Implications of massive neutrinos

Size: px
Start display at page:

Download "Implications of massive neutrinos"

Transcription

1 Laboratoire de Physique Théorique-Orsay, Université Paris-Sud Implications of massive neutrinos Observations: what have we learned? Neutrino mass discovery new physics How to generate small neutrino masses? Seesaw realisations Implications for cosmology How to Disentangle between models? Collider Physics Asmaa Abada Wahran, les Andalouses, 02-0 May 2009

2 Neutrinos are the most elusive particles of the Standard Model Q em = 0, Q color = 0. informations on the essential features of the SM : left nature of the weak interaction and family structure Masses and Mixings The charged interaction is not diagonal in flavour space: L int = g 2 li L γ µ ν j L U ijw + µ + h.c., n=3 Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix (Chau-Keung) 0 U = c 2 c 3 s 2 c 3 s 3 e iδ s 2 c 23 c 2 s 23 s 3 e iδ c 2 c 23 s 2 s 23 s 3 e iδ s 23 c 3 s 2 s 23 c 2 c 23 s 3 e iδ c 2 s 23 s 2 c 23 s 3 e iδ c 23 c 3 o C A ne Diag iα, e iα 2, δ Dirac phase, α,2 Majorana phases, θ 2,θ 23, θ 3 (ν = ν) m, m 2, m 3 mass eingenvalues, if m 3 > 0, m,2 = m,2 e iα,2

3 P(ν α ν β ; L) = δ αβ 4 X j<k + 2 X j<k Transition Probabilities Re `U αj U βju αku βk sin 2 Im `U αj U βju αku βk sin m 2 jkl 2E m 2 jkl 4E!!, m 2 jk = m 2 j m 2 k. Oscillations are possible if ν are massive ( m 2 jk 0) and mix (U αj U βj 0) oscillation experiments do not give the nature : Dirac or Majorana : ν ν! n = 2: P(ν α ν β ) = sin 2 2θ sin 2 L L vac π, L vide = 4πE 2.48km m 2 E(GeV) m 2 (ev 2 ) oscillations arise when L L vac m2 L 4πE m2 (ev 2 ) E(GeV) L(km)

4 Accessible m 2 Depending on L et E neutrino sources : L(km) E(GeV) m 2 (ev 2 ) Source ν solar ν atmospheric ν des accelerators (long distance) 0. 0 ν accelerators (short distance) ν des reactors

5 Leptonic CP Assymetry CP (αβ) P(ν α ν β ) P( ν α ν β ) = 4 j>k Im ( U αj U βju αju βk ) sin ( m 2 jk Cannot be observed in appearance experiment ) L 2E CPT CP (eµ) = CP (µτ) = CP (τe) 6J l 2 l 23 l 3 J Im ( ) U e3 UeU µ3u µ sin2θ23 sin2θ 2 sinθ 3 sinδ (Jarlskog Invariant) ( ) l ij sin.27 m 2 ij (ev)2 L(km) E(GeV) θ 23 large (OK) and also m 2 3. θ 2 large (OK) and also m 2 2. θ 3 conditions the measurement: θ 3 > 0 : only upper limit θ 3 < 3 0 (95% CL)

6 Observations: Neutrinos and BAU The Standard Model do not explain Neutrino masses and mixings: Recent data: atmosphere, Solar, Terrestrial expts. Atmospheric ν and Reactor Data m 2 atm(ev 2 ) θ atm θ ± 0.2(0.6) m 2 sol(ev 2 ) Solar ν θ sol ±.3 Oscillations Cosmology Tritium Absolute mass scale ν m ν > p m 2 atm ev P i m ν i < ev m νe < 2.2 ev Majorana nature? (0νββ) CP phases? Majorana phases α,2 : no direct information : (0νββ)? Dirac CP Phase δ we first need to know θ 3 with good accuracy

7 () Need a high scale (> SM ) to generate small neutrino masses and mixings (2) Need dynamical mechanism to generate Baryon Asymmetry of the Universe (BAU) η B : Primordial abundances of light elements + CMB Anisotropies η B = n B n B n γ = (6.2 ± 0.6) 0 0 AIM: find models that are simultaneously consistent with () & (2) BAU from Leptogenesis? Favourite option: new physics at high scale M What is this new physics? How does it manifest? Heavy fields manifest in the low energy effective theory (SM) via higher dimensional operators δl d=5, δl d=6,...

8 m ν 0 New Physics Standard Model ν L and no ν R = No Dirac mass term: L md = m D ( ν L ν R + ν R ν L ) No Higgs triplet = No Majorana mass term: L mm = 2 M ij ν c L i ν Lj + h.c. Lepton symmetry is accidental = Non-renormalisable operators dim 5, 6... MS Effective theory of a larger one at a scale Λ { (φl ) O d=5 = T ( ) } φ =v Λ φl + h.c. m ν v 2 /Λ m ν m 2 atm ev 2 Λ 0 5 GeV. Remarkably near Λ GUT!!

9 Beyond the Standard Model Typically 3 possible ways to generate m ν 0: See-saw mechanism: towards GUT SO(0), can be achieved via. type I with RH neutrino exchange 2. type II with scalar triplet exchange 3. type III with fermionic triplet exchange Radiative corrections MSSM or various extensions +R/ p, Zee model, Extra dimensions alternative to the see-saw

10 3 ways to generate tree level O d=5 : Seesaw I, II, III Y Y t N R M R Y N R µ Σ R Σ R M Σ Y. Y t. type I (fermionic singlet) type II (scalar triplet) type III (fermionic triplet) m ν = 2 Y T N v2 M N Y N m ν = 2Y v 2 µ M 2 m ν = v2 2 Y T Σ M Σ Y Σ Minkowski,Gell-Man, Magg, Wetterich, Ma,Hambye et al. Ramond, Slansky Nussinov Bajc, Senjanovic, Lin Yanagida, Glashow Mohapatra, Senjanovic A.A., Biggio, Bonnet, Gavela, Mohapatra, Senjanovic Schechter, Valle Notari, Strumia, Papucci, Dorsn Ma, Sarkar Fileviez-Perez, Foot, Lew...

11 Seesaw Type I, SM + ν R L = L SM + λ ν Jk L k ν RJ H 2 ν R J M RJ ν c R J + λ α H c ē Rα l α, m D = λ ν v Majorana Eigenstates (3 3) : ν = L + L c = ν c m L m D M R m T D N = R + R c =N c M R M R m D 200 GeV M R 0 5 GeV m ν m 2 atm (0 2 0 ) ev λ ν O() λ ν h e M R few TeV

12 Baryo(Lepto)genesis requirements Sakharov 67 a. Baryon (Lepton) number violation 2. C & CP Violation 3. Out of equilibrium processes n B(L) n B( L) Out-of-equilibrium : decays of heavy particles in an expanding Universe H(T) Γ X α X M X Γ D < H T=MX a 4th constraint : B L must be violated if baryogenesis occurs > EW scale

13 History 985: Kuzmin, Rubakov & Shaposhnikov, following the discovery of fast B + L violation at T > T EW On the anomalous electroweak baryon number nonconservation in the early universe", Phys. Lett. B 55, 36 (985) 986: Fukugita &Yanagida, basic idea of leptogenesis Baryogenesis without grand unification", Phys. Lett. B 74, 45 (986) : a few remarkable works opened the way to quantitative leptogenesis, e.g.,luty, Baryogenesis via leptogenesis", Phys. Rev. D 45, 455 (992), Covi, Roulet,Vissani, CP violating decays in leptogenesis scenarios", P. L. B 384, 69 ( 96) 993: Farrar, Shaposhnikov, EW baryogenesis? Baryon asymmetry of the Universe in the MSM", Phys. Rev. Lett. 70, 2833 (993). 994: Gavela, Pene, et al., IMPOSSIBLE! Standard model CP violation and baryon asymmetry", Nucl. Phys. B 430, 345[& 382] (94),

14 > SK (2000): Evidence for neutrino oscillations + EW baryogenesis fails in SM and MSSM, fuel the interest on leptogenesis : a flourishing study begins: A.A, Buchmuller, Di Bari, Plumacher ; Davidson, Ibarra; Hambye, Yin Lyn, Papucci, Strumia; Grossman, Kashti, Nardi, Nir, Roulet; Pilaftsis, Underwood; Branco, Gonzalez Felipe, Joaquim, Masina, Rebelo, Savoy; : Guidice, Notari, Raidal, Riotto & Strumia, Towards a complete theory of thermal leptogenesis in the SM and MSSM", Nucl. Phys. B 685, 89 (2004) Buchmuller and Plumacher, Leptogenesis for pedestrians", Annals Phys. 35, 305 (2005)...in one flavour approximation

15 2000: First study of flavour effects in leptogenesis, Barbieri, Creminelli, Strumia and Tetradis, Baryogenesis through leptogenesis", Nucl. Phys. B 575, 6 (2000) Endoh, Morozumi & Xiong, Primordial lepton family asymmetries in seesaw model", Prog. Theor. Phys., 23 (2004) 2006: First quantitative study of flavour effects in leptogenesis, A.A, Davidson, Josse-Michaux, Losada & Riotto, Flavour issues Leptogenesis", JCAP 0604, 004 (2006); [hep-ph/060083] Nardi, Nir, Roulet & Racker, The importance of flavor in leptogenesis", JHEP 060, 64 (2006); [hep-ph/060084]. A.A, Davidson, Ibarra, Josse-Michaux, Losada & Riotto Flavour matters in leptogenesis", JHEP 0609, 00 (2006); [hep-ph/060528] 2006: Extensive analysis... (A.A, Antusch, Blanchet, Branco, Chun, Davidson, De Simone, Di Bari, Felipe, Joaquim, King, Losada, Pascoli, Petcov, Raffelt, Riotto, Strumia, Uhlig...)...

16 Leptogenesis Basic Leptogenesis Mechanism Fukugita and Yanagida 86. CP violating decay of a heavy particle through an L-violating interaction can produce a lepton asymmetry. 2. This lepton asymmetry is transformed into a baryon asymmetry through sphaleron SM interactions: B + L-current is anomalous but B L and /3B L α - currents are not η B = ( 24+4nH 42+9n H )η L

17 ) L violation ν R Majorana 2) C & CP asymmetry: ǫ = α ǫ αα= α α ( Γ(N Hl α ) Γ( N H l α ) ( Γ(N Hl α )+Γ( N H l α ) ) ) CP from the complexity of the λ ν Yukawa matrix 3) Out-of-equilibrium decay of N Γ N H(T=M ) η L K ǫ is produced.

18 Boltzmann Equations One Flavour Approx The lightest N is produced in the thermal bath after inflation * Y N n N s dy N dz = z sh(m ) (Y N Y eq N dy L dz = z [ ǫ γ sh(m ) (Y N D Y eq N is N abundance, Y L n l n l s )(γ D + γ S ), ) γ W = α Y αα L * z = M T, s : entropy density, ǫ : CP-asymmetry Y L ], Y eq L * γ D,γ S : interaction rates for the decay and scattering L = * γ W = function ( γ D,γ S, L = 2 ) washout factor is total lepton asymmetry

19 Constraints on neutrinos in One Flavour Approx - M << M 2 << M 3 ǫ 3 2 6π M m v 2, = 3 6π ( m = m 2 + m2 2 + m2 3 ) M v 2 ( m 2 atm + m2 sol ) m 3 If light ν spectrum is degenerate: ǫ = 0 If light ν spectrum is hierarchical ǫ 3 2 6π M m 2 atm v 2 (Davidson, Ibarra) λ O() & κ and η B (WMAP) M > GeV η B L max m : m < 0.5 ev (Buchmuller, Di Bari, Plumacher) 2- M = M 2 = M 3 ǫ = 0 3- Quasi-degenerate M 2 J M2 I << M2 J M2 I ǫ 0 m < ev (Hambye et al)

20 When is the one flavour approx valid? Thermal leptogenesis at T M when Γ N < H(M ) The one flavour approximation is correct when the interactions mediated by charged lepton Yukawa are out of equilibrium. Γ α h 2 αt * Ints involving the charged τ are out of equilibrium at T 0 2 GeV (Γ τ < H) * Ints involving the charged µ are out of equilibrium at T 0 9 GeV (Γ µ < H) * Ints involving the charged e are out of equilibrium at T 0 5 GeV (Γ e < H) The diagonal terms are the lepton asymmetries stored in each flavour The off-diagonal terms encode the quantum correlations between the flavour asymmetries One Flav approx valid for M > 0 2 GeV, below, Solve FLAVOURED BE.

21 One flavour dy αα L dz = z [ ǫαα γ sh(m ) (Y N D Y eq N ) γ αα W Y αα L Y eq L ], α dy αα L dz = ǫ αα = Γ(N Hl α ) Γ( N H l α ) Γ(N Hl α )+Γ( N H l α ) Y eq L Sum over flavour z [ (ǫee + ǫ sh(m ) µµ + ǫ ττ ) γ }{{} ( Y N D Y eq N ǫ ( γ ee Y ee W L + γ µµ Y µµ W L + γττy ) ττ W L }{{} z sh(m ) (γ ee W +γµµ W +γττ W ) Y L [ ǫ γ D (Y N Y eq N ) γ W ) ], Y L ] (One State Approx) Y eq L

22 Flavoured BE Y α B/3 L α asymmetry in lepton flavour α. Baryonic asymmetry: Y B 2 37 α Y α α ǫ α η α N Abundance: Y N (z) = κ (D(z) + S(z)) ( Y N (z) Y eq N (z) ), z = M /T Y α asymmetry: Y α (z) = ǫ α κ (D(z) + S(z)) ( Y N (z) Y eq N (z) ) κ α W(z) β A αβy β (z) Y L Abundance : Y Lα = A αβ Y β ; A = Washout parameters: κ α Γ N lα H(M N ) = λ αλ α m ev The CP-asymmetry: ǫ α = Γ N lα Γ N P lα α(γ N l α +Γ lα) = (8π) N Efficiency η α : need to solve BE 0 5/79 20/79 20/79 25/ /537 4/537 25/358 4/ /537 v2 M m m α C A m, κ = α κ α m m, [λλ ] j Im { ( (λ α )(λλ ) j (λ jα )} M 2 ) j g M 2

23 Consequences of treatment of flavours * CP asymmetry: Remember, in ONE FLAV APPROX, if light ν spectrum is degenerate (m i m): ǫ = 0 ǫ = α ǫ αα = 0 and ǫ αα 3M m 8πv 2 individual grows with absolute scale m ǫ αα have opposite sign but are weighted by different washout factors Can have successful leptogenesis in the case of degenerate light neutrino spectrum

24 * Efficiencies η α : κ α = κ β ; κ β = ; κ β = 30 Thermal initial N abundance (N N eq ) or dynamically generated (N = 0). 0 0 Η Α d Η Α Κ Α A diagonal Κ Α Full A Strong washout regime (κ α > ) : no flavour effect when A is diagonal Weak washout regime (κ α < ): effect only in dynamical N abundance case Pronounced flavour effect when non diagonal entries of A are considered Order of magnitude enhancement Josse-Michaux and A.A, JCAP 070 (2007) 009

25 Illustratif example Flavour α = ("e + µ") in the strong washout regime α = 2 (τ) in the weak washout regime: Y B significantly enhanced compared to the one flavour approximation treatment

26 * Influence of flavours : Y e+µ /Y τ (M GeV, ǫ e+µ + ǫ τ = 0 6 ) Dynamical initial N abundance (N = 0) or thermally generated (N N eq ) Y e Μ Y Τ Log 0 0 Y e Μ Y Τ.8 0 Y e Μ Y Τ 0 Log 0 Y e Μ Y Τ Κ e Μ Κ Τ Κ e Μ Κ Τ Y e Μ Y Τ 0 0 Y e Μ Y Τ Ε e Μ Ε Τ 0 2 Contour plot of Log 0 ( Ye+µ Y τ ) Ε e Μ Ε Τ 0 2 In principle, one should have Y e+µ ( )Y τ for ǫ e+µ ( )ǫ τ. But important influence of the wash-out parameters: Eg: in the thermal case, for κ e+µ /κ τ 0. and ǫ e+µ /ǫ τ 0.5 Y e+µ 2Y τ.

27 Y B = 2 37 BAU in the 3-flavour case α Y α α ǫ α η α For ǫ α ǫ α 0, define efficiency for BAU η B : Y B = ǫ η B κ α = κ β ; κ β = ; κ β = 30 0 Η B This is for ǫ α for all flavours Baryonic efficiency strongly depends on the flavour alignement Off diagonal A matrix: only a few percent effect in the case of ǫ α ǫ α 0 Κ Α

28 BAU in the 2-flavour case Effect of the off-diagonal A entries: YB tot diag /YB Κ e Μ Y B tot. Y B diag Κ e Μ Y B tot. Y B diag Κ Τ Dynamical Κ Τ Thermal 0 2 This is for ǫ e+µ = ǫ τ (= 0 6 ) Baryonic efficiency strongly depends on the flavour alignement Effects of the off diagonal A matrix in this case are as large as 40% Effect of A αβ : Dynamical case - constructive & destructive Thermal case - strictly constructive

29 An interesting example 3-flavour case in a democratic scenario Equal κ α and α ǫ α = 0: - ignoring the O(A) BAU= 0 - taking them into account BAU 0

30 Lower bound on N mass Solve the BE to obtain the WMAP-allowed (M m ) parameter space Input parameters : Yukawa couplings λ ( λ = M /2 N Rm/2 U v, Casas-Ibarra)

31 Dynamical M GeV M GeV m sol m atm m ev 0 9 m sol m atm m ev One Flavour approx Full flavour treatment Thermal M GeV m sol m atm M GeV m sol m atm m ev m ev

32 All points displayed comply with In summary: Y B Lower bounds for M N : GeV in the dynamical case M N GeV in the thermal case Dynamical case: m can take extremelly small values Effect of flavours: open the allowed interval for m

33 Light neutrino masses m = lightest neutrino mass M GeV m sol m atm m ev Dynamical M GeV m sol m atm m ev Thermal No bound on absolute scale of light neutrinos from the requirement of sucessful leptogenesis!

34 Now what is this new physics? Bottom up approach: use effective theory Neutrino masses require new heavy fields Effects at low energy: effective theorie approach Effective operators obtained when expanding the heavy field propagators in M heavy fermion: D/ +... D/ M M M M heavy scalar : D 2 M 2 M 2 D2 M L eff = L SM + c d=5 O d=5 + c d=6 O d=6 + c d=5 M ; cd=6 M 2...;

35 Dimension 5 : δl d=5 = 2 cd=5 αβ ( l c φ )( φ ) Lα l L β + h.c., m ν = v2 Y Y M R c d=5 v 2 M R Y M R M GUT Y 0 6 M R TeV Mass operator O d=5 violates lepton number L Majorana neutrinos O d=5 is common to all models of Majorana neutrinos

36 3 ways to generate tree level O d=5 : Seesaw I, II, III Y Y t N R M R Y N R µ Σ R Σ R M Σ Y. Y t. type I (fermionic singlet) type II (scalar triplet) type III (fermionic triplet) m ν = 2 Y T N v2 M N Y N m ν = 2Y v 2 µ M 2 m ν = v2 2 Y T Σ M Σ Y Σ Minkowski,Gell-Man, Magg, Wetterich, Ma,Hambye et al. Ramond, Slansky Nussinov Bajc, Senjanovic, Lin Yanagida, Glashow Mohapatra, Senjanovic A.A., Biggio, Bonnet, Gavela, Mohapatra, Senjanovic Schechter, Valle Notari, Strumia, Papucci, Dorsn Ma, Sarkar Fileviez-Perez, Foot, Lew...

37 Distinguishing among the 3 types of seesaw The O d=5 operator is the same for all extensions of SM responsible for neutrino masses and mixing (ν data, (ββ) 0ν,...) To distinguish the several seesaw mechanisms: produce the heavy states or use O d=6 operators

38 Dimension 6 operators Effective Lagrangian L eff = c i O i Model c d=5 c d=6 i Oi d=6 Fermionic Singlet Y T N M N Y N ( Y N M N ) M N Y N M 2 Y αβ Y γδ αβ ( ) ( φ ) l Lα φ i / l Lβ ( llα τ llβ ) (l Lγ τ llδ ) Scalar Triplet 4Y µ M 2 µ 2 M 4 ( ) ( φ τ φ )( φ ) Dµ D µ τ φ Fermionic Triplet Y T Σ M Σ Y Σ ( Y Σ M Σ 2 (λ 3 + λ 5 ) µ 2 M 4 ) M Σ Y Σ αβ ( φ φ ) 3 ( ) l Lα τ φ ( φ ) id/ τ llβ Fermions: if Y O(), c d=6 (c d=5 ) 2 and the smallness m ν would preclude observable effects from Oi d=6. Not the case for scalars!

39 Scalar triplet (type II) Y µ = (, 3, 2), L = 2 Yukawa coupling: Y ij (l L ) c ia (l L) jb (iτ 2 τ α ) ab α + h.c Scalar coupling: µφ t aφ b (iτ 2 τ α ) ( ) α + h.c. M 2 2 λ 2 ( ) 2 λ 3 ( φ φ )( ) +... d=5 Operator: Mass m ν = v 2 µ Y M 2 2 different scales µ, M possible to have Y O() M TeV (µ 00 ev)

40 Low energy effects of dimension 6 operators: ( )( ) 2M Y 2 ij Y kl lli γ µ l Lk llj γ µ l Ll LFV, constraints not suppressed by µ ( 2 µ2 M 4 µ φ φ ) ( µ φ φ ) 2λ 3 µ 2 M 4 ( φ φ ) 3 EW prec. data, couplings to gauge bosons 4 µ2 M 4 [ φ D µ φ ] [ φ D µ φ ] 2 µ2 M 4 ( φ φ ){ Y e le R φ + Y d qdφ Y u qiτ 2 uφ + h.c. } top physics... Direct LFV: d = 5 operator supressed by small scale µ; d = 6 operator not supressed

41 Testing seesaws Scalar seesaw (Type II): Lepton Flavour Violation µ eee, τ lll, µ eγ, τ eγ bounds on various combinations of Y M Fermionic seesaw (Type I and III): non unitarity NN αβ = ǫ Σ = v2 2 cd=6 αβ = v2 Y 2 Σ M M Σ Y Σ αβ Σ Type I: also Lepton Flavour Violation µ eγ, τ eγ, W, Z (semi) leptonique decays, Type III: same as Type I + tree level Lepton Flavour Violation (µ eee, τ lll) at tree level

42 µ eee and τ 3l which gives Bounds on Type II seesaw Γ(µ e + e e ) = m5 µ 92π 3 M 4 Y µe 2 Y ee 2 Br(µ e + e e ) Γ(µ e + e e ) Γ(µ e ν µ ν e ) = M 4 G 2 F For τ decays: Y eµ 2 Y ee 2 Γ(τ l + i l j l j ) = m5 τ 92π 3 M 4 Y τi 2 Y jj 2 (for any i and j) Γ(τ l + i l j l k ) = m5 τ 96π 3 M 4 Y τi 2 Y jk 2 (for any i, j, k with j k) Using exp. Brs (or upper limits) derive bounds for Yukawa couplings

43 ( Process Constraint on Bound ( M ) 2 ) TeV µ e + e e Y µe Y ee < τ e + e e Y τe Y ee < τ µ + µ µ Y τµ Y µµ < τ µ + e e Y τµ Y ee < τ e + µ µ Y τe Y µµ < τ µ + µ e Y τµ Y µe < τ e + e µ Y τe Y µe < non-observation of these LFV transitions bounds on M most stringent decay: µ eee M 294 TeV,for Y O()

44 µ eγ and τ lγ Radiative processes due to exchange between lepton fields of the ++ and + fields Br(l l 2 γ) = α 48π ΣY ll Y l2 l l G 2 F M 4 Br(l eν ν e ) Process Constraint on Bound ( ( M ) 2 ) TeV µ eγ Σ l=e,µ,τ Y lµ Y el < τ eγ Σ l=e,µ,τ Y lτ Y el <.05 τ µγ Σ l=e,µ,τ Y lτ Y µl < 8.4 0

45 Bounds on combinations of Y Combined bounds ( Process Yukawa Bound ( M ) 2 ) TeV µ eγ Y µµ Y µe + Y τµ Y τe < τ eγ Y ττ Y τe <.05 τ µγ Y ττ Y τµ < Other bounds on Y Stringent bounds from M W Y µe 2 < ( M ) TeV Additional bounds from Bhabha scattering, muon anomalous magnetic moment,...

46 ) Y < 0 ( M TeV) or stronger observation of µ eγ at MEG (sensitivity of 0 3?) for Y O() 5 TeV < M < 50 TeV for Y O(0 2 ) 0.5 TeV < M < 0.50 TeV if M turns out to be as low as O(TeV), possibility of clean signals in hadronic accelerators (Tevatron, LHC) The production of ++ and, decaying into pairs of same-sign leptons striking signals, free from SM backgrounds If observed, must verify whether a scalar-mediated Seesaw is at work observe in addition at least three LFV processes (to measure and disentangle the individual Y ij couplings)

47 Bounds on Yukawas in Type III Lepton Flavour Violation at tree level µ eee, τ 3l Lepton Flavour Violation at loop level µ eγ, τ eγ Z decays (Z eµ, Z eτ, Z µτ) W decays, Universality tests, Invisible Z width... For M TeV, Y < 0 2 l l γ versus l 3l Generic results: In type I seesaw (fermionic singlet): Γ(l γl ) >> Γ(l 3l ) In type III seesaw (fermionic triplet): Γ(l γl ) << Γ(l 3l ) a measurement of a Γ(l 3l ) in the next generation of expt. would rule out TeV Fermionic triplet seesaw as its origin

48 Summary Leptogenesis is an interesting minimal mechanism that can explain the BAU and simultaneously neutrino masses. Sucessfull leptogenesis Generates strong constraints on neutrino masses. All derived in FA. When interaction rates of the charged Yukawa couplings are faster than the leptogenesis rates in BEs, they should be " integrated out" and we work in flavour basis. Flavours are relevant for M < 0 2 GeV Resulting Flavoured BE are different and thus the solutions also Phenomenology: Leptogenesis can work even with degenerate light neutrinos spectra: ǫ αα can be bigger than ǫ No upper bound on neutrino mass scale from successfull leptogenesis Baryon asym can be enhanced in specific models

49 What is the new physics? How to disentangle between models? d=6 operators allow to discriminate among models of Majorana ν rich phenomenology (hep-ph/060083; hep-ph/060528; hep-ph/ )

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008 Leptogenesis Neutrino 08 Christchurch, New Zealand 30/5/2008 Yossi Nir (Weizmann Institute of Science) Sacha Davidson, Enrico Nardi, YN Physics Reports, in press [arxiv:0802.2962] E. Roulet, G. Engelhard,

More information

Recent progress in leptogenesis

Recent progress in leptogenesis XLIII rd Rencontres de Moriond Electroweak Interactions and Unified Theories La Thuile, Italy, March 1-8, 2008 Recent progress in leptogenesis Steve Blanchet Max-Planck-Institut for Physics, Munich March

More information

Testing leptogenesis at the LHC

Testing leptogenesis at the LHC Santa Fe Summer Neutrino Workshop Implications of Neutrino Flavor Oscillations Santa Fe, New Mexico, July 6-10, 2009 Testing leptogenesis at the LHC ArXiv:0904.2174 ; with Z. Chacko, S. Granor and R. Mohapatra

More information

arxiv:hep-ph/ v1 26 Jul 2006

arxiv:hep-ph/ v1 26 Jul 2006 Neutrino mass and baryogenesis arxiv:hep-ph/0607287v1 26 Jul 2006 D. Falcone Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, Napoli, Italy A brief overview of the phenomenology related

More information

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrino Mass Seesaw, Baryogenesis and LHC Neutrino Mass Seesaw, Baryogenesis and LHC R. N. Mohapatra University of Maryland Interplay of Collider and Flavor Physics workshop, CERN Blanchet,Chacko, R. N. M., 2008 arxiv:0812:3837 Why? Seesaw Paradigm

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL Miami 2010 December 16, 2010 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang National Central Univ. and Academia Sinica (on leave at Univ. of Wisconsin - Madison) A. G. Akeroyd and CC: PRD 80,

More information

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

COLLIDER STUDIES OF HIGGS TRIPLET MODEL LHC Symposium @ 2011 PSROC Annual Meeting January 26, 2011 COLLIDER STUDIES OF HIGGS TRIPLET MODEL Cheng-Wei Chiang ( ) National Central Univ. and Academia Sinica A. G. Akeroyd and CC: PRD 80, 113010 (2009)

More information

Cosmological Family Asymmetry and CP violation

Cosmological Family Asymmetry and CP violation Cosmological Family Asymmetry and CP violation Satoru Kaneko (Ochanomizu Univ.) 2005. 9. 21 at Tohoku Univ. T. Endoh, S. K., S.K. Kang, T. Morozumi, M. Tanimoto, PRL ( 02) T. Endoh, T. Morozumi, Z. Xiong,

More information

Leptogenesis and the Flavour Structure of the Seesaw

Leptogenesis and the Flavour Structure of the Seesaw Leptogenesis and the Flavour Structure of the Seesaw based on: hep-ph/0609038 (JCAP 0611 (2006) 011) with S.F. King, A. Riotto hep-ph/0611232 (JCAP 0702 (2007) 024) with A.M. Teixeira arxiv:0704.1591 (Phys.

More information

Probing Seesaw and Leptonic CPV

Probing Seesaw and Leptonic CPV Probing Seesaw and Leptonic CPV Borut Bajc J. Stefan Institute, Ljubljana, Slovenia Based on works: BB, Senjanović, 06 BB, Nemevšek, Senjanović, 07 Arhrib, BB, Ghosh, Han, Huang, Puljak, Senjanović, 09

More information

Neutrino masses. Universe

Neutrino masses. Universe Università di Padova,, 8 May, 2008 Neutrino masses and the matter-antimatter antimatter asymmetry of the Universe (new results in collaboration with Steve Blanchet to appear soon) Pasquale Di Bari (INFN,

More information

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays

Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays Journal of Physics: Conference Series OPEN ACCESS Type I Seesaw Mechanism, Lepton Flavour Violation and Higgs Decays To cite this article: Emiliano Molinaro 013 J. Phys.: Conf. Ser. 447 0105 View the article

More information

Neutrinos and CP Violation. Silvia Pascoli

Neutrinos and CP Violation. Silvia Pascoli 0 Neutrinos and CP Violation XI Internat.Workshop on Neutrino Telescopes Venezia - 23 February 2005 Silvia Pascoli CERN Outline Outline Theoretical aspects of Dirac and Majorana CPV phases Determining

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

Higgs Bosons Phenomenology in the Higgs Triplet Model

Higgs Bosons Phenomenology in the Higgs Triplet Model Higgs Bosons Phenomenology in the Higgs Triplet Model Andrew Akeroyd National Cheng Kung University, Tainan, Taiwan TeV scale mechanisms ( testable ) for neutrino mass generation Higgs Triplet Model Production

More information

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism Pierre Hosteins Patras University 13th November 2007 Brussels P.H., S. Lavignac and C. Savoy, Nucl. Phys. B755, arxiv:hep-ph/0606078

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3) Neutrino Masses Contents I. The renormalizable Standard Model 1 II. The non-renormalizable Standard Model III. The See-Saw Mechanism 4 IV. Vacuum Oscillations 5 V. The MSW effect 7 VI. Experimental results

More information

Overview of mass hierarchy, CP violation and leptogenesis.

Overview of mass hierarchy, CP violation and leptogenesis. Overview of mass hierarchy, CP violation and leptogenesis. (Theory and Phenomenology) Walter Winter DESY International Workshop on Next Generation Nucleon Decay and Neutrino Detectors (NNN 2016) 3-5 November

More information

Neutrino masses respecting string constraints

Neutrino masses respecting string constraints Neutrino masses respecting string constraints Introduction Neutrino preliminaries The GUT seesaw Neutrinos in string constructions The triplet model (Work in progress, in collaboration with J. Giedt, G.

More information

arxiv: v1 [hep-ph] 16 Mar 2017

arxiv: v1 [hep-ph] 16 Mar 2017 Flavon-induced lepton flavour violation arxiv:1703.05579v1 hep-ph] 16 Mar 017 Venus Keus Department of Physics and Helsinki Institute of Physics, Gustaf Hällströmin katu, FIN-00014 University of Helsinki,

More information

Phenomenology of Friedberg Lee Texture in Left-Right Symmetric Model

Phenomenology of Friedberg Lee Texture in Left-Right Symmetric Model Commun. Theor. Phys. Beijing China 50 008 pp. 451 458 c Chinese Physical Society Vol. 50 No. August 15 008 Phenomenology of Friedberg Lee Texture in Left-Right Symmetric Model LUO Min-Jie 1 and LIU Qiu-Yu

More information

Neutrino masses, dark matter and baryon asymmetry of the universe

Neutrino masses, dark matter and baryon asymmetry of the universe Neutrino masses, dark matter and baryon asymmetry of the universe Takehiko Asaka (Tohoku University) @ The 4 th COE Symposium The 21 st Century Center-of-Excellence Program Sendai International Center,

More information

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K

Neutrino Basics. m 2 [ev 2 ] tan 2 θ. Reference: The Standard Model and Beyond, CRC Press. Paul Langacker (IAS) LSND 90/99% SuperK 90/99% MINOS K2K Neutrino Basics CDHSW m 2 [ev 2 ] 10 0 10 3 10 6 10 9 KARMEN2 Cl 95% NOMAD MiniBooNE Ga 95% Bugey CHOOZ ν X ν µ ν τ ν τ NOMAD all solar 95% SNO 95% CHORUS NOMAD CHORUS LSND 90/99% SuperK 90/99% MINOS K2K

More information

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

A biased review of Leptogenesis. Lotfi Boubekeur ICTP A biased review of Leptogenesis Lotfi Boubekeur ICTP Baryogenesis: Basics Observation Our Universe is baryon asymmetric. n B s n b n b s 10 11 BAU is measured in CMB and BBN. Perfect agreement with each

More information

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS

THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS THE SEESAW MECHANISM AND RENORMALIZATION GROUP EFFECTS M. LINDNER Physik Department, Technische Universität München James-Franck-Str., D-85748 Garching/München, Germany E-mail: lindner@ph.tum.de Neutrino

More information

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23,

What We Know, and What We Would Like To Find Out. Boris Kayser Minnesota October 23, What We Know, and What We Would Like To Find Out Boris Kayser Minnesota October 23, 2008 1 In the last decade, observations of neutrino oscillation have established that Neutrinos have nonzero masses and

More information

Neutrinos as a Unique Probe: cm

Neutrinos as a Unique Probe: cm Neutrinos as a Unique Probe: 10 33 10 +28 cm Particle Physics νn, µn, en scattering: existence/properties of quarks, QCD Weak decays (n pe ν e, µ e ν µ ν e ): Fermi theory, parity violation, quark mixing

More information

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València

Neutrino Physics II. Neutrino Phenomenology. Arcadi Santamaria. TAE 2014, Benasque, September 19, IFIC/Univ. València Neutrino Physics II Neutrino Phenomenology Arcadi Santamaria IFIC/Univ. València TAE 2014, Benasque, September 19, 2014 Neutrino Physics II Outline 1 Neutrino oscillations phenomenology Solar neutrinos

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London 17 th Lomonosov Conference Moscow 20-26/08/2015 Two possibilities to define fermion mass ν R ν L ν L = ν L ν R ν R = ν R ν L Dirac mass analogous

More information

Leptogenesis via varying Weinberg operator

Leptogenesis via varying Weinberg operator Silvia Pascoli IPPP, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom E-mail: silvia.pascoli@durham.ac.uk Jessica Turner Theoretical Physics Department, Fermi National Accelerator

More information

Cosmology and CP Violation

Cosmology and CP Violation Gustavo C.Branco Departamento de Fisica and Grupo Teorico de Fisica de Particulas Instituto Superior Tecnico Av. Rovisco Pais,1049-001 Lisboa, Portugal We describe the role of CP violation in the generation

More information

Phenomenology of the Higgs Triplet Model at the LHC

Phenomenology of the Higgs Triplet Model at the LHC Phenomenology of the Higgs Triplet Model at the LHC Andrew Akeroyd SHEP, University of Southampton, UK Higgs Triplet Model (HTM) and doubly charged scalars (H ±± ) The decay channel H 1 γγ and contribution

More information

Effects of Reheating on Leptogenesis

Effects of Reheating on Leptogenesis Effects of Reheating on Leptogenesis Florian Hahn-Woernle Max-Planck-Institut für Physik München 2. Kosmologietag Florian Hahn-Woernle (MPI-München) Effects of Reheating on Leptogenesis Kosmologietag 2007

More information

SM predicts massless neutrinos

SM predicts massless neutrinos MASSIVE NEUTRINOS SM predicts massless neutrinos What is the motivation for considering neutrino masses? Is the question of the existence of neutrino masses an isolated one, or is connected to other outstanding

More information

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011 Baryogenesis David Morrissey SLAC Summer Institute, July 26, 2011 Why is There More Matter than Antimatter? About 5% of the energy density of the Universe consists of ordinary (i.e. non-dark) matter. By

More information

arxiv: v4 [hep-ph] 25 Feb 2015

arxiv: v4 [hep-ph] 25 Feb 2015 IFT-UAM/CSIC-4-08 FTUAM-4-06 Imprints of massive inverse seesaw model neutrinos in lepton flavor violating Higgs boson decays E. Arganda, M.J. Herrero, X. Marcano, C. Weiland arxiv:405.4300v4 [hep-ph]

More information

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA

Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Neutrino masses, muon g-2, dark matter, lithium probelm, and leptogenesis at TeV-scale SI2009 AT FUJI-YOSHIDA Chian-Shu Chen National Cheng Kung U./Academia Sinica with C-H Chou 08/20/2009 arxiv:0905.3477

More information

Matter vs Anti-matter

Matter vs Anti-matter Baryogenesis Matter vs Anti-matter Earth, Solar system made of baryons B Our Galaxy Anti-matter in cosmic rays p/p O(10 4 ) secondary Our Galaxy is made of baryons p galaxy p + p p + p + p + p galaxy γ

More information

Leptogenesis in Higgs triplet model

Leptogenesis in Higgs triplet model Leptogenesis in Higgs triplet model S. Scopel Korea Institute of Advanced Study (KIAS) Seoul (Korea) Dark Side of the Universe, Madrid,, 20-24 24 June 2006 Introduction Non-zero neutrino masses and mixing

More information

Duality in left-right symmetric seesaw

Duality in left-right symmetric seesaw Duality in left-right symmetric seesaw Evgeny Akhmedov KTH, Stockholm & Kurchatov Institute, Moscow In collaboration with Michele Frigerio Evgeny Akhmedov SNOW 2006 Stockholm May 4, 2006 p. 1 Why are neutrinos

More information

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla

JIGSAW 07. Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases. Sanjib Kumar Agarwalla JIGSAW 07 Neutrino Mixings and Leptonic CP Violation from CKM Matrix and Majorana Phases Sanjib Kumar Agarwalla Harish-Chandra Research Institute, Allahabad, India work done in collaboration with M. K.

More information

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A Novel and Simple Discrete Symmetry for Non-zero θ 13 A Novel and Simple Discrete Symmetry for Non-zero θ 13 Yang-Hwan, Ahn (KIAS) Collaboration with Seungwon Baek and Paolo Gondolo NRF workshop Yonsei Univ., Jun 7-8, 2012 Contents Introduction We propose

More information

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008

Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Theoretical Models of neutrino parameters. G.G.Ross, Paris, September 2008 Number of light neutrinos 3? Masses + Mixing Angles

More information

On Minimal Models with Light Sterile Neutrinos

On Minimal Models with Light Sterile Neutrinos On Minimal Models with Light Sterile Neutrinos Pilar Hernández University of Valencia/IFIC Donini, López-Pavón, PH, Maltoni arxiv:1106.0064 Donini, López-Pavón, PH, Maltoni, Schwetz arxiv:1205.5230 SM

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

The Origin of Matter

The Origin of Matter The Origin of Matter ---- Leptogenesis ---- Tsutomu T. Yanagida (IPMU, Tokyo) Shoichi Sakata Centennial Symposium Energy Content of the Universe いいい From Wikipedia F FF Galaxy and Cluster of galaxies No

More information

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses Neutrino theory of everything? dark matter, baryogenesis and neutrino masses 25 th International Workshop on Weak Interactions and Neutrinos (WIN2015) June 8-13, 2015, MPIK Heidelberg, Germany @Heidelberg

More information

RG evolution of neutrino parameters

RG evolution of neutrino parameters RG evolution of neutrino parameters ( In TeV scale seesaw models ) Sasmita Mishra Physical Research Laboratory, Ahmedabad, India Based on arxiv:1310.1468 November 12, 2013 Institute of Physics, Bhubaneswar.

More information

Interplay of flavour and CP symmetries

Interplay of flavour and CP symmetries p. 1/79 Interplay of flavour and CP symmetries C. Hagedorn EC Universe, TUM, Munich, Germany ULBPhysTh Seminar, Université Libre de Bruxelles, 28.03.2014, Brussels, Belgium p. 2/79 Outline lepton mixing:

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

Yang-Hwan, Ahn (KIAS)

Yang-Hwan, Ahn (KIAS) Yang-Hwan, Ahn (KIAS) Collaboration with Paolo Gondolo (Univ. of Utah) Appear to 1312.xxxxx 2013 Particle Theory Group @ Yonsei Univ. 1 The SM as an effective theory Several theoretical arguments (inclusion

More information

Non-zero Ue3, Leptogenesis in A4 Symmetry

Non-zero Ue3, Leptogenesis in A4 Symmetry Non-zero Ue3, Leptogenesis in A4 Symmetry 2 nd International Workshop on Dark Matter, Dark Energy and Matter-Antimatter Asymmetry Y.H.Ahn (Academia Sinica) based on the paper with C.S.Kim and S. Oh 1 Outline

More information

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad. Neutrinos Riazuddin National Centre for Physics Quaid-i-Azam University Campus Islamabad. Neutrino was the first particle postulated by a theoretician: W. Pauli in 1930 to save conservation of energy and

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

2 Induced LFV in the SUSY see-saw framework

2 Induced LFV in the SUSY see-saw framework LFV Constraints on the Majorana Mass Scale in msugra Frank Deppisch, Heinrich Päs, Andreas Redelbach, Reinhold Rückl Institut für Theoretische Physik und Astrophysik Universität Würzburg D-97074 Würzburg,

More information

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004

Neutrinos and Cosmos. Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Neutrinos and Cosmos Hitoshi Murayama (Berkeley) Texas Conference at Stanford Dec 17, 2004 Outline A Little Historical Perspective Interpretation of Data & Seven Questions Matter Anti-Matter Asymmetry

More information

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA In collaboration with F. del Águila and M. Pérez-Victoria Phys. Rev. D78: 013010, 2008 Depto. de Física Teórica y del Cosmos Universidad de Granada

More information

Phenomenology at neutrino oscillation experiments

Phenomenology at neutrino oscillation experiments Phenomenology at neutrino oscillation experiments Tracey Li IPPP, Durham University Supervisor: Dr. Silvia Pascoli LEPP particle theory seminar Cornell University 2nd April 2010 Talk overview Neutrino

More information

Electromagnetic Leptogenesis at TeV scale. Sudhanwa Patra

Electromagnetic Leptogenesis at TeV scale. Sudhanwa Patra Electromagnetic Leptogenesis at TeV scale Sudhanwa Patra Physical Research Laboratory, INDIA Collaboration with Debjyoti Choudhury, Namit Mahajan, Utpal Sarkar 25th Feb, 2011 Sudhanwa Patra, NuHorizon-IV,

More information

Leptogenesis with Composite Neutrinos

Leptogenesis with Composite Neutrinos Leptogenesis with Composite Neutrinos Based on arxiv:0811.0871 In collaboration with Yuval Grossman Cornell University Friday Lunch Talk Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite

More information

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications Mirror fermions, electroweak scale right-handed neutrinos and experimental implications P. Q. Hung University of Virginia Ljubljana 2008 Plan of Talk The question of parity restoration at high energies:

More information

Natural Nightmares for the LHC

Natural Nightmares for the LHC Dirac Neutrinos and a vanishing Higgs at the LHC Athanasios Dedes with T. Underwood and D. Cerdeño, JHEP 09(2006)067, hep-ph/0607157 and in progress with F. Krauss, T. Figy and T. Underwood. Clarification

More information

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking

Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking Non-zero Ue3 and TeV-leptogenesis through A4 symmetry breaking National Tsing-Hua Unv. Chian-Shu Chen (NCKU/AS) with Y.H. Ahn & S.K. Kang 11/1/009 ouline Introduction A 4 symmetry The model Neutrino mass

More information

arxiv: v1 [hep-ph] 2 Jun 2015

arxiv: v1 [hep-ph] 2 Jun 2015 TeV Scale Leptogenesis P. S. Bhupal Dev arxiv:1506.00837v1 [hep-ph] 2 Jun 2015 Abstract This is a mini-review on the mechanism of leptogenesis, with a special emphasis on low-scale leptogenesis models

More information

Lepton number symmetry as a way to testable leptogenesis

Lepton number symmetry as a way to testable leptogenesis Lepton number symmetry as a way to testable leptogenesis ichele Lucente 5st Rencontres de oriond (arch th 6) ased on:. bada, G. rcadi, V. Domcke and.l., JP 5 (5), 4 [arxiv:57.65 [hep-ph]] Leptogenesis

More information

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016)

GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv PRD 94, (2016) GeV neutrino mass models: Experimental reach vs. theoretical predictions RWR, Walter Winter Arxiv 1607.07880 PRD 94, 073004 (016) Rasmus W. Rasmussen Matter and the Universe 1-1-16 Theory of elementary

More information

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included Pati-Salam, 73; Georgi-Glashow, 74 Grand Unification Strong, weak, electromagnetic unified at Q M X M Z Simple group G M X SU(3) SU() U(1) Gravity not included (perhaps not ambitious enough) α(q ) α 3

More information

Leptogenesis. Alejandro Ibarra Technische Universität München. Warsaw February 2010

Leptogenesis. Alejandro Ibarra Technische Universität München. Warsaw February 2010 Leptogenesis Alejandro Ibarra Technische Universität München Warsaw February 2010 Outline Evidence for a baryon asymmetry Sakharov conditions GUT baryogenesis Sphalerons Neutrino masses and its origin

More information

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge

Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Shao-Feng Ge Puzzles of Neutrino Mixing and Anti-Matter: Hidden Symmetries and Symmetry Breaking Shao-Feng Ge (gesf02@mails.thu.edu.cn) Center for High Energy Physics, Tsinghua Univeristy 200-4-8 Collaborators: Hong-Jian

More information

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He

Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking. Hong-Jian He Puzzles of Neutrinos and Anti-Matter: Hidden Symmetries and Symmetry Breaking Tsinghua University 2009-1-13 Collaborators: Shao-Feng Ge & Fu-Rong Yin Based on arxiv:1001.0940 (and works in preparation)

More information

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter? Baryo- and leptogenesis Purpose : explain the current excess of matter/antimatter Is there an excess of matter? Baryons: excess directly observed; Antibaryons seen in cosmic rays are compatible with secondary

More information

Neutrino mass physics at lepton colliders

Neutrino mass physics at lepton colliders Neutrino mass physics at lepton colliders Oliver Fischer University of Basel, Switzerland soon: Karlsruhe Institute of Technology, Germany ACFI workshop, July the 19th, 2017, Amherst Motivation for sterile

More information

The doubly charged scalar:

The doubly charged scalar: The doubly charged scalar: current status and perspectives Margherita Ghezzi Moriond QCD, 17-24 March 2018 Margherita Ghezzi (PSI) The doubly charged scalar Moriond QCD, 20/03/2018 1 / 18 Introduction:

More information

Neutrino Mass Models

Neutrino Mass Models Neutrino Mass Models S Uma Sankar Department of Physics Indian Institute of Technology Bombay Mumbai, India S. Uma Sankar (IITB) IWAAP-17, BARC (Mumbai) 01 December 2017 1 / 15 Neutrino Masses LEP experiments

More information

arxiv: v3 [hep-ph] 3 Sep 2012

arxiv: v3 [hep-ph] 3 Sep 2012 Prepared for submission to JHEP arxiv:1108.1469v3 [hep-ph] 3 Sep 01 sinθ 13 and neutrino mass matrix with an approximate flavor symmetry Riazuddin 1 1 National Centre for Physics, Quaid-i-Azam University

More information

Cosmological constraints on the Sessaw Scale

Cosmological constraints on the Sessaw Scale Cosmological constraints on the Sessaw Scale Jacobo López-Pavón 50th Rencontres de Moriond EW La Thuile, Valle d'aosta (Italy) 14-21 March, 2015 Motivation Which is the simplest extension of the SM that

More information

Leptogenesis with Majorana neutrinos

Leptogenesis with Majorana neutrinos Leptogenesis with Majorana neutrinos E.A. Paschos a a Institut für Physik, Universität Dortmund D-4422 Dortmund, Germany I review the origin of the lepton asymmetry which is converted to a baryon excess

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College ondon Flavour Physics Conference Quy Nhon 7/01-0/08/014 Neutrinoless double beta decay μ e γ μ + e conversion in nuclei Δ e =, Δ μ = 0, Δ = epton

More information

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS Marco Drewes TU München 23. 8. 2016, NuFact, Quy Nhon, Vietnam 1 / 7 The Standard Model and General Relativity together explain almost all phenomena observed in nature, but... gravity is not quantised

More information

Updating the Status of Neutrino Physics

Updating the Status of Neutrino Physics Updating the Status of Neutrino Physics J. W. F. Valle IFIC-CSIC/U. Valencia Based on hep-ph/36 and hep-ph/3792 String Phenomenology 23, Durham p. Atmospheric zenith distribution Maltoni, Schwetz, Tortola

More information

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy

Lecture 3. A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy Lecture 3 A. Yu. Smirnov International Centre for Theoretical Physics, Trieste, Italy 25 Spring School on Particles and Fields, National Taiwan University, Taipei April 5-8, 2012 E, GeV contours of constant

More information

(Charged) Lepton Flavor Violation

(Charged) Lepton Flavor Violation (Charged) Lepton Flavor Violation University Neutrino Oscillation Workshop Conca Specchiulla, Otranto, Italia, September 6 13, 2008 Outline 1. Brief Introduction; 2. Old and ν Standard Model Expectations;

More information

Leptonic CP violation and neutrino mass models

Leptonic CP violation and neutrino mass models Leptonic CP violation and neutrino mass models Gustavo C Branco and M N Rebelo Departamento de Física and Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico, Av. Rovisco Pais, 1049-001

More information

Lepton-flavor violation in tau-lepton decay and the related topics

Lepton-flavor violation in tau-lepton decay and the related topics Lepton-flavor violation in tau-lepton decay and the related topics Junji Hisano Institute for Cosmic Ray Research Univ. of Tokyo International Workshop On Discoveries In Flavour Physics At E+ E- Colliders

More information

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09

Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism. Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 Scaling in the Neutrino Mass Matrix and the See-Saw Mechanism Werner Rodejohann (MPIK, Heidelberg) Erice, 20/09/09 1 A. S. Joshipura, W.R., Phys. Lett. B 678, 276 (2009) [arxiv:0905.2126 [hep-ph]] A. Blum,

More information

University College London. Frank Deppisch. University College London

University College London. Frank Deppisch. University College London Frank Deppisch f.deppisch@ucl.ac.uk University College London Nuclear Particle Astrophysics Seminar Yale 03/06/2014 Neutrinos Oscillations Absolute Mass Neutrinoless Double Beta Decay Neutrinos in Cosmology

More information

Neutrino Mass in Strings

Neutrino Mass in Strings Neutrino Mass in Strings Introduction Neutrino preliminaries Models String embeddings Intersecting brane The Z 3 heterotic orbifold Embedding the Higgs triplet Outlook Neutrino mass Nonzero mass may be

More information

arxiv: v2 [hep-ph] 2 Mar 2018

arxiv: v2 [hep-ph] 2 Mar 2018 CP Violation in the Lepton Sector and Implications for Leptogenesis arxiv:1711.02866v2 [hep-ph] 2 Mar 2018 C. Hagedorn, R. N. Mohapatra, E. Molinaro 1, C. C. Nishi, S. T. Petcov 2 CP 3 -Origins, University

More information

arxiv:hep-ph/ v3 27 Sep 2006

arxiv:hep-ph/ v3 27 Sep 2006 Ref. SISSA 6/006/EP May 006 hep-ph/0605151 Charged Lepton Decays l i l j + γ, Leptogenesis CP-Violating Parameters and Majorana Phases arxiv:hep-ph/0605151v3 7 Sep 006 S. T. Petcov 1 and T. Shindou Scuola

More information

arxiv:hep-ph/ v2 20 Jul 2005

arxiv:hep-ph/ v2 20 Jul 2005 OSU-HEP-05-10 July 005 Model of Geometric Neutrino Mixing arxiv:hep-ph/050717v 0 Jul 005 K.S. Babu 1 and Xiao-Gang He, 1 Oklahoma Center for High Energy Physics Department of Physics, Oklahoma State University

More information

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006 Neutrino Physics After the Revolution Boris Kayser PASI 2006 October 26, 2006 1 What We Have Learned 2 The (Mass) 2 Spectrum ν 3 ν 2 ν 1 } Δm 2 sol (Mass) 2 Δm 2 atm or Δm 2 atm ν ν 2 } Δm 2 sol 1 ν 3

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

Supersymmetric Seesaws

Supersymmetric Seesaws Supersymmetric Seesaws M. Hirsch mahirsch@ific.uv.es Astroparticle and High Energy Physics Group Instituto de Fisica Corpuscular - CSIC Universidad de Valencia Valencia - Spain Thanks to: J. Esteves, S.

More information

Heavy Sterile Neutrinos at CEPC

Heavy Sterile Neutrinos at CEPC Wei Liao East China University of Science and Technology Based on arxiv:17.09266, in collaboration with X.H. Wu INPAC SJTU, Nov. 17 2017 Outline Review of neutrino mass low energy seesaw model constraint

More information

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Kai Schmitz Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Based on arxiv:1008.2355 [hep-ph] and arxiv:1104.2750 [hep-ph].

More information

Leptogenesis with type II see-saw in SO(10)

Leptogenesis with type II see-saw in SO(10) Leptogenesis wit type II see-saw in SO(10) Andrea Romanino SISSA/ISAS Frigerio Hosteins Lavignac R, arxiv:0804.0801 Te baryon asymmetry η B n B n B n γ = n B n γ Generated dynamically if = (6.15 ± 0.5)

More information

Models of Neutrino Masses & Mixings

Models of Neutrino Masses & Mixings Frascati, 27 November '04 Models of Neutrino Masses & Mixings CERN Some recent work by our group G.A., F. Feruglio, I. Masina, hep-ph/0210342 (Addendum: v2 in Nov. 03), hep-ph/0402155. Reviews: G.A., F.

More information