. For m ightest = 0, ony one Majorana phase, which depends on the chosen CP transformation: sin = ( 1) k+r+s sin 6 φ s and cos = ( 1) k+r+s+1 cos 6 φ s with φ s = π s n, where k = 0 (k = 1) for cos 2 θ R > 0 (cos 2 θ R < 0) and r = 0 (r = 1) for NO (IO). Restricts the ight neutrino contribution to 0νββ: m ββ 1 mso ( 1) s+k+1 sin 2 θ L e 6 i φs m 2 atm (NO). m ( 1) s+k e 6 i φs cos 2 θ L 2 atm (IO). For n = 26, θ L 0.18 and best-fit vaues of m 2 so and m 2 atm, we get ev m ββ ev (NO) ev m ββ ev (IO). Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 29 / 45

38 High Energy CP Phases and Leptogenesis At eading order, three degenerate RH neutrinos. Higher-order corrections can break the residua symmetries, giving rise to a quasi-degenerate spectrum: M 1 = M N (1 + 2 κ) and M 2 = M 3 = M N (1 κ). CP asymmetries in the decays of N i are given by ε i Im ( ) ( (Ŷ ) ) ŶD,iŶD,j Re DŶD ij j i F ij are reated to the reguator in RL and are proportiona to the mass spitting of N i. We find ε 3 = 0 and ε 1 y 2 y 3 9 ( 2 y y 2 3 (1 cos 2 θ R )) sin 3 φ s sin θ R sin θ L, F 12 (NO) ε 1 y 1 y 2 9 ( 2 y y 2 1 (1 + cos 2 θ R )) sin 3 φ s cos θ R cos θ L, F 12 (IO) with θ L, = θ L + ρ 4π/3 and ρ e = 0, ρ µ = 1, ρ τ = 1. ε 2 are the negative of ɛ 1 with F 12 being repaced by F 21. F ij Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 30 / 45

39 Correation between BAU and 0νββ ηb ,9, ,12,14 6,7, ,11, m ββ [ev] 23 5,8,18 0, ,10,16 NO [BD, Hagedorn, Moinaro (in prep)] Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 31 / 45

40 Correation between BAU and 0νββ ηb ,9, ,7,20 2,11, ,8,18 0 0, ,10, ,12,14 17 IO m ββ [ev] [BD, Hagedorn, Moinaro (in prep)] Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 32 / 45

41 Correation between BAU and 0νββ 30 ηb ,9, nexo ,12,14 LEGEND 1k 6,7, ,11,24 15 LEGEND ,8,18 0, ,10,16 IO m ββ [ev] [BD, Hagedorn, Moinaro (in prep)] Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 33 / 45

42 Decay Length For RH Majorana neutrinos, Γ = M (Ŷ D ŶD) /(8 π). We get Γ 1 M ( ) N 2 y 2 1 cos 2 θ R + y y3 2 sin 2 θ R, 24 π Γ 2 M ( ) N y 2 1 cos 2 θ R + 2 y2 2 + y3 2 sin 2 θ R, 24 π Γ 3 M ( ) N y 2 1 sin 2 θ R + y3 2 cos 2 θ R. 8 π For y 1 = 0 (NO), Γ 3 = 0 for θ R = (2j + 1)π/2 with integer Long Lived j. Partice Searches at LHC For y 3 = 0 (IO), Γ 3 = 0 for jπ with integer j. In either case, N 3 is an utra ong-ived partice. Suitabe for MATHUSLA [Chou, Curtin, Lubatti 16] see Henry s tak In addition, N 1,2 can have dispaced vertex signas at the LHC. MATHUSLA Surface Detector SHiP experiment Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 34 / 45

43 Decay Length L (m ) MATHUSLA LHC dispaced NO θ R /π N 1 (red), N 2 (bue), N 3 (green). M N =150 GeV (dashed), 250 GeV (soid). Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 35 / 45

44 Decay Length L (m ) MATHUSLA LHC dispaced IO θ R /π N 1 (red), N 2 (bue), N 3 (green). M N =150 GeV (dashed), 250 GeV (soid). Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 36 / 45

45 Coider Signa Need an efficient production mechanism. yi (our case) suppresses the Dre-Yan production pp W ( ) Ni `. Let us consider a minima U(1)B L porta. Production cross section is no onger Yukawa-suppressed, whie the decay is, giving rise to dispaced vertex at the LHC. [Deppisch, Desai, Vae 13] Z0! q BrHmÆegL=5.7â10-13 eµ The and para neut ' cays N Z Dm2so < q2mn < 0.3 ev bran favo N LLHC=1 mm 10-8 β As u 100 mm so th d W the L q 10 m a m neut q Figu ing FIG. 2: Average decay ength of a heavy neutrino N produced FIG. 1: Feynman diagram for heavy Majorana neutrino proand in Z 0! N N with mz 0 = 3 TeV as a function of its mass 0 a de duction through the Z porta at the LHC. mn and the ight-heavy mixing (soid bue contours). The Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI 45 dashed red contours denote constant vaues forworkshop Br(µ! e ) 37 / cons W 10-4 q q u d

46 Coider Signa NO ee eμ μμ ττ σlnv (fb) M N (GeV) At s = 14 TeV LHC and for M Z = 3.5 TeV. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 38 / 45

47 Coider Signa IO ee eμ μμ ττ σlnv (fb) M N (GeV) At s = 14 TeV LHC and for M Z = 3.5 TeV. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 39 / 45

48 s at very [7]. Bound Weon Z Mass M Z' GeV vaues of s, and for FIG. 1: Regions in the space (M Z Z M N )whereeptogenesis interactions induce additiona diution effects, e.g. NN Z jj. 3foreach can be tested for the case of norma or inverted hierarchy. The Successfu eptogenesis requires a ower bound on M Z. [Banchet, Chacko, Granor, Mohapatra hy, where regions the right and above the coored curves are aowed. 09; Heeck, Teresi 17; BD, Hagedorn, Moinaro (in prep)] essed [15]. saity and 2500 t reaxing y factors (2 K atm ) M N M Z' 2 > 300 if 1500 egenerate enchmark 1000 hierarchy, i K i = reasonabe etries ε i, inverted This is efficiency re present assumed MN GeV 500 ε 1 ε M Z' GeV FIG. 2: Same as Fig. 1 but for the case of quasi-degenerate neutrinos. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 40 / 45

49 RL in LR and Bound on W R Mass Additiona diution effects induced by W R, e.g. Ne R W R ū R d R. Lower imit on M WR 10 TeV. [Frere, Hambye, Vertongen 09; BD, Lee, Mohapatra 15] Y tot =1 mw R (TeV) Y tot =3 Strong Washout Weak Washout m N > m W 5 R Log 10 [m N /TeV] Figure 4: Contour pots of L (z c) = for h = (dashed ines) and h = (soid ines) with " Y tot = 1 (red ines) and " Y tot = 3 (bue ines). The green dot corresponds to the exampe fit vaue presented in Section 3. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 41 / 45

50 Concusion Leptogenesis provides an attractive ink between neutrino mass and observed baryon asymmetry of the universe. Resonant Leptogenesis provides a way to test this idea in aboratory experiments. Favor effects are important in the cacuation of epton asymmetry. Testabe modes of RL. Predictive in both ow and high-energy sectors. Correation between BAU and 0νββ. In gauge-extended modes, LNV signas (incuding dispaced vertex) at the LHC. Discovery of a heavy gauge boson coud fasify eptogenesis. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 42 / 45

51 Concusion Leptogenesis provides an attractive ink between neutrino mass and observed baryon asymmetry of the universe. Resonant Leptogenesis provides a way to test this idea in aboratory experiments. Favor effects are important in the cacuation of epton asymmetry. Testabe modes of RL. Predictive in both ow and high-energy sectors. Correation between BAU and 0νββ. In gauge-extended modes, LNV signas (incuding dispaced vertex) at the LHC. Discovery of a heavy gauge boson coud fasify eptogenesis. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 42 / 45

52 Backup Sides

53 Favor Transformations L N Under U(N L ) U(N N ), h = h L Φ NR, NC R, [M N ] β N R,β + H.c.. L L = V m L m, L (L ) L = V m L m, N R, N R, = U β N R,β, NR (N R,) N R h = V m = U β N β R. U β h β m, [M N ] β [M N] β = U γ U β δ [M N] γδ. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 44 / 45

54 Favor Transformations L N Under U(N L ) U(N N ), h = h L Φ NR, NC R, [M N ] β N R,β + H.c.. L L = V m L m, L (L ) L = V m L m, N R, N R, = U β N R,β, NR (N R,) N R h = V m Number densities: Tota number density: n N (t) = U β N β R. U β h β m, [M N ] β [M N] β = U γ U β δ [M N] γδ. [n L s 1 s 2 (p, t)] m 1 V 3 b m (p, s 2, t) b (p, s 1, t) t, [ n L s 1 s 2 (p, t)] m 1 V 3 d (p, s 1, t) d,m (p, s 2, t) t, [n N r 1 r 2 (k, t)] β 1 V 3 a β (k, r 2, t) a (k, r 1, t) t, [ n N r 1 r 2 (k, t)] β 1 V 3 G γ a γ (k, r 1, t) G βδ a δ (k, r 2, t) t, n N rr (k, t), n L (t) Tr iso r=,+ k s=,+ p Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 44 / 45 n L ss(p, t).

55 Favor Covariant Transport Equations for RL Expicity, for charged-epton and heavy-neutrino matrix number densities, d dt [nl s 1 s 2 (p, t)] m = i [ E L (p), ns L 1 s 2 (p, t) ] m d dt [nn r 1 r 2 (k, t)] β = i [ E N (k), nr N 1 r 2 (k, t) ] β Coision terms are of the form + [C L s 1 s 2 (p, t)] m + [CN r 1 r 2 (k, t)] β + G λ [C N r 2 r 1 (k, t)] λ µ G µβ [C L s 1 s 2 (p, t)] m 1 2 [Fs 1s r 1 r 2 (p, q, k, t)] n β [Γs s 2r 2 r 1 (p, q, k)] m n β, where F are statistica tensors, and Γ are the rank-4 absorptive rate tensors describing heavy neutrino decays and inverse decays. Bhupa Dev (Washington U.) Leptogenesis and Coiders ACFI Workshop 45 / 45

Flavorful Leptogenesis and Collider Signals

Flavorful Leptogenesis and Collider Signals Favorfu Leptogenesis and Coider Signas Bhupa Dev Washington University in St. Louis Matter over Antimatter: The Sakharov Conditions After 50 Years Lorentz Center, Leiden May 10, 2017 Two parts: 1. Favor-covariant

More information

Thermal Leptogenesis. Michael Plümacher. Max Planck Institute for Physics Munich

Thermal Leptogenesis. Michael Plümacher. Max Planck Institute for Physics Munich Max Panck Institute for Physics Munich Introduction Introduction Probem #1: the universe is made of matter. Baryon asymmetry (from nuceosynthesis and CMB): η B n b n b n γ 6 10 10 must have been generated

More information

Baryogenesis and Neutrino Mass

Baryogenesis and Neutrino Mass Baryogenesis and Neutrino Mass A Common Link and Experimental Signatures Bhupal Dev Washington University in St. Louis XIth International Conference of Interconnections between Particle Physics and Cosmology

More information

Recent progress in leptogenesis

Recent progress in leptogenesis XLIII rd Rencontres de Moriond Electroweak Interactions and Unified Theories La Thuile, Italy, March 1-8, 2008 Recent progress in leptogenesis Steve Blanchet Max-Planck-Institut for Physics, Munich March

More information

Left-right symmetric models and long baseline neutrino experiments

Left-right symmetric models and long baseline neutrino experiments Left-right symmetric modes and ong baseine neutrino experiments Katri Huitu Hesinki Institute of Physics and Department of Physics, University of Hesinki, P. O. Box 64, FI-00014 University of Hesinki,

More information

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008 Leptogenesis Neutrino 08 Christchurch, New Zealand 30/5/2008 Yossi Nir (Weizmann Institute of Science) Sacha Davidson, Enrico Nardi, YN Physics Reports, in press [arxiv:0802.2962] E. Roulet, G. Engelhard,

More information

Effects of Reheating on Leptogenesis

Effects of Reheating on Leptogenesis Effects of Reheating on Leptogenesis Florian Hahn-Woernle Max-Planck-Institut für Physik München 2. Kosmologietag Florian Hahn-Woernle (MPI-München) Effects of Reheating on Leptogenesis Kosmologietag 2007

More information

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

A biased review of Leptogenesis. Lotfi Boubekeur ICTP A biased review of Leptogenesis Lotfi Boubekeur ICTP Baryogenesis: Basics Observation Our Universe is baryon asymmetric. n B s n b n b s 10 11 BAU is measured in CMB and BBN. Perfect agreement with each

More information

Testing leptogenesis at the LHC

Testing leptogenesis at the LHC Santa Fe Summer Neutrino Workshop Implications of Neutrino Flavor Oscillations Santa Fe, New Mexico, July 6-10, 2009 Testing leptogenesis at the LHC ArXiv:0904.2174 ; with Z. Chacko, S. Granor and R. Mohapatra

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Pierre Hosteins Patras University 13th November 2007 Brussels P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arxiv:hep-ph/0606078

More information

Cosmological Family Asymmetry and CP violation

Cosmological Family Asymmetry and CP violation Cosmological Family Asymmetry and CP violation Satoru Kaneko (Ochanomizu Univ.) 2005. 9. 21 at Tohoku Univ. T. Endoh, S. K., S.K. Kang, T. Morozumi, M. Tanimoto, PRL ( 02) T. Endoh, T. Morozumi, Z. Xiong,

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London 17 th Lomonosov Conference Moscow 20-26/08/2015 Two possibilities to define fermion mass ν R ν L ν L = ν L ν R ν R = ν R ν L Dirac mass analogous

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London BLV 2017 Case Western Reserve U. 15-18 May 2017 Origin of neutrino masses beyond the Standard Model Two possibilities to define neutrino mass

More information

arxiv: v1 [hep-ph] 2 Jun 2015

arxiv: v1 [hep-ph] 2 Jun 2015 TeV Scale Leptogenesis P. S. Bhupal Dev arxiv:1506.00837v1 [hep-ph] 2 Jun 2015 Abstract This is a mini-review on the mechanism of leptogenesis, with a special emphasis on low-scale leptogenesis models

More information

Falsifying High-Scale Leptogenesis at the LHC

Falsifying High-Scale Leptogenesis at the LHC Falsifying High-Scale Leptogenesis at the LHC based on Frank F. Deppisch, JH, Martin Hirsch Phys. Rev. Lett. 112, 221601 (2014), arxiv: 1312.4447 [hep-ph] University College London 21/07/2104 SUSY 2014,

More information

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Number of light neutrinos 3? Masses + Mixing Angles

More information

Search for Non SM Higgs Bosons at LEP

Search for Non SM Higgs Bosons at LEP Search for Non SM Higgs Bosons at LEP 2HDM Higgses Photonic Higgs Invisibe Higgs Charged Higgses MSSM Higgses Aura Rosca Humbodt University Berin DESY-Zeuthen Seminar 13 June 2001 The LEP Acceerator The

More information

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions Physics 27c: Statistica Mechanics Fermi Liquid Theory: Coective Modes Botzmann Equation The quasipartice energy incuding interactions ε p,σ = ε p + f(p, p ; σ, σ )δn p,σ, () p,σ with ε p ε F + v F (p p

More information

Probing TeV Scale Origin of Neutrino Mass and Baryon Excess R. N. Mohapatra. INFO2015, Santa Fe

Probing TeV Scale Origin of Neutrino Mass and Baryon Excess R. N. Mohapatra. INFO2015, Santa Fe Probing TeV Scale Origin of Neutrino Mass and Baryon Excess R. N. Mohapatra INFO2015, Santa Fe Neutrino mass and BSM physics n Neutrino are now known to have mass! n Since m ν =0 in SM, neutrino mass is

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

arxiv: v2 [hep-ph] 18 Apr 2008

arxiv: v2 [hep-ph] 18 Apr 2008 Entanged maxima mixings in U PMNS = U U ν, and a connection to compex mass textures Svenja Niehage a, Water Winter b arxiv:0804.1546v [hep-ph] 18 Apr 008 Institut für Theoretische Physik und Astrophysik,

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London Nuclear Particle Astrophysics Seminar Yale 03/06/2014 Neutrinos Oscillations Absolute Mass Neutrinoless Double Beta Decay Neutrinos in Cosmology

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS Marco Drewes TU München 23. 8. 2016, NuFact, Quy Nhon, Vietnam 1 / 7 The Standard Model and General Relativity together explain almost all phenomena observed in nature, but... gravity is not quantised

More information

QUANTUM MECHANICS OF BARYOGENESIS

QUANTUM MECHANICS OF BARYOGENESIS DESY 00-056 Apri 2000 QUATUM MECHAICS OF BARYOGEESIS W. Buchmüer and S. Fredenhagen Deutsches Eektronen-Synchrotron DESY, 22603 Hamburg, Germany Abstract The cosmoogica baryon asymmetry can be expained

More information

Natural Nightmares for the LHC

Natural Nightmares for the LHC Dirac Neutrinos and a vanishing Higgs at the LHC Athanasios Dedes with T. Underwood and D. Cerdeño, JHEP 09(2006)067, hep-ph/0607157 and in progress with F. Krauss, T. Figy and T. Underwood. Clarification

More information

Heavy Sterile Neutrinos at CEPC

Heavy Sterile Neutrinos at CEPC Wei Liao East China University of Science and Technology Based on arxiv:17.09266, in collaboration with X.H. Wu INPAC SJTU, Nov. 17 2017 Outline Review of neutrino mass low energy seesaw model constraint

More information

Leptogenesis and the Flavour Structure of the Seesaw

Leptogenesis and the Flavour Structure of the Seesaw Leptogenesis and the Flavour Structure of the Seesaw based on: hep-ph/0609038 (JCAP 0611 (2006) 011) with S.F. King, A. Riotto hep-ph/0611232 (JCAP 0702 (2007) 024) with A.M. Teixeira arxiv:0704.1591 (Phys.

More information

Overview of mass hierarchy, CP violation and leptogenesis.

Overview of mass hierarchy, CP violation and leptogenesis. Overview of mass hierarchy, CP violation and leptogenesis. (Theory and Phenomenology) Walter Winter DESY International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN 2016) 3-5 November

More information

Gauged Flavor Symmetries

Gauged Flavor Symmetries Gauged Flavor Symmetries NOW 2012 Julian Heeck Max-Planck-Institut für Kernphysik, Heidelberg 15.9.2012 based on J.H., Werner Rodejohann, PRD 84 (2011), PRD 85 (2012); Takeshi Araki, J.H., Jisuke Kubo,

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Avaiabe on CMS information server CMS CR -7/7 he Compact Muon Soenoid Experiment Conference Report Maiing address: CMS CERN, CH- GENEVA, Switzerand September 7 (v, 8 September 7) Search for EWK production

More information

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Kai Schmitz Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Based on arxiv:1008.2355 [hep-ph] and arxiv:1104.2750 [hep-ph].

More information

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses Neutrino theory of everything? dark matter, baryogenesis and neutrino masses 25 th International Workshop on Weak Interactions and Neutrinos (WIN2015) June 8-13, 2015, MPIK Heidelberg, Germany @Heidelberg

More information

Implications of massive neutrinos

Implications of massive neutrinos Laboratoire de Physique Théorique-Orsay, Université Paris-Sud Implications of massive neutrinos Observations: what have we learned? Neutrino mass discovery new physics How to generate small neutrino masses?

More information

Testing the low scale seesaw and leptogenesis

Testing the low scale seesaw and leptogenesis based on 1606.6690 and 1609.09069 with Marco Drewes, Björn Garbrecht and Juraj Klarić Bielefeld, 18. May 2017 Remaining puzzles of the universe BAU baryon asymmetry of the universe WMAP, Planck and Big

More information

Leptogenesis with Composite Neutrinos

Leptogenesis with Composite Neutrinos Leptogenesis with Composite Neutrinos Based on arxiv:0811.0871 In collaboration with Yuval Grossman Cornell University Friday Lunch Talk Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite

More information

Electromagnetic Leptogenesis at TeV scale. Sudhanwa Patra

Electromagnetic Leptogenesis at TeV scale. Sudhanwa Patra Electromagnetic Leptogenesis at TeV scale Sudhanwa Patra Physical Research Laboratory, INDIA Collaboration with Debjyoti Choudhury, Namit Mahajan, Utpal Sarkar 25th Feb, 2011 Sudhanwa Patra, NuHorizon-IV,

More information

Leptogenesis in Higgs triplet model

Leptogenesis in Higgs triplet model Leptogenesis in Higgs triplet model S. Scopel Korea Institute of Advanced Study (KIAS) Seoul (Korea) Dark Side of the Universe, Madrid,, 20-24 24 June 2006 Introduction Non-zero neutrino masses and mixing

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College ondon Flavour Physics Conference Quy Nhon 7/01-0/08/014 Neutrinoless double beta decay μ e γ μ + e conversion in nuclei Δ e =, Δ μ = 0, Δ = epton

More information

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011 Baryogenesis David Morrissey SLAC Summer Institute, July 26, 2011 Why is There More Matter than Antimatter? About 5% of the energy density of the Universe consists of ordinary (i.e. non-dark) matter. By

More information

arxiv: v1 [hep-ph] 22 Apr 2013

arxiv: v1 [hep-ph] 22 Apr 2013 Toyama Internationa Workshop on Higgs as a Probe of New Physics 2013, 13 16, February, 2013 1 Neutrino Mass in TeV-Scae New Physics Modes Hiroaki Sugiyama Department of Physics, University of Toyama, Toyama

More information

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking National Tsing-Hua Unv. Chian-Shu Chen (NCKU/AS) with Y.H. Ahn & S.K. Kang 11/1/009 ouline Introduction A 4 symmetry The model Neutrino mass

More information

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays Journal of Physics: Conference Series OPEN ACCESS Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays To cite this article: Emiliano Molinaro 013 J. Phys.: Conf. Ser. 447 0105 View the article

More information

Lepton Number Violation and the Baryon Asymmetry of the Universe

Lepton Number Violation and the Baryon Asymmetry of the Universe Lepton Number Violation and the Baryon Asymmetry of the Universe ILP / LPTHE Paris ACFI Workshop, 29.03.2018 F. Deppisch, L. Graf, JH, W. Huang, arxiv:1711.10432 F. Deppisch, JH, W. Huang, M. Hirsch, H.

More information

Neutrino masses. Universe

Neutrino masses. Universe Università di Padova,, 8 May, 2008 Neutrino masses and the matter-antimatter antimatter asymmetry of the Universe (new results in collaboration with Steve Blanchet to appear soon) Pasquale Di Bari (INFN,

More information

Right-handed SneutrinoCosmology and Hadron Collider Signature

Right-handed SneutrinoCosmology and Hadron Collider Signature Right-handed Sneutrino and Hadron Northwestern University with Andre de Gouvea ( Northwestern) & Werner Porod ( Valencia)... June 15, 2006 Susy 06, UC Irvine Right-handed Sneutrino and Hadron Collider

More information

TeV Scale LNV: 0νββ-Decay & Colliders I

TeV Scale LNV: 0νββ-Decay & Colliders I TeV Scale LNV: 0νββ-Decay & Colliders I M.J. Ramsey-Musolf U Mass Amherst http://www.physics.umass.edu/acfi/ Collaborators: Tao Peng, Peter Winslow; V. Cirigliano, M. Graesser, M. Horoi, P. Vogel ACFI

More information

Overview of Analyses!

Overview of Analyses! ! August 9th,! SUSY! Overview of Anayses! SUS Code Tite Data Sampe SUS--6 Search for eectroweak production of charginos, neutrainos, and septons using eptonic fina states in pp coisions at 8 TeV SUS--7

More information

Lepton number symmetry as a way to testable leptogenesis

Lepton number symmetry as a way to testable leptogenesis Lepton number symmetry as a way to testable leptogenesis ichele Lucente 5st Rencontres de oriond (arch th 6) ased on:. bada, G. rcadi, V. Domcke and.l., JP 5 (5), 4 [arxiv:57.65 [hep-ph]] Leptogenesis

More information

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Chian-Shu Chen National Cheng Kung U./Academia Sinica with C-H Chou 08/20/2009 arxiv:0905.3477

More information

Neutrino Mass in Strings

Neutrino Mass in Strings Neutrino Mass in Strings Introduction Neutrino preliminaries Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook Neutrino mass Nonzero mass may be

More information

TeV Scale Lepton Number Violation and Baryogenesis

TeV Scale Lepton Number Violation and Baryogenesis Journal of Physics: Conference Series PAPER OPE ACCESS TeV Scale Lepton umber Violation and Baryogenesis To cite this article: P S Bhupal Dev et al 2015 J. Phys.: Conf. Ser. 631 012007 Related content

More information

Marco Drewes, Université catholique de Louvain. The Other Neutrinos IAP Meeting. Université libre de Bruxelles

Marco Drewes, Université catholique de Louvain. The Other Neutrinos IAP Meeting. Université libre de Bruxelles Marco Drewes, Université catholique de Louvain The Other Neutrinos 21.12.2017 IAP Meeting Université libre de Bruxelles The Standard Model of Particle 125 GeV The periodic table of elementary particles

More information

Dark matter and entropy dilution

Dark matter and entropy dilution Dark matter and entropy dilution Miha Nemevšek Goran Senjanović, Yue Zhang 1205.0844 Dark workshop TÜM/IAS, December 2015 Dark Matter stability Discrete symmetries MSSM & R-parity extended Higgs Inert

More information

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 1 A. S. Joshipura, W.R., Phys. Lett. B 678, 276 (2009) [arxiv:0905.2126 [hep-ph]] A. Blum,

More information

arxiv: v1 [hep-ph] 26 Sep 2017

arxiv: v1 [hep-ph] 26 Sep 2017 Lepton Number Violation, Lepton Flavour Violation and Baryogenesis in Left-Right Symmetric Model Happy Borgohain and Mrinal Kumar Das Department of Physics, Tezpur University, Tezpur 78408, India Abstract

More information

Supersymmetric Seesaws

Supersymmetric Seesaws Supersymmetric Seesaws M. Hirsch mahirsch@ific.uv.es Astroparticle and High Energy Physics Group Instituto de Fisica Corpuscular - CSIC Universidad de Valencia Valencia - Spain Thanks to: J. Esteves, S.

More information

NEUTRINO PROPERTIES PROBED BY LEPTON NUMBER VIOLATING PROCESSES AT LOW AND HIGH ENERGIES *

NEUTRINO PROPERTIES PROBED BY LEPTON NUMBER VIOLATING PROCESSES AT LOW AND HIGH ENERGIES * NEUTRINO PROPERTIES PROBED BY LEPTON NUMBER VIOLATING PROCESSES AT LOW AND HIGH ENERGIES * S. STOICA Horia Hulubei Fondation, P.O.Box MG-1, RO-07715 Bucharest-Magurele, Romania, E-mail: sabin.stoica@unescochair-hhf.ro

More information

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad. Neutrinos Riazuddin National Centre for Physics Quaid-i-Azam University Campus Islamabad. Neutrino was the first particle postulated by a theoretician: W. Pauli in 1930 to save conservation of energy and

More information

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016)

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016) GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv 1607.07880 PRD 94, 073004 (016) Rasmus W. Rasmussen Matter and the Universe 1-1-16 Theory of elementary

More information

Interplay of flavour and CP symmetries

Interplay of flavour and CP symmetries p. 1/79 Interplay of flavour and CP symmetries C. Hagedorn EC Universe, TUM, Munich, Germany ULBPhysTh Seminar, Université Libre de Bruxelles, 28.03.2014, Brussels, Belgium p. 2/79 Outline lepton mixing:

More information

The doubly charged scalar:

The doubly charged scalar: The doubly charged scalar: current status and perspectives Margherita Ghezzi Moriond QCD, 17-24 March 2018 Margherita Ghezzi (PSI) The doubly charged scalar Moriond QCD, 20/03/2018 1 / 18 Introduction:

More information

Lepton Number Violation

Lepton Number Violation and the Baryon Asymmetry of the Universe - - tu dortmund MPI Seminar Max-Planck-Institut für Kernphysik Heidelberg December 14, 2015 Outline The Baryon Asymmetry of the Universe (LNV) Double Beta Decay

More information

Light scalar at the high energy and intensity frontiers: example in the minimal left-right model

Light scalar at the high energy and intensity frontiers: example in the minimal left-right model Light scalar at the high energy and intensity frontiers: example in the minimal left-right model Yongchao Zhang («[ ) Université Libre de Bruxelles ( Washington University in St. Louis) Aug 11, 2017, Columbus

More information

Falsifying highscale Baryogenesis

Falsifying highscale Baryogenesis ILP - LPTHE - UPMC - CNRS Paris in collaboration with F. Deppisch, L. Graf, W. Huang, M. Hirsch, H. Päs F. Deppisch, JH, M. Hirsch, PRL 112 (2014) 221601 ACFI Workshop F. Deppisch, JH, W. Huang, M. Hirsch,

More information

Flavor, Minimality and Naturalness in Composite Higgs Models

Flavor, Minimality and Naturalness in Composite Higgs Models eth zurich Flavor, Minimality and Naturalness in Composite Higgs Models Adrián Carmona Bermúdez Institute for Theoretical Physics, ETH Zurich In collaboration with F. Goertz A naturally light Higgs without

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València Neutrino Physics II Neutrino Phenomenology Arcadi Santamaria IFIC/Univ. València TAE 2014, Benasque, September 19, 2014 Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos

More information

Leptogenesis via varying Weinberg operator

Leptogenesis via varying Weinberg operator Silvia Pascoli IPPP, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom E-mail: silvia.pascoli@durham.ac.uk Jessica Turner Theoretical Physics Department, Fermi National Accelerator

More information

Minimal Flavor Violating Z boson. Xing-Bo Yuan. Yonsei University

Minimal Flavor Violating Z boson. Xing-Bo Yuan. Yonsei University Minimal Flavor Violating Z boson Xing-Bo Yuan Yonsei University Yonsei University, Korea 21 Sep 2015 Outline 1. Standard Model and Beyond 2. Energy Scalar of New Physics Beyond the SM From Naturalness:

More information

Neutrinos and CP Violation. Silvia Pascoli

Neutrinos and CP Violation. Silvia Pascoli 0 Neutrinos and CP Violation XI Internat.Workshop on Neutrino Telescopes Venezia - 23 February 2005 Silvia Pascoli CERN Outline Outline Theoretical aspects of Dirac and Majorana CPV phases Determining

More information

MINOS Layout. Gary Feldman SLAC Summer Institute August

MINOS Layout. Gary Feldman SLAC Summer Institute August MINOS Layout Gary Fedman SLAC Summer Institute 14-5 August 000 89 MINOS Far Detector 8m octagona tracking caorimeter 486 ayers of 1 in iron pates 4.1 cm-wide scintiator strips with WLS fiber readout, read

More information

Phenomenology of Friedberg Lee Texture in Left-Right Symmetric Model

Phenomenology of Friedberg Lee Texture in Left-Right Symmetric Model Commun. Theor. Phys. Beijing China 50 008 pp. 451 458 c Chinese Physical Society Vol. 50 No. August 15 008 Phenomenology of Friedberg Lee Texture in Left-Right Symmetric Model LUO Min-Jie 1 and LIU Qiu-Yu

More information

arxiv: v1 [hep-ph] 25 Jan 2008

arxiv: v1 [hep-ph] 25 Jan 2008 Effects of reheating on leptogenesis arxiv:0801.3972v1 [hep-ph] 25 Jan 2008 F. Hahn-Woernle and M. Plümacher Max Planck Institute for Physics, Föhringer Ring 6, 80805 Munich, Germany Abstract We study

More information

arxiv:hep-ph/ v1 26 Jun 1996

arxiv:hep-ph/ v1 26 Jun 1996 Quantum Subcritica Bubbes UTAP-34 OCHA-PP-80 RESCEU-1/96 June 1996 Tomoko Uesugi and Masahiro Morikawa Department of Physics, Ochanomizu University, Tokyo 11, Japan arxiv:hep-ph/9606439v1 6 Jun 1996 Tetsuya

More information

RG evolution of neutrino parameters

RG evolution of neutrino parameters RG evolution of neutrino parameters ( In TeV scale seesaw models ) Sasmita Mishra Physical Research Laboratory, Ahmedabad, India Based on arxiv:1310.1468 November 12, 2013 Institute of Physics, Bhubaneswar.

More information

Non-zero Ue3, Leptogenesis in A4 Symmetry

Non-zero Ue3, Leptogenesis in A4 Symmetry Non-zero Ue3, Leptogenesis in A4 Symmetry 2 nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry Y.H.Ahn (Academia Sinica) based on the paper with C.S.Kim and S. Oh 1 Outline

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Asymmetric Sneutrino Dark Matter

Asymmetric Sneutrino Dark Matter Asymmetric Sneutrino Dark Matter Stephen West Oxford University Asymmetric Sneutrino Dark Matter and the Ω b /Ω dm Puzzle; hep-ph/0410114, PLB, Dan Hooper, John March- Russell, and SW from earlier work,

More information

Minimal Neutrinoless Double Beta Decay Rates from Anarchy and Flavor Symmetries

Minimal Neutrinoless Double Beta Decay Rates from Anarchy and Flavor Symmetries Minimal Neutrinoless Double Beta Decay Rates from Anarchy and When is Γ ββ0ν unobservably small? Theoretical Division, T-2 Los Alamos National Laboratory Institute for Nuclear Theory, Seattle References

More information

arxiv:hep-ph/ v2 16 Jun 2003

arxiv:hep-ph/ v2 16 Jun 2003 IFT-03/14 hep-ph/0306059 February 1, 2008 Limits on T reh for thermal leptogenesis with hierarchical neutrino masses arxiv:hep-ph/0306059v2 16 Jun 2003 Piotr H. Chankowski and Krzysztof Turzyński Institute

More information

Leptogenesis with type II see-saw in SO(10)

Leptogenesis with type II see-saw in SO(10) Leptogenesis wit type II see-saw in SO(10) Andrea Romanino SISSA/ISAS Frigerio Hosteins Lavignac R, arxiv:0804.0801 Te baryon asymmetry η B n B n B n γ = n B n γ Generated dynamically if = (6.15 ± 0.5)

More information

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23, What We Know, and What We Would Like To Find Out Boris Kayser Minnesota October 23, 2008 1 In the last decade, observations of neutrino oscillation have established that Neutrinos have nonzero masses and

More information

Radiative Generation of the Higgs Potential

Radiative Generation of the Higgs Potential Radiative Generation of the Higgs Potential 1 EUNG JIN CHUN Based on 1304.5815 with H.M.Lee and S. Jung Disclaimer LHC finds Nature is unnatural. 2 May entertain with Naturally unnatural ideas. EW scale

More information

CTP Approach to Leptogenesis

CTP Approach to Leptogenesis CTP Approach to Leptogenesis Matti Herranen a in collaboration with Martin Beneke a Björn Garbrecht a Pedro Schwaller b Institut für Theoretische Teilchenphysik und Kosmologie, RWTH Aachen University a

More information

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

Duality in left-right symmetric seesaw

Duality in left-right symmetric seesaw Duality in left-right symmetric seesaw Evgeny Akhmedov KTH, Stockholm & Kurchatov Institute, Moscow In collaboration with Michele Frigerio Evgeny Akhmedov SNOW 2006 Stockholm May 4, 2006 p. 1 Why are neutrinos

More information

Constraining minimal U(1) B L model from dark matter observations

Constraining minimal U(1) B L model from dark matter observations Constraining minimal U(1) B L model from dark matter observations Tanushree Basak Physical Research Laboratory, India 10th PATRAS Workshop on Axions, WIMPs and WISPs CERN Geneva, Switzerland July 3, 2014

More information

Higgs Bosons Phenomenology in the Higgs Triplet Model

Higgs Bosons Phenomenology in the Higgs Triplet Model Higgs Bosons Phenomenology in the Higgs Triplet Model Andrew Akeroyd National Cheng Kung University, Tainan, Taiwan TeV scale mechanisms ( testable ) for neutrino mass generation Higgs Triplet Model Production

More information

Lepton flavour violation

Lepton flavour violation Lepton flavour violation (and neutrinos) M. Hirsch mahirsch@ific.uv.es Astroparticle and High Energy Physics Group Instituto de Fisica Corpuscular- CSIC Universidad de Valencia Valencia- Spain IMFP 2012,

More information

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18 Quantum Mechanica Modes of Vibration and Rotation of Moecues Chapter 18 Moecuar Energy Transationa Vibrationa Rotationa Eectronic Moecuar Motions Vibrations of Moecues: Mode approximates moecues to atoms

More information

Electroweak Scale Resonant Leptogenesis

Electroweak Scale Resonant Leptogenesis hep-ph/0506107 June 2005 Electroweak Scale Resonant Leptogenesis arxiv:hep-ph/0506107v2 11 Nov 2005 Apostolos Pilaftsis and Thomas E. J. Underwood School of Physics and Astronomy, University of Manchester,

More information

Testing supersymmetric neutrino mass models at the LHC

Testing supersymmetric neutrino mass models at the LHC LBV09, Madison, 2 September 2009 W. Porod, Uni. Würzburg p. /28 Testing supersymmetric neutrino mass models at the LHC Werner Porod Universität Würzburg LBV09, Madison, 2 September 2009 W. Porod, Uni.

More information

2 Induced LFV in the SUSY see-saw framework

2 Induced LFV in the SUSY see-saw framework LFV Constraints on the Majorana Mass Scale in msugra Frank Deppisch, Heinrich Päs, Andreas Redelbach, Reinhold Rückl Institut für Theoretische Physik und Astrophysik Universität Würzburg D-97074 Würzburg,

More information

Lepton-flavor violation in tau-lepton decay and the related topics

Lepton-flavor violation in tau-lepton decay and the related topics Lepton-flavor violation in tau-lepton decay and the related topics Junji Hisano Institute for Cosmic Ray Research Univ. of Tokyo International Workshop On Discoveries In Flavour Physics At E+ E- Colliders

More information