Green s func+on in LMTO. What they are. What they re good for.

Size: px
Start display at page:

Download "Green s func+on in LMTO. What they are. What they re good for."

Transcription

1 Green s func+on in LMTO What they are. What they re good for.

2 Dual nature of LMTO: basis set method and mul+ple Varia+onal approach: ψ nk = RL nk k C RL χ RL Hψ nk = E nk ψ nk R'L' k χ RL k H E nk χ R'L' nk C R'L' = 0 LMTO s χ RL are op+mal minimal basis set. Matrix elements easy to compute because constructed from solu+ons of Schrödinger eq. inside each region at energy ε υ in range Small basis set Errors in orbitals lead to second order errors in energy: φ and φdot errors ε- ε υ è errors in Enk of order (ε- ε υ ) 3

3 Tail cancella+on point of view HEAD TAIL Solu+on if all tails cancel Usual view: disadvantage non- linear in energy root searching No longer a disadvantage when using GF methods.

4 Green s func+ons for H (E H )ψ = 0 (E H )G(E) =1 H = H 0 +V (E H 0 )ψ = Vψ (E H 0 )G 0 (E) =1 ψ = ψ 0 + G 0 (E)Vψ ψ(r) = ψ 0 (r)+ dr' G 0 (E, r, r')v(r')ψ(r') Basis of sca@ering theory Ψ 0 (r) Born approxima+on

5 G(E) = Dealing with poles n n E n are poles of G(E) n E E n G + (E) = G(E + iδ) G + (t) = 1 2π = Θ(t) ie ie t n n n n retarded eigenstates What if E=E n? n n e iet de n E + iδ En If t>0 If t<0 Similarly G (E) = G(E iδ) advanced

6 DOS etc. 1 δ 0+ 1 ### P iπδ(e E n ) E E n + iδ E E n D(E) = 1 π Tr ImG(E + i0 +) = 1 d π de Im lndetg(e + i0 +) D RL (E) = 1 π ImG RL,RL(E + i0 + ) Phase formula ReG + (E) = 1 π P ImG+ (E ') de ' Hilbert transform E E '

7 Example D(E)=step func+on 4 D(E) 2 ReG(E) D(E) = Θ(E E 1 ) Θ(E E 2 ) ReG(E) =P E 2 E 1 de ' E E ' = ln E 2 E E 1 E

8 Applica+on to point defects Assume localized basis set and perturba+on restricted to orbitals on defect U A = P A UP A P A = i i P B = i i A i A i (E H )G(E) =1 (E H 0 U)G(E) =1 G(E) = G 0 (E)+ G 0 (E)UG(E) G(E) = [1 G 0 (E)U] 1 G 0 (E) Dyson equa+on

9 Block form of matrices A B A B

10 Only need to invert finite matrix within subspace spanned by the defect! Solving for localized gap states Zeros of det of same finite matrix give defect localized states in gap

11 Advantages /disadvantages Region where poten+al perturbed much smaller than where wave func+on perturbed Can give wave func+on or GF on many atoms outside impurity region Gives symmetry resolved total changes in DOS in band con+nua as well as defect levels No problems with band alignment etc. Difficult to go beyond ASA and include relaxa+ons etc.

12 Self- Consistent Method for Point Defects in Semiconductors: Applica+on to the Vacancy in Silicon J. Bernholc, Nunzio O. Lipari, and Sokrates T. Pantelides Phys. Rev. 41,

13 Examples Ab Ini)o Calcula+on of Hyperfine and Superhyperfine Interac+ons for Shallow Donors in Semiconductors Harald Overhof and Uwe Gerstmann,Phys. Rev. 92,

14 Rela+on to linear response δn i δv j = P ij δn i = π 1 Tr ImδG ii (z) dz δg ii (z) = G ii (z) G ii 0 (z) = P ij = π 1 G ij 0 (z) G ji 0 (z)dz j G 0 ij (z)δv j G 0 ji (z) Useful to accelerate self- consistency convergence

15 Interfaces and surfaces Key concept: principal layer Layer thick enough so that layer n interacts With n- 1 and n+1 but not further x x x x x x x x x x x x x x x x Hamiltonian becomes tridiagonal Special methods can be used to invert such matrices, e.g. decima+on, con+nued frac+on etc. See PGF program

16 Principal layer method Bulk Green s func+on can be obtained from difference equa+on whose eigenvalues give complex band structure A.B. Chen et al. PRB39,923(1989) The semi- infinite GF is given by s b G mn = G mn G b m0 [G b 00 ] 1 b G 0n The GF in central layer is obtained adding one layer at a +me star+ng from leu semi- infinite, then connec+ng it to semi- infinite on right,and retracing one s steps

17 General step (n 1) [E1 nn H nn H nn 1 G n 1,n 1 H n 1n ]G (n) nn =1 nn 0 1 n- 1 n N- 1 N N+1 Surface layer of semi- infinite leu First step H n- 1,n G 0 SL 00 = G 00 [E1 11 H 11 H 10 G (SL) 0,0 H 01 ]G (1) 11 =1 11 Last step (N 1) [E1 NN H NN H NN 1 G N 1N 1 SR H N 1N H NN+1 G N+1N+1 H N+1N ]G NN =1 NN

18 Retracing steps (N 1) G NN 1 = G NN H NN 1 G N 1N 1 (N 1) G N 1N 1 = G N 1N 1 (N 1) + G N 1N 1 H N 1N G NN 1

19 Faleev et al., Phys. Rev. B 71, (2005) Transport problems Interface region a l r b Leu semi- infinite C Right semi- infinite [z1 CC H CC H la G Ls aa (z)h al H rb G Rs bb (z)h br ]G CC (z) =1 CC Σ L (z) Γ L = i[σ L + Σ L ] = 2 Im Σ L + I = e π Σ R (z) de[ f L (E) f R (E)]Tr[Γ R G + Γ L G ] Fermi distribu+on for μ L G rl G lr

20 g and big G [P(z) S]g(z) =1 [z H ]G(z) =1 Par+al wave expansion of real space GF [z + 2 v(r)]g(r, r,', z) = δ(r r') G(r, r', z) = δ RR' LL' * + φ RL φ RL L * (z *, r R < (z * ', r R )G RL,R'L' (z)φ R'L' (z, r R' ) )W { φ RL (z),φ irr RL (z)} 1 φ irr RL (z, r > R ) O. Gunnarsson, O. Jepsen, and O. K. Andersen Phys. Rev. B 27, 7144 (1983)

21 So, if we know g(z) we can find G(z) and charge density, PDOS,etc. ρ(ε, r) = 1 π Im(G(r, r, i0 +) ε F ρ(r) = ρ(ε, r) dε = 1 2πi = 1 π G(r, r, z)dz Im G(r, r, z)dz C E F G(z) = 1 2 d ln P(z) dz if choosing φ irr to match φ γ +[ P(z)] 1/2 g(z)[ P(z)] 1/2 " D RL (z) = π 1 Im g RL,RL (z) P RL (z) 1 # $ 2 C d dz ln P % RL (z) & '

22 Advantages and disadvantages of g/g More localized purturba+on δp(z) or δs than δh Only works in ASA or difficult to make FP (FP- KKR uses cells) g(z) has extra poles from Pdot(z) 1 d ln P(z) = 1 2 dz z V P α 1 " C z (z) = (γ α) # $ z V α V α = C Δ γ α, z z + (z ε ν ) 3 p p = ( φ γ ) 2 % & ' In 2 nd order we know them exactly Third order correc+ons

23 Applica+on of GF s to magne+c exchange interac+ons θ/2 i j θ/2 FM star+ng point δe ij δe i δe j = J ij θ 2 / 4 Liechtenstein et al. JMMM 67, 65 (1987) Andersen force theorem ε F [ ] εδd(ε)dε = εδn(ε) ε F ε F δ N(ε)dε Because rota+on of spin does not change Charge density in sphere

24 Lloyd s formula Inverse Bloch- sum (IFT) gives us real space exchange interac+ons Spin waves J i, j+t = e ik T k J i, j (k) ) 2 det ω(k)δ ij 2 # & + % J ij (k) δ ij J ik (0)( 2 * + µ i µ i $ k ' µ j,. -. = 0

25 Example: ScN:Mn Exchange interac+ons from supercell between near neighbors Exchange interac+ons From Liechtenstein approach

26 Without gap correc+on LDA metallic RKKY like With gap correc+on: semiconduc+ng

27 Doping effects Changing E F allows to study doping effect

28 Importance for magne+c exchange Supercell approach of examining E AF - E F relies on short- range assump+on, so interac+ons with images outside cell are negligible This is ouen NOT TRUE What is calculated in SC approach is sum over man small long- range interac+ons Long- range and fluctua+ng exchange interac+ons Can easily examine Fermi level or doping dependence. Gain more insight.

29 Coherent Poten+al Approxima+on H = H 0 + (U m Σ) m m + Σ m H Σ 0 = H 0 + Σ, H Σ 1 = (U m Σ) m m = V m m m G 0 Σ (z) = G 0 (z Σ) G = G 0 Σ + G 0 Σ T Σ G 0 Σ T Σ m T m Σ T Σ m = (1 G 0 mm (z)v m ) 1 V m m m G = G 0 Σ T m Σ = 0 & dup(u) ( 1 (U Σ) 0 G Σ 0 0 ) 1 ) (U Σ) = 0 '( *+ c A T A Σ + c B T B Σ = 0 m Dyson eq Σ represents average medium self- energy Approxima+on : each sca@erer is independent Alloy m T- matrix for one sca@erer in medium Choose medium Σ so on average no sca@ering Random impuri+es

30 Disordered local moments Random poten+als correspond to random orienta+ons of spins Average in CPA is over all direc+ons of spins

31 Conclusions/summary Green s func+ons are useful for point defects, linear response, interfaces, transport, magne+c exchange interac+ons Allow self- consistent calcula+on via local G RR But also give long- range G ij containing useful informa+on on how defects spread, transport occurs etc. Mul+ple sca@ering g vs. Hamiltonian G At present: only some of it implemented, see lmgf, lmpg

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES llja TUREK Institute of Physics of Materials, Brno Academy of Sciences of the Czech Republic Vaclav DRCHAL, Josef KUDRNOVSKY Institute

More information

Introduction to Multiple Scattering Theory

Introduction to Multiple Scattering Theory Introduction to Multiple Scattering Theory László Szunyogh Department of Theoretical Physics, Budapest University of Technology and Economics, Budapest, Hungary and Center for Computational Materials Science,

More information

Magne&sm on the Edges of Graphene Ribbons. Hamed Karimi and Ian Affleck

Magne&sm on the Edges of Graphene Ribbons. Hamed Karimi and Ian Affleck Magne&sm on the Edges of Graphene Ribbons Hamed Karimi and Ian Affleck 1 Outline Introduc&on Edge modes, 1D model Lieb s theorem Rigorous bound in 1D model Excitons More realis&c models Edge- bulk interac&ons

More information

Local currents in a two-dimensional topological insulator

Local currents in a two-dimensional topological insulator Local currents in a two-dimensional topological insulator Xiaoqian Dang, J. D. Burton and Evgeny Y. Tsymbal Department of Physics and Astronomy Nebraska Center for Materials and Nanoscience University

More information

Reevalua'on of Neutron Electric Dipole Moment with QCD Sum Rules

Reevalua'on of Neutron Electric Dipole Moment with QCD Sum Rules Reevalua'on of Neutron Electric Dipole Moment with QCD Sum Rules Natsumi Nagata Nagoya University Na1onal Taiwan University 5 November, 2012 J. Hisano, J. Y. Lee, N. Nagata, and Y. Shimizu, Phys. Rev.

More information

Electrons in Crystals. Chris J. Pickard

Electrons in Crystals. Chris J. Pickard Electrons in Crystals Chris J. Pickard Electrons in Crystals The electrons in a crystal experience a potential with the periodicity of the Bravais lattice: U(r + R) = U(r) The scale of the periodicity

More information

Fermi liquid & Non- Fermi liquids. Sung- Sik Lee McMaster University Perimeter Ins>tute

Fermi liquid & Non- Fermi liquids. Sung- Sik Lee McMaster University Perimeter Ins>tute Fermi liquid & Non- Fermi liquids Sung- Sik Lee McMaster University Perimeter Ins>tute Goal of many- body physics : to extract a small set of useful informa>on out of a large number of degrees of freedom

More information

A Green Function Method for Large Scale Electronic Structure Calculations. Rudolf Zeller

A Green Function Method for Large Scale Electronic Structure Calculations. Rudolf Zeller A Green Function Method for Large Scale Electronic Structure Calculations Rudolf Zeller Institute for Advanced Simulation, Forschungszentrum Jülich Electronic structure calculations (density functional

More information

Physics 4022 Notes on Density Matrices

Physics 4022 Notes on Density Matrices Physics 40 Notes on Density Matrices Definition: For a system in a definite normalized state ψ > the density matrix ρ is ρ = ψ >< ψ 1) From Eq 1 it is obvious that in the basis defined by ψ > and other

More information

Variational Method for Calculating Electronic Structure in Periodic Lattices

Variational Method for Calculating Electronic Structure in Periodic Lattices Variational Method for Calculating Electronic Structure in Periodic Lattices Zhenbin Wang, PID: A53083720 December 5, 2017 Abstract Walter Kohn was awarded the Buckley Prize in 1961 for his seminal contributions

More information

The Munich SPRKKR-program package A spin polarised relativistic Korringa-Kohn-Rostoker code for calculating solid state properties

The Munich SPRKKR-program package A spin polarised relativistic Korringa-Kohn-Rostoker code for calculating solid state properties The Munich SPRKKR-program package A spin polarised relativistic Korringa-Kohn-Rostoker code for calculating solid state properties Ján Minár H. Ebert, M. Battocletti, D. Benea, S. Bornemann, J. Braun,

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Electronic structure of solids: basic concepts and methods

Electronic structure of solids: basic concepts and methods Electronic structure of solids: basic concepts and methods Ondřej Šipr II. NEVF 514 Surface Physics Winter Term 2016-2017 Troja, 21st October 2016 Outline A bit of formal mathematics for the beginning

More information

Density Functional Theory: from theory to Applications

Density Functional Theory: from theory to Applications Density Functional Theory: from theory to Applications Uni Mainz November 29, 2010 The self interaction error and its correction Perdew-Zunger SIC Average-density approximation Weighted density approximation

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Degenerate Perturbation Theory. 1 General framework and strategy

Degenerate Perturbation Theory. 1 General framework and strategy Physics G6037 Professor Christ 12/22/2015 Degenerate Perturbation Theory The treatment of degenerate perturbation theory presented in class is written out here in detail. The appendix presents the underlying

More information

Quantum Cluster Methods (CPT/CDMFT)

Quantum Cluster Methods (CPT/CDMFT) Quantum Cluster Methods (CPT/CDMFT) David Sénéchal Département de physique Université de Sherbrooke Sherbrooke (Québec) Canada Autumn School on Correlated Electrons Forschungszentrum Jülich, Sept. 24,

More information

The Quantum Heisenberg Ferromagnet

The Quantum Heisenberg Ferromagnet The Quantum Heisenberg Ferromagnet Soon after Schrödinger discovered the wave equation of quantum mechanics, Heisenberg and Dirac developed the first successful quantum theory of ferromagnetism W. Heisenberg,

More information

1 One-dimensional lattice

1 One-dimensional lattice 1 One-dimensional lattice 1.1 Gap formation in the nearly free electron model Periodic potential Bloch function x = n e iπn/ax 1 n= ψ k x = e ika u k x u k x = c nk e iπn/ax 3 n= Schrödinger equation [

More information

Electron levels in a periodic potential: general remarks. Daniele Toffoli January 11, / 46

Electron levels in a periodic potential: general remarks. Daniele Toffoli January 11, / 46 Electron levels in a periodic potential: general remarks Daniele Toffoli January 11, 2017 1 / 46 Outline 1 Mathematical tools 2 The periodic potential 3 Bloch s theorem and Born-von Karman boundary conditions

More information

Back to Gauge Symmetry. The Standard Model of Par0cle Physics

Back to Gauge Symmetry. The Standard Model of Par0cle Physics Back to Gauge Symmetry The Standard Model of Par0cle Physics Laws of physics are phase invariant. Probability: P = ψ ( r,t) 2 = ψ * ( r,t)ψ ( r,t) Unitary scalar transformation: U( r,t) = e iaf ( r,t)

More information

d ORTHOGONAL POLYNOMIALS AND THE WEYL ALGEBRA

d ORTHOGONAL POLYNOMIALS AND THE WEYL ALGEBRA d ORTHOGONAL POLYNOMIALS AND THE WEYL ALGEBRA Luc VINET Université de Montréal Alexei ZHEDANOV Donetsk Ins@tute for Physics and Technology PLAN 1. Charlier polynomials 2. Weyl algebra 3. Charlier and Weyl

More information

PROJECT C: ELECTRONIC BAND STRUCTURE IN A MODEL SEMICONDUCTOR

PROJECT C: ELECTRONIC BAND STRUCTURE IN A MODEL SEMICONDUCTOR PROJECT C: ELECTRONIC BAND STRUCTURE IN A MODEL SEMICONDUCTOR The aim of this project is to present the student with a perspective on the notion of electronic energy band structures and energy band gaps

More information

Interpolating between Wishart and inverse-wishart distributions

Interpolating between Wishart and inverse-wishart distributions Interpolating between Wishart and inverse-wishart distributions Topological phase transitions in 1D multichannel disordered wires with a chiral symmetry Christophe Texier December 11, 2015 with Aurélien

More information

Conical Intersections. Spiridoula Matsika

Conical Intersections. Spiridoula Matsika Conical Intersections Spiridoula Matsika The Born-Oppenheimer approximation Energy TS Nuclear coordinate R ν The study of chemical systems is based on the separation of nuclear and electronic motion The

More information

Temperature-dependence of magnetism of free Fe clusters

Temperature-dependence of magnetism of free Fe clusters Temperature-dependence of magnetism of free Fe clusters O. Šipr 1, S. Bornemann 2, J. Minár 2, S. Polesya 2, H. Ebert 2 1 Institute of Physics, Academy of Sciences CR, Prague, Czech Republic 2 Universität

More information

Informa(on transfer in moving animal groups:

Informa(on transfer in moving animal groups: Informa(on transfer in moving animal groups: the case of turning flocks of starlings Asja Jelić Ins9tute for Complex Systems, CNR- ISC and Department of Physics, University of Rome 1 La Sapienza, Italy

More information

Black holes in Einstein s gravity and beyond

Black holes in Einstein s gravity and beyond Black holes in Einstein s gravity and beyond Andrei Starinets Rudolf Peierls Centre for Theore=cal Physics University of Oxford 20 September 2014 Outline Gravity and the metric Einstein s equa=ons Symmetry

More information

Numerical construction of Wannier functions

Numerical construction of Wannier functions July 12, 2017 Internship Tutor: A. Levitt School Tutor: É. Cancès 1/27 Introduction Context: Describe electrical properties of crystals (insulator, conductor, semi-conductor). Applications in electronics

More information

The Overhauser Instability

The Overhauser Instability The Overhauser Instability Zoltán Radnai and Richard Needs TCM Group ESDG Talk 14th February 2007 Typeset by FoilTEX Introduction Hartree-Fock theory and Homogeneous Electron Gas Noncollinear spins and

More information

Semiclassical spin coherent state method in the weak spin-orbit coupling limit

Semiclassical spin coherent state method in the weak spin-orbit coupling limit arxiv:nlin/847v1 [nlin.cd] 9 Aug Semiclassical spin coherent state method in the weak spin-orbit coupling limit Oleg Zaitsev Institut für Theoretische Physik, Universität Regensburg, D-934 Regensburg,

More information

Electronic structure calculations results from LDA+U method

Electronic structure calculations results from LDA+U method Electronic structure calculations results from LDA+U method Vladimir I. Anisimov Institute of Metal Physics Ekaterinburg, Russia LDA+U method applications Mott insulators Polarons and stripes in cuprates

More information

QCD Lagrangian. ψ qi. δ ij. ψ i L QCD. m q. = ψ qi. G α µν = µ G α ν ν G α µ gf αβγ G β µ G γ. G α t α f αβγ. g = 4πα s. (!

QCD Lagrangian. ψ qi. δ ij. ψ i L QCD. m q. = ψ qi. G α µν = µ G α ν ν G α µ gf αβγ G β µ G γ. G α t α f αβγ. g = 4πα s. (! QCD Lagrangian L QCD = ψ qi iγ µ! δ ij µ + ig G α µ t $ "# α %& ψ qj m q ψ qi ψ qi 1 4 G µν q ( ( ) ) ij L QED = ψ e iγ µ!" µ + iea µ # $ ψ e m e ψ e ψ e 1 4 F F µν µν α G α µν G α µν = µ G α ν ν G α µ

More information

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism

Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Double exchange in double perovskites: Ferromagnetism and Antiferromagnetism Prabuddha Sanyal University of Hyderabad with H. Das, T. Saha Dasgupta, P. Majumdar, S. Ray, D.D. Sarma H. Das, P. Sanyal, D.D.

More information

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Sangeeta Sharma 1,2, J. K. Dewhurst 3, C. Ambrosch-Draxl 4, S. Pittalis 2, S. Kurth 2, N. Helbig 2, S. Shallcross

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

Self-compensating incorporation of Mn in Ga 1 x Mn x As

Self-compensating incorporation of Mn in Ga 1 x Mn x As Self-compensating incorporation of Mn in Ga 1 x Mn x As arxiv:cond-mat/0201131v1 [cond-mat.mtrl-sci] 9 Jan 2002 J. Mašek and F. Máca Institute of Physics, Academy of Sciences of the CR CZ-182 21 Praha

More information

Low energy effec,ve theories for metals. Sung-Sik Lee McMaster University Perimeter Ins,tute

Low energy effec,ve theories for metals. Sung-Sik Lee McMaster University Perimeter Ins,tute Low energy effec,ve theories for metals Sung-Sik Lee McMaster University Perimeter Ins,tute Goal of many-body physics : to extract a small set of useful informa,on out of a large number of degrees of freedom

More information

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES N.M.Plakida Joint Institute for Nuclear Research, Dubna, Russia CORPES, Dresden, 26.05.2005 Publications and collaborators: N.M. Plakida,

More information

DFT in practice : Part II. Ersen Mete

DFT in practice : Part II. Ersen Mete pseudopotentials Department of Physics Balıkesir University, Balıkesir - Turkey August 13, 2009 - NanoDFT 09, İzmir Institute of Technology, İzmir Outline Pseudopotentials Basic Ideas Norm-conserving pseudopotentials

More information

Lecture 4 Quantum Electrodynamics (QED)

Lecture 4 Quantum Electrodynamics (QED) Lecture 4 Quantum Electrodynamics (QED) An introduc9on to the quantum field theory of the electromagne9c interac9on 22/1/10 Par9cle Physics Lecture 4 Steve Playfer 1 The Feynman Rules for QED Incoming

More information

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti Introduction to Quantum Mechanics PVK - Solutions Nicolas Lanzetti lnicolas@student.ethz.ch 1 Contents 1 The Wave Function and the Schrödinger Equation 3 1.1 Quick Checks......................................

More information

Coordinate and Momentum Representation. Commuting Observables and Simultaneous Measurements. January 30, 2012

Coordinate and Momentum Representation. Commuting Observables and Simultaneous Measurements. January 30, 2012 Coordinate and Momentum Representation. Commuting Observables and Simultaneous Measurements. January 30, 2012 1 Coordinate and Momentum Representations Let us consider an eigenvalue problem for a Hermitian

More information

Pressure dependence of Curie temperature and resistivity of complex Heusler alloys

Pressure dependence of Curie temperature and resistivity of complex Heusler alloys DPG Frühjahrstagung Berlin, 25. - 30. März 2012 Sektion Kondensierte Materie (SKM), 2012 p. 1 Pressure dependence of Curie temperature and resistivity of complex Heusler alloys Václav Drchal Institute

More information

Strong coupling constant. 12π ( 22 2n f ) ln Q 2 2. The spa1al separa1on between quarks goes as ! = " Q 2

Strong coupling constant. 12π ( 22 2n f ) ln Q 2 2. The spa1al separa1on between quarks goes as ! =  Q 2 Strong coupling constant In quantum field theory, the coupling constant is an effec1ve constant, which depends on four- momentum Q 2 transferred. For strong interac1ons, the Q 2 dependence is very strong

More information

Landau levels and SdH oscillations in monolayer transition metal dichalcogenide semiconductors

Landau levels and SdH oscillations in monolayer transition metal dichalcogenide semiconductors Landau levels and SdH oscillations in monolayer transition metal dichalcogenide semiconductors MTA-BME CONDENSED MATTER RESEARCH GROUP, BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS Collaborators: Andor

More information

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION

LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION LOCAL MOMENTS NEAR THE METAL-INSULATOR TRANSITION Subir Sachdev Center for Theoretical Physics, P.O. Box 6666 Yale University, New Haven, CT 06511 This paper reviews recent progress in understanding the

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Electronic Structure Calcula/ons: Density Func/onal Theory. and. Predic/ng Cataly/c Ac/vity

Electronic Structure Calcula/ons: Density Func/onal Theory. and. Predic/ng Cataly/c Ac/vity Electronic Structure Calcula/ons: Density Func/onal Theory and Predic/ng Cataly/c Ac/vity Review Examples of experiments that do not agree with classical physics: Photoelectric effect Photons and the quan/za/on

More information

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set Chapter 3 The (L)APW+lo Method 3.1 Choosing A Basis Set The Kohn-Sham equations (Eq. (2.17)) provide a formulation of how to practically find a solution to the Hohenberg-Kohn functional (Eq. (2.15)). Nevertheless

More information

The BCS Model. Sara Changizi. This presenta5on closely follows parts of chapter 6 in Ring & Schuck The nuclear many body problem.

The BCS Model. Sara Changizi. This presenta5on closely follows parts of chapter 6 in Ring & Schuck The nuclear many body problem. The BCS Model Sara Changizi This presenta5on closely follows parts of chapter 6 in Ring & Schuc The nuclear many body problem. Outline Introduc5on to pairing Essen5al experimental facts The BCS model Pure

More information

It is known that the chemical potential of lithium ion in the cathode material can be expressed as:

It is known that the chemical potential of lithium ion in the cathode material can be expressed as: Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supplementary material For Li/Li + /Li x M a X b cell with cathode material presenting

More information

introduction: what is spin-electronics?

introduction: what is spin-electronics? Spin-dependent transport in layered magnetic metals Patrick Bruno Max-Planck-Institut für Mikrostrukturphysik, Halle, Germany Summary: introduction: what is spin-electronics giant magnetoresistance (GMR)

More information

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4.

(relativistic effects kinetic energy & spin-orbit coupling) 3. Hyperfine structure: ) (spin-spin coupling of e & p + magnetic moments) 4. 4 Time-ind. Perturbation Theory II We said we solved the Hydrogen atom exactly, but we lied. There are a number of physical effects our solution of the Hamiltonian H = p /m e /r left out. We already said

More information

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES IIja TUREK Institute of Physics of Materials, Bmo Academy of Sciences

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

The Two Level Atom. E e. E g. { } + r. H A { e e # g g. cos"t{ e g + g e } " = q e r g

The Two Level Atom. E e. E g. { } + r. H A { e e # g g. cost{ e g + g e }  = q e r g E e = h" 0 The Two Level Atom h" e h" h" 0 E g = " h# 0 g H A = h" 0 { e e # g g } r " = q e r g { } + r $ E r cos"t{ e g + g e } The Two Level Atom E e = µ bb 0 h" h" " r B = B 0ˆ z r B = B " cos#t x

More information

Matrix models for the black hole informa4on paradox

Matrix models for the black hole informa4on paradox Matrix models for the black hole informa4on paradox Takuya Okuda, Perimeter Ins4tute Joint work with N. Iizuka and J. Polchinski o o Black hole informa4on paradox Hawking s paradox for evapora4ng black

More information

Theoretical Study of High Temperature Superconductivity

Theoretical Study of High Temperature Superconductivity Theoretical Study of High Temperature Superconductivity T. Yanagisawa 1, M. Miyazaki 2, K. Yamaji 1 1 National Institute of Advanced Industrial Science and Technology (AIST) 2 Hakodate National College

More information

1. Motivation 1. Motivation 1. Motivation L d R - V + 2. Bulk Transport E( k ) = 2 k 2 2m * ε µ) 2. Bulk Transport 2. Bulk Transport k d = -eeτ 3. Some basic concepts τ l m =vτ l ϕ λ = 2π/k 3. Some basic

More information

The Rigid Rotor Problem: A quantum par7cle confined to a sphere Spherical Harmonics. Reading: McIntyre 7.6

The Rigid Rotor Problem: A quantum par7cle confined to a sphere Spherical Harmonics. Reading: McIntyre 7.6 The Rigid Rotor Problem: A quantum par7cle confined to a sphere Spherical Harmonics Reading: McIntyre 7.6 Legendre s equa7on (m = 0) The series must be finite! If the series is not finite, the polynomial

More information

Lecture 4 Quantum mechanics in more than one-dimension

Lecture 4 Quantum mechanics in more than one-dimension Lecture 4 Quantum mechanics in more than one-dimension Background Previously, we have addressed quantum mechanics of 1d systems and explored bound and unbound (scattering) states. Although general concepts

More information

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination ICSM212, Istanbul, May 3, 212, Theoretical Magnetism I, 17:2 p. 1 EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration

More information

Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms

Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms Physics 221A Fall 1996 Notes 21 Hyperfine Structure in Hydrogen and Alkali Atoms Hyperfine effects in atomic physics are due to the interaction of the atomic electrons with the electric and magnetic multipole

More information

2.5 Time dependent density functional theory

2.5 Time dependent density functional theory .5 Time dependent density functional theory The main theorems of Kohn-Sham DFT state that: 1. Every observable is a functional of the density (Hohenger-Kohn theorem).. The density can be obtained within

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory Introduction to Electronic Structure Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology June 2002 Last Revised: June 2003 1 Introduction The purpose of these

More information

Probing proton-neutron pairing with Gamow-Teller strengths in twonucleon

Probing proton-neutron pairing with Gamow-Teller strengths in twonucleon Probing proton-neutron pairing with Gamow-Teller strengths in twonucleon configura8ons Yutaka Utsuno Advanced Science Research Center, Japan Atomic Energy Agency Center for Nuclear Study, University of

More information

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder

Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Ferromagnetism and Metal-Insulator Transition in Hubbard Model with Alloy Disorder Krzysztof Byczuk Institute of Physics, Augsburg University Institute of Theoretical Physics, Warsaw University October

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

QUANTUM FIELD THEORY IN CONDENSED MATTER PHYSICS. Wolfgang Belzig

QUANTUM FIELD THEORY IN CONDENSED MATTER PHYSICS. Wolfgang Belzig QUANTUM FIELD THEORY IN CONDENSED MATTER PHYSICS Wolfgang Belzig FORMAL MATTERS Wahlpflichtfach 4h lecture + 2h exercise Lecture: Mon & Thu, 10-12, P603 Tutorial: Mon, 14-16 (P912) or 16-18 (P712) 50%

More information

Electronic, magnetic and spectroscopic properties of free Fe clusters

Electronic, magnetic and spectroscopic properties of free Fe clusters Electronic, magnetic and spectroscopic properties of free Fe clusters O. Šipr 1, M. Košuth 2, J. Minár 2, S. Polesya 2 and H. Ebert 2 1 Institute of Physics, Academy of Sciences of the Czech Republic,

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Sivers Func,on in the Quasi- Classical Approxima,on

Sivers Func,on in the Quasi- Classical Approxima,on Sivers Func,on in the Quasi- Classical Approxima,on Yuri Kovchegov The Ohio State University (based on arxiv:1310.5028 [hep- ph] with MaP Sievert) Outline Preview/Summary STSA sign- flip in SIDIS vs DY:

More information

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation Electrochemistry project, Chemistry Department, November 2006 Ab-initio Molecular Dynamics Simulation Outline Introduction Ab-initio concepts Total energy concepts Adsorption energy calculation Project

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

Point defect interactions and structural stability of compounds.

Point defect interactions and structural stability of compounds. Point defect interactions and structural stability of compounds. VITALY BAYKOV Doctoral Thesis School of Industrial Engineering and Management Department of Material Science and Engineering Royal Institute

More information

(a) [15] Use perturbation theory to compute the eigenvalues and eigenvectors of H. Compute all terms up to fourth-order in Ω. The bare eigenstates are

(a) [15] Use perturbation theory to compute the eigenvalues and eigenvectors of H. Compute all terms up to fourth-order in Ω. The bare eigenstates are PHYS85 Quantum Mechanics II, Spring 00 HOMEWORK ASSIGNMENT 6: Solutions Topics covered: Time-independent perturbation theory.. [0 Two-Level System: Consider the system described by H = δs z + ΩS x, with

More information

One-Electron Hamiltonians

One-Electron Hamiltonians One-Electron Hamiltonians Hartree-Fock and Density Func7onal Theory Christopher J. Cramer @ChemProfCramer 2017 MSSC, July 10, 2017 REVIEW A One-Slide Summary of Quantum Mechanics Fundamental Postulate:

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Density Func,onal Theory (Chapter 6, Jensen)

Density Func,onal Theory (Chapter 6, Jensen) Chem 580: DFT Density Func,onal Theory (Chapter 6, Jensen) Hohenberg- Kohn Theorem (Phys. Rev., 136,B864 (1964)): For molecules with a non degenerate ground state, the ground state molecular energy and

More information

Ket space as a vector space over the complex numbers

Ket space as a vector space over the complex numbers Ket space as a vector space over the complex numbers kets ϕ> and complex numbers α with two operations Addition of two kets ϕ 1 >+ ϕ 2 > is also a ket ϕ 3 > Multiplication with complex numbers α ϕ 1 >

More information

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden H ψ = E ψ Introduction to Exact Diagonalization Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml laeuchli@comp-phys.org Simulations of

More information

The Gutzwiller Density Functional Theory

The Gutzwiller Density Functional Theory The Gutzwiller Density Functional Theory Jörg Bünemann, BTU Cottbus I) Introduction 1. Model for an H 2 -molecule 2. Transition metals and their compounds II) Gutzwiller variational theory 1. Gutzwiller

More information

Quantum Renormaliza/on Group: From QFT to Quantum Gravity. Sung- Sik Lee McMaster University Perimeter Ins/tute

Quantum Renormaliza/on Group: From QFT to Quantum Gravity. Sung- Sik Lee McMaster University Perimeter Ins/tute Quantum Renormaliza/on Group: From QFT to Quantum Gravity Sung- Sik Lee McMaster University Perimeter Ins/tute AdS/CFT correspondence [Maldacena] Non- trivial evidences for supersymmetric gauge theories

More information

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch

Electronic Structure Theory for Periodic Systems: The Concepts. Christian Ratsch Electronic Structure Theory for Periodic Systems: The Concepts Christian Ratsch Institute for Pure and Applied Mathematics and Department of Mathematics, UCLA Motivation There are 10 20 atoms in 1 mm 3

More information

Exact Muffin-tin Orbitals Method

Exact Muffin-tin Orbitals Method 2 Exact Muffin-tin Orbitals Method In order to reduce the very expensive computational effort of full-potential methods, often a compromise has been made between the accuracy and efficiency, and methods

More information

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2

Magnetic Materials. The inductor Φ B = LI (Q = CV) = L I = N Φ. Power = VI = LI. Energy = Power dt = LIdI = 1 LI 2 = 1 NΦ B capacitor CV 2 Magnetic Materials The inductor Φ B = LI (Q = CV) Φ B 1 B = L I E = (CGS) t t c t EdS = 1 ( BdS )= 1 Φ V EMF = N Φ B = L I t t c t B c t I V Φ B magnetic flux density V = L (recall I = C for the capacitor)

More information

Density Functional Theory

Density Functional Theory Density Functional Theory March 26, 2009 ? DENSITY FUNCTIONAL THEORY is a method to successfully describe the behavior of atomic and molecular systems and is used for instance for: structural prediction

More information

GG611 Structural Geology Sec1on Steve Martel POST 805

GG611 Structural Geology Sec1on Steve Martel POST 805 GG611 Structural Geology Sec1on Steve Martel POST 805 smartel@hawaii.edu Lecture 5 Mechanics Stress, Strain, and Rheology 11/6/16 GG611 1 Stresses Control How Rock Fractures hkp://hvo.wr.usgs.gov/kilauea/update/images.html

More information

Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden

Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University, Sweden Correlation between electronic structure, magnetism and physical properties of Fe-Cr alloys: ab initio modeling Igor A. Abrikosov Department of Physics, Chemistry, and Biology (IFM), Linköping University,

More information

An Introduc+on to X-ray Reflec+vity

An Introduc+on to X-ray Reflec+vity An Introduc+on to X-ray Reflec+vity Mark Schlossman UIC (presented at the APS Workshop 016) Measure molecular ordering in the direc+on perpendicular to the interface normal to the interface Typical Result

More information

References. Documentation Manuals Tutorials Publications

References.   Documentation Manuals Tutorials Publications References http://siesta.icmab.es Documentation Manuals Tutorials Publications Atomic units e = m e = =1 atomic mass unit = m e atomic length unit = 1 Bohr = 0.5292 Ang atomic energy unit = 1 Hartree =

More information

The octagon method for finding exceptional points, and application to hydrogen-like systems in parallel electric and magnetic fields

The octagon method for finding exceptional points, and application to hydrogen-like systems in parallel electric and magnetic fields Institute of Theoretical Physics, University of Stuttgart, in collaboration with M. Feldmaier, F. Schweiner, J. Main, and H. Cartarius The octagon method for finding exceptional points, and application

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

Introduc)on to linear algebra

Introduc)on to linear algebra Introduc)on to linear algebra Vector A vector, v, of dimension n is an n 1 rectangular array of elements v 1 v v = 2 " v n % vectors will be column vectors. They may also be row vectors, when transposed

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

The par/cle-hole picture

The par/cle-hole picture Nuclear pairing The par/cle-hole picture The lowest state ground state- of a system A A of N=A fermions with an energy E 0 = ε i i=1 i=1 Fermi level: the highest occupied state with energy ε A The expecta/on

More information

Time Independent Perturbation Theory Contd.

Time Independent Perturbation Theory Contd. Time Independent Perturbation Theory Contd. A summary of the machinery for the Perturbation theory: H = H o + H p ; H 0 n >= E n n >; H Ψ n >= E n Ψ n > E n = E n + E n ; E n = < n H p n > + < m H p n

More information

Homogeneous Electric and Magnetic Fields in Periodic Systems

Homogeneous Electric and Magnetic Fields in Periodic Systems Electric and Magnetic Fields in Periodic Systems Josef W. idepartment of Chemistry and Institute for Research in Materials Dalhousie University Halifax, Nova Scotia June 2012 1/24 Acknowledgments NSERC,

More information