A Green Function Method for Large Scale Electronic Structure Calculations. Rudolf Zeller

Size: px
Start display at page:

Download "A Green Function Method for Large Scale Electronic Structure Calculations. Rudolf Zeller"

Transcription

1 A Green Function Method for Large Scale Electronic Structure Calculations Rudolf Zeller Institute for Advanced Simulation, Forschungszentrum Jülich Electronic structure calculations (density functional theory) Large scale systems (up to atoms) Green function (the classical one): George Green Our methodology and experience with more than processors

2 Electronic structure calculations Born-Oppenheimer approximation (fixed nuclei) Ĥ = N 2 i + i ĤΨ = EΨ N i<j e 2 r i r j 1 + many electron Schrödinger equation N N v ext (r i ) i Density functional theory Hohenberg-Kohn theorem: all properties are determined by density n(r) v ext (r) Ψ n(r) v ext (r). ground-state energy E 0 = min n E[n(r)]

3 Auxiliary Kohn-Sham system no interaction e 2 = 0 identical density provided by another potential v eff (r) single-particle equations [ ] 2 r + v eff(r) Ψ i (r) = E i Ψ i (r) Publications / Year DFT Publications n(r) = i Ψ i (r) Year from

4 Large scale systems Ge growth on Si biological molecules Gillan et al., CPC 2007 (CONQUEST) Ozaki, PRB 2006 (OPENMX)

5 Large scale systems JUGENE Jaguar XT5

6 Solution methods [ 2 r + V eff(r) E i ]Ψ i (r) = 0 basis function methods Ψ i (r) = c ν ϕ ν (r) ν orthonormality drϕ ν (r)ϕ ν (r) = δ ν,ν algebraic eigenvalue problem [H ν,ν Eδ ν,ν ] c ν = 0 ν about 80 to 2000 basis functions ϕ ν (r) per atom for instance, for atoms: matrix dimension to

7 Instead of use Green function method ν [H ν,ν E] c ν = 0 ν [H ν,ν E] G ν,ν (E) = δ ν,ν no eigenvalue solver, but linear equations solver required n(r) = 2 EF π Im de ϕ ν (r)g ν,ν(e)ϕ ν (r) why Green function matrix? seems to be much more work immediate difficulty: structure of integrand ν Density of states (1/eV) Cu Energy (ev)

8 Complex energy integration iγ z = E + iγ E F E n(r) = 2 π Im i w i G ( r, r, E i ) Solid State Comm. 44, 993, (1982)

9 Answer: none is necessary Question: which choice of basis set? Instead of [ 2 r + v eff(r) E i ]Ψ i (r) = 0 use [ ] 2 r + v eff(r) E G(r, r, E) = δ(r r ) immediate difficulty: G(r, r, E) is function of seven variables very strong structure introduced by δ function

10 Concept of reference systems instead of differential equation use integral equation G(r, r, E) = G r (r, r, E) + G r (r, r, E) [v eff (r ) v r (r )] G(r, r, E)dr with known Green function G r of a suitably chosen reference system free space reference system with potential v r (r) = 0 Green function is known analytically repulsive muffin-tin reference system Green function can be calculated easily with high precision

11 Green function of a complicated system G = G r + G r [V V r ]G by successive calculation of Green functions of simpler systems 1. free space ideal crystal 2. ideal crystal crystal with surface 3. crystal with surface adsorbate atoms Advantages 1. the region, where the potential changes, is exactly embedded in a simpler system 2. integral equation is restricted in space to the region, where the potential changes 3. all interactions, e.g., between adsorbed clusters and the substrate are included

12 Example: vicinal surface with nanowires x 1. Green function of free space 2. periodic bulk system (three-dimensional periodicity) 3. two-dimensional perturbation (empty layers)

13 Further examples one-dimensional perturbation zero-dimensional perturbation

14 Multiple scattering theory based on free space Green function G 0 (r, r, E) = 1 and on Gegenbauer s addition theorem 1875 e i E r r 4π r r. Lord Rayleigh 1892 Korringa 1947 Kohn and Rostoker 1954 KKR Green function version (developed in Jülich since 1978 with Dederichs and many other)

15 KKR Green function method G(r + R n, r + R n ) = δ nn G n s (r, r ) + R n L (r)gnn LL R n L (r ) LL divide space into cells n solve single-cell problems G n s (r, r ) = G 0 (r, r ) + R n L (r) = J L(r) + use matrix equation G nn LL n n = G r,nn LL + t n LL = n G 0 (r, r )V (r )G n s (r, r )dr G 0 (r, r )V (r )R n L (r )dr G r,nn LL n L L t n L L G n n L L R r,n L (r) V (r)rn L (r)dr x single-cell problems can be solved in parallel with O(N) work matrix equation is independent of the radial resolution used angular variation leads to L, L indices, usually 16 or 25 enough

16 Accuracy in comparison with FLAPW results lattice constant [a.u.] Al Fe Ni Cu Rh Pd Ag FPKKR FLAPW bulk modulus [Mbar] Al Fe Ni Cu Rh Pd Ag FPKKR FLAPW from Asato et al., PRB 60, 5202 (1999)

17 Forces and relaxations Displacement of first NN (%) comparison with experiment EXAFS Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge displacement of nearest Cu neighbour atoms around impurities comparison with ab-initio plane-wave results Si 7.2 (7.5)% Si In 14.1 (13.4)% D In Sb Si Si 0.8 (1.1) % 8.3 (8.2)% 1.0 (1.3)% Si In 1.8 (0.6)% 2.6 (2.8)% Si In 4.8 (4.5)% 6.5 (7.0)% P As 6.1 (5.7)% Si 5.3 (5.1)% 6.7 (6.5)% indium-donor complexes in Si Si

18 Large scale density functional calculations conventional techniques are limited to about several hundred atoms bottleneck: computational effort scales cubically with system size x principles of linear scaling methods (some exist now) reduce effort by tolerating small loss of precision exploit locality of potential and quasi-locality of 2 r by using local basis sets sparse matrices use iterative methods to benefit from sparse matrices nearsightedness of electronic matter (Prodan and Kohn, PNAS 2005) negligible effects of potential changes far away

19 . Linear strategy in KKR Green function method. use repulsive reference system exponentially decaying matrix elements neglect small matrix elements aiming at 1 mev error for total energy ṣimple iterations G (i+1) = G r + G r tg (i) do not work but QMR iterations (Freund and Nachtigal) work very well important gain by iteration: O(N 2 ) computational effort, O(N) storage easy parallelization over the atoms and L components works for insulating, semiconducting, metallic materials

20 How many iterations are needed? depends on size and chosen temperature T 5000 Number of iterations Pd 400 K 800 K 1600 K Number of atoms. curves fitted to n it = n it n(r) = 1 π Im αe γn 1/3 f(e, T )G(r, r, E)dE f(e, T ) = Fermi-Dirac function

21 KKRnano x our newly developed code (with Alexander Thiess, GRS, FZJ) why KKRnano? nanosystems contain many atoms (8000 in a cube of 6 nm length) accuracy (in mev) scaling behaviour. present applications x MgO: 1-10 % N, C J ij T c GaN:Gd with 1-5 % interstitial N, O (LDA+U) T c

22 How to use more processors than atoms? KKRnano uses four levels of parallelization with MPI groups and communicators and point-to-point and collective messages. parallelization over atoms (is efficient) parallelization over two spin directions (is trivial and efficient) parallelization over energy points (2 or 3 panels dynamically load balanced) parallelization over L components (until now only in matrix equation) optionally MPI or OPENMP speedup test system: NiPd number of processors

23 How to achieve linear scaling n truncate: G nn LL = 0 for R n R n > r cut G decays like the density matrix truncation leads to O(1) storage truncation leads to O(N) computing time processors ( ACC. A RC A CR A RR x use X (i+1) C ) ( X (i) C 0 = A CC X (i) C ) = ( A CC X (i) C A CR X (i) R and X(i+1) R = 0 ) time per iteration (s) Ni x Pd 1-x x=3% number of atoms

24 Truncation error for total energy 6 Cu 2 Pd Total energy error (mev) K 800 K 1600 K Total energy error (mev) K 800 K 1600 K Number of atoms Number of atoms computational details: model systems supercell with identical atoms in fcc geometry energy without truncation error was obtained for a small cubic cell with 5984 k points this corresponds to one special point k = 2π a (1 4, 1 4, 1 ) in the large supercell 4

25 KKRnano for a realistic system 4e+06 error in total energy per atom [mev] Mg 500 O 475 N 25 energy error per atom number of atoms in truncation zone total number of iterations 3e+06 2e+06 1e+06 0 energy error per atom Mg 500 O 475 N number of atoms in truncation zone for large truncation region (local interaction zone) concepts in KKRnano are similar to LSMS code (Oak Ridge)

26 How to improve the efficiency? preconditioning instead of (1 G r t)g = G r solve P (1 G r t)g = P G r if P (1 G r t) 1 fewer iterations required good initialization use results of previous self-consistency step. problems traditional preconditioners like incomplete LU are difficult to parallelize if many iterations are needed, good initialization is difficult

27 Multilevel block-circulant preconditioner developed together with Alexander Thiess (Jülich) Matthias Bolten (Wuppertal) and Irad Yavneh (Haifa) nz = structure of matrix eigenvalues of P (1 G r t).

28 Initialization with previous self-consistency step

29 Summary. 1. Accuracy of the KKR-GF method in general and for O(N) calculations 2. Key concepts for linear-scaling DFT calculations: sparse Hamiltonians (matrices) iterative solutions nearsightedness of electronic matter 3. Implementation in KKR Green function method by: repulsive reference system complex energy integration and QMR method local truncation of the Green function 4. Our code KKRnano for arbitrarily shaped supercells with thousands of atoms runs efficiently with many thousand processors 5. All electrons are treated, linear scaling effort possible also for metals 6. Fully relativistic extension (Dirac equation) is planned

Computational Nanoscience: Do It Yourself!

Computational Nanoscience: Do It Yourself! John von Neumann Institute for Computing (NIC) Computational Nanoscience: Do It Yourself! edited by Johannes Grotendorst Stefan Blugel Dominik Marx Winter School, 14-22 February 2006 Forschungszentrum

More information

Density Functional Theory. Martin Lüders Daresbury Laboratory

Density Functional Theory. Martin Lüders Daresbury Laboratory Density Functional Theory Martin Lüders Daresbury Laboratory Ab initio Calculations Hamiltonian: (without external fields, non-relativistic) impossible to solve exactly!! Electrons Nuclei Electron-Nuclei

More information

Electrons in Crystals. Chris J. Pickard

Electrons in Crystals. Chris J. Pickard Electrons in Crystals Chris J. Pickard Electrons in Crystals The electrons in a crystal experience a potential with the periodicity of the Bravais lattice: U(r + R) = U(r) The scale of the periodicity

More information

arxiv: v1 [physics.comp-ph] 16 Nov 2018

arxiv: v1 [physics.comp-ph] 16 Nov 2018 arxiv:1811.06788v1 [physics.comp-ph] 16 Nov 2018 Precise Kohn-Sham total-energy calculations at reduced cost Rudolf Zeller Institute for Advanced Simulation Forschungszentrum Jülich GmbH and JARA D-52425

More information

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set

Chapter 3. The (L)APW+lo Method. 3.1 Choosing A Basis Set Chapter 3 The (L)APW+lo Method 3.1 Choosing A Basis Set The Kohn-Sham equations (Eq. (2.17)) provide a formulation of how to practically find a solution to the Hohenberg-Kohn functional (Eq. (2.15)). Nevertheless

More information

The Linearized Augmented Planewave (LAPW) Method

The Linearized Augmented Planewave (LAPW) Method The Linearized Augmented Planewave (LAPW) Method David J. Singh Oak Ridge National Laboratory E T [ ]=T s [ ]+E ei [ ]+E H [ ]+E xc [ ]+E ii {T s +V ks [,r]} I (r)= i i (r) Need tools that are reliable

More information

Electronic structure of solids: basic concepts and methods

Electronic structure of solids: basic concepts and methods Electronic structure of solids: basic concepts and methods Ondřej Šipr II. NEVF 514 Surface Physics Winter Term 2016-2017 Troja, 21st October 2016 Outline A bit of formal mathematics for the beginning

More information

Green s Function O(N) DFT Methods (Use and Accuracy for Materials Science Problems)

Green s Function O(N) DFT Methods (Use and Accuracy for Materials Science Problems) April 1-4, 2002 Insitute for Pure and Applied Math (IPAM), UCLA Linear Scaling Electronic-Structure Methods Green s Function O(N) DFT Methods (Use and Accuracy for Materials Science Problems) Duane D.

More information

Teoría del Funcional de la Densidad (Density Functional Theory)

Teoría del Funcional de la Densidad (Density Functional Theory) Teoría del Funcional de la Densidad (Density Functional Theory) Motivation: limitations of the standard approach based on the wave function. The electronic density n(r) as the key variable: Functionals

More information

Magnetism of 3d, 4d, and 5d transition-metal impurities on Pd 001 and Pt 001 surfaces

Magnetism of 3d, 4d, and 5d transition-metal impurities on Pd 001 and Pt 001 surfaces PHYSICAL REVIEW B VOLUME 53, NUMBER 4 15 JANUARY 1996-II Magnetism of 3d, 4d, and 5d transition-metal impurities on Pd 001 and Pt 001 surfaces V. S. Stepanyuk Max-Planck-Institut für Mikrostrukturphysik,

More information

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić

Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Introduction to Density Functional Theory with Applications to Graphene Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, U.S.A. http://wiki.physics.udel.edu/phys824

More information

Multi-Scale Modeling from First Principles

Multi-Scale Modeling from First Principles m mm Multi-Scale Modeling from First Principles μm nm m mm μm nm space space Predictive modeling and simulations must address all time and Continuum Equations, densityfunctional space scales Rate Equations

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:15-12:45 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Plan of the Lecture: DFT1+2: Hohenberg-Kohn Theorem and Kohn and Sham equations.

More information

First-principles calculations for vacancy formation energies in Cu and Al; non-local e ect beyond the LSDA and lattice distortion

First-principles calculations for vacancy formation energies in Cu and Al; non-local e ect beyond the LSDA and lattice distortion Computational Materials Science 14 (1999) 56±61 First-principles calculations for vacancy formation energies in Cu and Al; non-local e ect beyond the LSDA and lattice distortion T. Hoshino a, *, N. Papanikolaou

More information

Integrating the QMR Method with First Principles Material Science A4pplicationCode*

Integrating the QMR Method with First Principles Material Science A4pplicationCode* - The s u b n m d -1 has been nutbed by a muactor of the U.S. GoMmment uda conwacr No. DEAC05-84oR21400. A*, the U.S. Govamvlnr rerawn a nau*dus(ve. r o w - f r e e Lcauu, IO pub&sh a r e p d u x the publshed

More information

All electron optimized effective potential method for solids

All electron optimized effective potential method for solids All electron optimized effective potential method for solids Institut für Theoretische Physik Freie Universität Berlin, Germany and Fritz Haber Institute of the Max Planck Society, Berlin, Germany. 22

More information

Microscopical and Microanalytical Methods (NANO3)

Microscopical and Microanalytical Methods (NANO3) Microscopical and Microanalytical Methods (NANO3) 06.11.15 10:15-12:00 Introduction - SPM methods 13.11.15 10:15-12:00 STM 20.11.15 10:15-12:00 STS Erik Zupanič erik.zupanic@ijs.si stm.ijs.si 27.11.15

More information

Variational Method for Calculating Electronic Structure in Periodic Lattices

Variational Method for Calculating Electronic Structure in Periodic Lattices Variational Method for Calculating Electronic Structure in Periodic Lattices Zhenbin Wang, PID: A53083720 December 5, 2017 Abstract Walter Kohn was awarded the Buckley Prize in 1961 for his seminal contributions

More information

7 SCIENTIFIC HIGHLIGHT OF THE MONTH: Recent Developments in KKR Theory

7 SCIENTIFIC HIGHLIGHT OF THE MONTH: Recent Developments in KKR Theory 7 SCIENTIFIC HIGHLIGHT OF THE MONTH: Recent Developments in KKR Theory Recent Developments in KKR Theory H. Ebert, S. Bornemann, J. Braun, D. Ködderitzsch, S. Lowitzer, S. Mankovskyy, J. Minár, M. Offenberger,

More information

From Quantum Mechanics to Materials Design

From Quantum Mechanics to Materials Design The Basics of Density Functional Theory Volker Eyert Center for Electronic Correlations and Magnetism Institute of Physics, University of Augsburg December 03, 2010 Outline Formalism 1 Formalism Definitions

More information

It is known that the chemical potential of lithium ion in the cathode material can be expressed as:

It is known that the chemical potential of lithium ion in the cathode material can be expressed as: Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 Supplementary material For Li/Li + /Li x M a X b cell with cathode material presenting

More information

Electronic, magnetic and spectroscopic properties of free Fe clusters

Electronic, magnetic and spectroscopic properties of free Fe clusters Electronic, magnetic and spectroscopic properties of free Fe clusters O. Šipr 1, M. Košuth 2, J. Minár 2, S. Polesya 2 and H. Ebert 2 1 Institute of Physics, Academy of Sciences of the Czech Republic,

More information

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES

ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES ELECTRONIC STRUCTURE OF DISORDERED ALLOYS, SURFACES AND INTERFACES llja TUREK Institute of Physics of Materials, Brno Academy of Sciences of the Czech Republic Vaclav DRCHAL, Josef KUDRNOVSKY Institute

More information

Improving the performance of applied science numerical simulations: an application to Density Functional Theory

Improving the performance of applied science numerical simulations: an application to Density Functional Theory Improving the performance of applied science numerical simulations: an application to Density Functional Theory Edoardo Di Napoli Jülich Supercomputing Center - Institute for Advanced Simulation Forschungszentrum

More information

Chemisorption VIII. NEVF 514 Surface Physics. Winter Term Troja, 16th December 2016

Chemisorption VIII. NEVF 514 Surface Physics. Winter Term Troja, 16th December 2016 Chemisorption František Máca VIII. NEVF 514 Surface Physics Winter Term 2016-2017 Troja, 16th December 2016 Chemisorption The knowledge of chemisorption phenomena requires the determination of the geometrical

More information

Southeast University, Nanjing, China 2 Department of Applied Physics, Aalto University,

Southeast University, Nanjing, China 2 Department of Applied Physics, Aalto University, Supplementary Information to Solubility of Boron, Carbon and Nitrogen in Transition Metals: Getting Insight into Trends from First-Principles Calculations Xiaohui Hu, 1,2 Torbjörn Björkman 2,3, Harri Lipsanen

More information

Large Scale Electronic Structure Calculations

Large Scale Electronic Structure Calculations Large Scale Electronic Structure Calculations Jürg Hutter University of Zurich 8. September, 2008 / Speedup08 CP2K Program System GNU General Public License Community Developers Platform on "Berlios" (cp2k.berlios.de)

More information

CHAPTER 6. ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS

CHAPTER 6. ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS 143 CHAPTER 6 ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS 6.1 INTRODUCTION Almost the complete search for possible magnetic materials has been performed utilizing

More information

Effect of spin-orbit scattering on transport properties of low-dimensional dilute alloys

Effect of spin-orbit scattering on transport properties of low-dimensional dilute alloys Effect of spin-orbit scattering on transport properties of low-dimensional dilute alloys Der Fakultät für Mathematik, Informatik und Naturwissenscha en der RWTH Aachen University vorgelegte Dissertation

More information

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG

The end is (not) in sight: exact diagonalization, Lanczos, and DMRG The end is (not) in sight: exact diagonalization, Lanczos, and DMRG Jürgen Schnack, Matthias Exler, Peter Hage, Frank Hesmer Department of Physics - University of Osnabrück http://www.physik.uni-osnabrueck.de/makrosysteme/

More information

Electronic Structure Methodology 1

Electronic Structure Methodology 1 Electronic Structure Methodology 1 Chris J. Pickard Lecture Two Working with Density Functional Theory In the last lecture we learnt how to write the total energy as a functional of the density n(r): E

More information

Density Functional Theory for Electrons in Materials

Density Functional Theory for Electrons in Materials Density Functional Theory for Electrons in Materials Richard M. Martin Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign 1 Density Functional Theory for

More information

Lecture. Ref. Ihn Ch. 3, Yu&Cardona Ch. 2

Lecture. Ref. Ihn Ch. 3, Yu&Cardona Ch. 2 Lecture Review of quantum mechanics, statistical physics, and solid state Band structure of materials Semiconductor band structure Semiconductor nanostructures Ref. Ihn Ch. 3, Yu&Cardona Ch. 2 Reminder

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory Introduction to Density Functional Theory S. Sharma Institut für Physik Karl-Franzens-Universität Graz, Austria 19th October 2005 Synopsis Motivation 1 Motivation : where can one use DFT 2 : 1 Elementary

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

MANY ELECTRON ATOMS Chapter 15

MANY ELECTRON ATOMS Chapter 15 MANY ELECTRON ATOMS Chapter 15 Electron-Electron Repulsions (15.5-15.9) The hydrogen atom Schrödinger equation is exactly solvable yielding the wavefunctions and orbitals of chemistry. Howev er, the Schrödinger

More information

Basics of density-functional theory and fast guide to actual calculations Matthias Scheffler

Basics of density-functional theory and fast guide to actual calculations Matthias Scheffler Basics of density-functional theory and fast guide to actual calculations Matthias Scheffler http://www.fhi-berlin.mpg.de/th/th.html I. From the many-particle problem to the Kohn-Sham functional II. From

More information

Key concepts in Density Functional Theory (I) Silvana Botti

Key concepts in Density Functional Theory (I) Silvana Botti From the many body problem to the Kohn-Sham scheme European Theoretical Spectroscopy Facility (ETSF) CNRS - Laboratoire des Solides Irradiés Ecole Polytechnique, Palaiseau - France Temporary Address: Centre

More information

Atomic orbitals of finite range as basis sets. Javier Junquera

Atomic orbitals of finite range as basis sets. Javier Junquera Atomic orbitals of finite range as basis sets Javier Junquera Most important reference followed in this lecture in previous chapters: the many body problem reduced to a problem of independent particles

More information

Supplementary Information: Exact double-counting in combining the Dynamical Mean Field Theory and the Density Functional Theory

Supplementary Information: Exact double-counting in combining the Dynamical Mean Field Theory and the Density Functional Theory Supplementary Information: Exact double-counting in combining the Dynamical Mean Field Theory and the Density Functional Theory PACS numbers: THE CORRELATION ENERGY FIT The correlation energy of the electron

More information

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58.

Speed of light c = m/s. x n e a x d x = 1. 2 n+1 a n π a. He Li Ne Na Ar K Ni 58. Physical Chemistry II Test Name: KEY CHEM 464 Spring 18 Chapters 7-11 Average = 1. / 16 6 questions worth a total of 16 points Planck's constant h = 6.63 1-34 J s Speed of light c = 3. 1 8 m/s ħ = h π

More information

Introduction to Density Functional Theory

Introduction to Density Functional Theory 1 Introduction to Density Functional Theory 21 February 2011; V172 P.Ravindran, FME-course on Ab initio Modelling of solar cell Materials 21 February 2011 Introduction to DFT 2 3 4 Ab initio Computational

More information

PART 1 Introduction to Theory of Solids

PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:1 Trim:165 240MM TS: Integra, India PART 1 Introduction to Theory of Solids Elsevier UK Job code: MIOC Ch01-I044647 9-3-2007 3:03p.m. Page:2

More information

Many electrons: Density functional theory Part II. Bedřich Velický VI.

Many electrons: Density functional theory Part II. Bedřich Velický VI. Many electrons: Density functional theory Part II. Bedřich Velický velicky@karlov.mff.cuni.cz VI. NEVF 514 Surface Physics Winter Term 013-014 Troja 1 st November 013 This class is the second devoted to

More information

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer

Magnetism in low dimensions from first principles. Atomic magnetism. Gustav Bihlmayer. Gustav Bihlmayer IFF 10 p. 1 Magnetism in low dimensions from first principles Atomic magnetism Gustav Bihlmayer Institut für Festkörperforschung, Quantum Theory of Materials Gustav Bihlmayer Institut für Festkörperforschung

More information

Density Functional Theory Studies for Transition Metals: Small (Fe,Co)-clusters in fcc Ag, and the Spin Density Wave in bcc Chromium.

Density Functional Theory Studies for Transition Metals: Small (Fe,Co)-clusters in fcc Ag, and the Spin Density Wave in bcc Chromium. Density Functional Theory Studies for Transition Metals: Small (Fe,Co)-clusters in fcc Ag, and the Spin Density Wave in bcc Chromium. Promotor: Prof. Dr. S. Cottenier Proefschrift ingediend tot het behalen

More information

Correlation Effects in Real Material

Correlation Effects in Real Material . p.1/55 Correlation Effects in Real Material Tanusri Saha-Dasgupta S.N. Bose National Centre for Basic Sciences Salt Lake, Calcutta, INDIA tanusri@bose.res.in . p.2/55 Outline Introduction: why strong

More information

PBS: FROM SOLIDS TO CLUSTERS

PBS: FROM SOLIDS TO CLUSTERS PBS: FROM SOLIDS TO CLUSTERS E. HOFFMANN AND P. ENTEL Theoretische Tieftemperaturphysik Gerhard-Mercator-Universität Duisburg, Lotharstraße 1 47048 Duisburg, Germany Semiconducting nanocrystallites like

More information

7 SCIENTIFIC HIGHLIGHT OF THE MONTH: "Short-range correlations in disordered systems: the Non-local Coherent-Potential Approximation"

7 SCIENTIFIC HIGHLIGHT OF THE MONTH: Short-range correlations in disordered systems: the Non-local Coherent-Potential Approximation 7 SCIENTIFIC HIGHLIGHT OF THE MONTH: "Short-range correlations in disordered systems: the Non-local Coherent-Potential Approximation" Short-range correlations in disordered systems: the nonlocal coherent-potential

More information

Classification of Solids, Fermi Level and Conductivity in Metals Dr. Anurag Srivastava

Classification of Solids, Fermi Level and Conductivity in Metals Dr. Anurag Srivastava Classification of Solids, Fermi Level and Conductivity in Metals Dr. Anurag Srivastava Web address: http://tiiciiitm.com/profanurag Email: profanurag@gmail.com Visit me: Room-110, Block-E, IIITM Campus

More information

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination

EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination ICSM212, Istanbul, May 3, 212, Theoretical Magnetism I, 17:2 p. 1 EFFECTIVE MAGNETIC HAMILTONIANS: ab initio determination Václav Drchal Institute of Physics ASCR, Praha, Czech Republic in collaboration

More information

Lecture 6 - Bonding in Crystals

Lecture 6 - Bonding in Crystals Lecture 6 onding in Crystals inding in Crystals (Kittel Ch. 3) inding of atoms to form crystals A crystal is a repeated array of atoms Why do they form? What are characteristic bonding mechanisms? How

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

file://c:\documents and Settings\lhebditc\Desktop\EAC-116.htm

file://c:\documents and Settings\lhebditc\Desktop\EAC-116.htm Page 1 of 40-1- B3.2 Quantum structural methods for the solid state and surfaces Frank Starrost and Emily A Carter B3.2.1 INTRODUCTION We are entering an era when condensed matter chemistry and physics

More information

The Munich SPRKKR-program package A spin polarised relativistic Korringa-Kohn-Rostoker code for calculating solid state properties

The Munich SPRKKR-program package A spin polarised relativistic Korringa-Kohn-Rostoker code for calculating solid state properties The Munich SPRKKR-program package A spin polarised relativistic Korringa-Kohn-Rostoker code for calculating solid state properties Ján Minár H. Ebert, M. Battocletti, D. Benea, S. Bornemann, J. Braun,

More information

DFT calculations of NMR indirect spin spin coupling constants

DFT calculations of NMR indirect spin spin coupling constants DFT calculations of NMR indirect spin spin coupling constants Dalton program system Program capabilities Density functional theory Kohn Sham theory LDA, GGA and hybrid theories Indirect NMR spin spin coupling

More information

Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems

Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems Mitglied der Helmholtz-Gemeinschaft Block Iterative Eigensolvers for Sequences of Dense Correlated Eigenvalue Problems Birkbeck University, London, June the 29th 2012 Edoardo Di Napoli Motivation and Goals

More information

Density Functional Theory (DFT)

Density Functional Theory (DFT) Density Functional Theory (DFT) An Introduction by A.I. Al-Sharif Irbid, Aug, 2 nd, 2009 Density Functional Theory Revolutionized our approach to the electronic structure of atoms, molecules and solid

More information

Ab initio calculation of the transmission coefficients from a superlattice electronic structure

Ab initio calculation of the transmission coefficients from a superlattice electronic structure PHYSICA REVIEW B, VOUME 63, 195403 Ab initio calculation of the transmission coefficients from a superlattice electronic structure Ingmar Riedel, Peter Zahn, and Ingrid Mertig Institut für Theoretische

More information

Density-functional theory of superconductivity

Density-functional theory of superconductivity Density-functional theory of superconductivity E. K. U. Gross MPI for Microstructure Physics Halle http://users.physi.fu-berlin.de/~ag-gross CO-WORKERS: HALLE A. Sanna C. Bersier A. Linscheid H. Glawe

More information

ab initio Electronic Structure Calculations

ab initio Electronic Structure Calculations ab initio Electronic Structure Calculations New scalability frontiers using the BG/L Supercomputer C. Bekas, A. Curioni and W. Andreoni IBM, Zurich Research Laboratory Rueschlikon 8803, Switzerland ab

More information

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2.

Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2. Quantum Monte Carlo Simulations of a Single Iron Impurity in MgO Kevin Driver 1 Shuai Zhang 1 Burkhard Militzer 1 R. E. Cohen 2 1 Department of Earth & Planetary Science University of California, Berkeley

More information

ELEMENTARY DIFFUSION PROCESSES IN AL-CU-ZN ALLOYS: AN AB INITIO STUDY

ELEMENTARY DIFFUSION PROCESSES IN AL-CU-ZN ALLOYS: AN AB INITIO STUDY ELEMENTARY DIFFUSION PROCESSES IN AL-CU-ZN ALLOYS: AN AB INITIO STUDY S. GRABOWSKI AND P. ENTEL Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universität Duisburg, 47048 Duisburg, Germany E-mail:

More information

Ch. 2: Energy Bands And Charge Carriers In Semiconductors

Ch. 2: Energy Bands And Charge Carriers In Semiconductors Ch. 2: Energy Bands And Charge Carriers In Semiconductors Discrete energy levels arise from balance of attraction force between electrons and nucleus and repulsion force between electrons each electron

More information

Potentials, periodicity

Potentials, periodicity Potentials, periodicity Lecture 2 1/23/18 1 Survey responses 2 Topic requests DFT (10), Molecular dynamics (7), Monte Carlo (5) Machine Learning (4), High-throughput, Databases (4) NEB, phonons, Non-equilibrium

More information

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics

Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Optimized Effective Potential method for non-collinear Spin-DFT: view to spin-dynamics Sangeeta Sharma 1,2, J. K. Dewhurst 3, C. Ambrosch-Draxl 4, S. Pittalis 2, S. Kurth 2, N. Helbig 2, S. Shallcross

More information

Temperature-dependence of magnetism of free Fe clusters

Temperature-dependence of magnetism of free Fe clusters Temperature-dependence of magnetism of free Fe clusters O. Šipr 1, S. Bornemann 2, J. Minár 2, S. Polesya 2, H. Ebert 2 1 Institute of Physics, Academy of Sciences CR, Prague, Czech Republic 2 Universität

More information

Theory, Interpretation and Applications of X-ray Spectra*

Theory, Interpretation and Applications of X-ray Spectra* REU Seminar University of Washington 27 July, 2015 Theory, Interpretation and Applications of X-ray Spectra* J. J. Rehr et al. A theoretical horror story Starring Fernando Vila & Anatoly Frenkel with J.

More information

Unique phenomena of tungsten associated with fusion reactor: uncertainties of stable hydrogen configuration tapped in tungsten vacancy

Unique phenomena of tungsten associated with fusion reactor: uncertainties of stable hydrogen configuration tapped in tungsten vacancy Unique phenomena of tungsten associated with fusion reactor: uncertainties of stable hydrogen configuration tapped in tungsten vacancy Kyushu University Kazuhito Ohsawa Technical Meeting of the International

More information

Nuclear structure Anatoli Afanasjev Mississippi State University

Nuclear structure Anatoli Afanasjev Mississippi State University Nuclear structure Anatoli Afanasjev Mississippi State University 1. Nuclear theory selection of starting point 2. What can be done exactly (ab-initio calculations) and why we cannot do that systematically?

More information

Ab initio study of Mn doped BN nanosheets Tudor Luca Mitran

Ab initio study of Mn doped BN nanosheets Tudor Luca Mitran Ab initio study of Mn doped BN nanosheets Tudor Luca Mitran MDEO Research Center University of Bucharest, Faculty of Physics, Bucharest-Magurele, Romania Oldenburg 20.04.2012 Table of contents 1. Density

More information

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation

Electrochemistry project, Chemistry Department, November Ab-initio Molecular Dynamics Simulation Electrochemistry project, Chemistry Department, November 2006 Ab-initio Molecular Dynamics Simulation Outline Introduction Ab-initio concepts Total energy concepts Adsorption energy calculation Project

More information

7. FREE ELECTRON THEORY.

7. FREE ELECTRON THEORY. 7. FREE ELECTRON THEORY. Aim: To introduce the free electron model for the physical properties of metals. It is the simplest theory for these materials, but still gives a very good description of many

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

Ab initio tight-binding LMTO method for nonequilibrium electron transport in nanosystems

Ab initio tight-binding LMTO method for nonequilibrium electron transport in nanosystems PHYSICA REVIEW B 71, 195422 2005 Ab initio tight-binding MTO method for nonequilibrium electron transport in nanosystems Sergey V. Faleev, 1, * François éonard, 1 Derek A. Stewart, 1, and Mark van Schilfgaarde

More information

Basic cell design. Si cell

Basic cell design. Si cell Basic cell design Si cell 1 Concepts needed to describe photovoltaic device 1. energy bands in semiconductors: from bonds to bands 2. free carriers: holes and electrons, doping 3. electron and hole current:

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

Density Functional Theory in Practice

Density Functional Theory in Practice A 7 Density Functional Theory in Practice Stefan Blügel Institut für Festkörperforschung Forschungszentrum Jülich GmbH Contents 1 Introduction 2 2 Kohn-Sham Approach in a Nutshell 5 2.1 Total Energy and

More information

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering

Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Fundamentals and applications of Density Functional Theory Astrid Marthinsen PhD candidate, Department of Materials Science and Engineering Outline PART 1: Fundamentals of Density functional theory (DFT)

More information

Notes on Density Functional Theory

Notes on Density Functional Theory Notes on Density Functional Theory Rocco Martinazzo E-mail: rocco.martinazzo@unimi.it Contents 1 Introduction 1 Density Functional Theory 7 3 The Kohn-Sham approach 11 1 Introduction We consider here a

More information

Non-collinear OEP for solids: SDFT vs CSDFT

Non-collinear OEP for solids: SDFT vs CSDFT Non-collinear OEP for solids: SDFT vs Sangeeta Sharma 1,2, J. K. Dewhurst 3 S. Pittalis 2, S. Kurth 2, S. Shallcross 4 and E. K. U. Gross 2 1. Fritz-Haber nstitut of the Max Planck Society, Berlin, Germany

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

Solid State Physics FREE ELECTRON MODEL. Lecture 14. A.H. Harker. Physics and Astronomy UCL

Solid State Physics FREE ELECTRON MODEL. Lecture 14. A.H. Harker. Physics and Astronomy UCL Solid State Physics FREE ELECTRON MODEL Lecture 14 A.H. Harker Physics and Astronomy UCL 6 The Free Electron Model 6.1 Basic Assumptions In the free electron model, we assume that the valence electrons

More information

1 Time reversal. 1.1 Without spin. Time-dependent Schrödinger equation: 2m + V (r) ψ (r, t) (7) Local time-reversal transformation, T :

1 Time reversal. 1.1 Without spin. Time-dependent Schrödinger equation: 2m + V (r) ψ (r, t) (7) Local time-reversal transformation, T : 1 Time reversal 1.1 Without spin Time-dependent Schrödinger equation: i t ψ (r, t = Local time-reversal transformation, T : Transformed Schrödinger equation d (f T (t dt ] 2m + V (r ψ (r, t (1 t 1 < t

More information

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å

4πε. me 1,2,3,... 1 n. H atom 4. in a.u. atomic units. energy: 1 a.u. = ev distance 1 a.u. = Å H atom 4 E a me =, n=,,3,... 8ε 0 0 π me e e 0 hn ε h = = 0.59Å E = me (4 πε ) 4 e 0 n n in a.u. atomic units E = r = Z n nao Z = e = me = 4πε = 0 energy: a.u. = 7. ev distance a.u. = 0.59 Å General results

More information

High pressure core structures of Si nanoparticles for solar energy conversion

High pressure core structures of Si nanoparticles for solar energy conversion High pressure core structures of Si nanoparticles for solar energy conversion S. Wippermann, M. Vörös, D. Rocca, A. Gali, G. Zimanyi, G. Galli [Phys. Rev. Lett. 11, 4684 (213)] NSF/Solar DMR-135468 NISE-project

More information

Optical Properties of Solid from DFT

Optical Properties of Solid from DFT Optical Properties of Solid from DFT 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India & Center for Materials Science and Nanotechnology, University of Oslo, Norway http://folk.uio.no/ravi/cmt15

More information

Translation Symmetry, Space Groups, Bloch functions, Fermi energy

Translation Symmetry, Space Groups, Bloch functions, Fermi energy Translation Symmetry, Space Groups, Bloch functions, Fermi energy Roberto Orlando and Silvia Casassa Università degli Studi di Torino July 20, 2015 School Ab initio Modelling of Solids (UniTo) Symmetry

More information

Wannier Function Based First Principles Method for Disordered Systems

Wannier Function Based First Principles Method for Disordered Systems Wannier Function Based First Principles Method for Disordered Systems Tom Berlijn Stony Brook University & Brookhaven National Laboratory Excitations in Condensed Matter: From Basic Concepts to Real Materials

More information

Exact Muffin-tin Orbitals Method

Exact Muffin-tin Orbitals Method 2 Exact Muffin-tin Orbitals Method In order to reduce the very expensive computational effort of full-potential methods, often a compromise has been made between the accuracy and efficiency, and methods

More information

Introduction to Hartree-Fock Molecular Orbital Theory

Introduction to Hartree-Fock Molecular Orbital Theory Introduction to Hartree-Fock Molecular Orbital Theory C. David Sherrill School of Chemistry and Biochemistry Georgia Institute of Technology Origins of Mathematical Modeling in Chemistry Plato (ca. 428-347

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method

The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method Chin. Phys. B Vol. 21, No. 1 212 133 The rotating Morse potential energy eigenvalues solved by using the analytical transfer matrix method He Ying 何英, Tao Qiu-Gong 陶求功, and Yang Yan-Fang 杨艳芳 Department

More information

André Schleife Department of Materials Science and Engineering

André Schleife Department of Materials Science and Engineering André Schleife Department of Materials Science and Engineering Yesterday you (should have) learned this: http://upload.wikimedia.org/wikipedia/commons/e/ea/ Simple_Harmonic_Motion_Orbit.gif 1. deterministic

More information

Basics of DFT applications to solids and surfaces

Basics of DFT applications to solids and surfaces Basics of DFT applications to solids and surfaces Peter Kratzer Physics Department, University Duisburg-Essen, Duisburg, Germany E-mail: Peter.Kratzer@uni-duisburg-essen.de Periodicity in real space and

More information

Surface physics, Bravais lattice

Surface physics, Bravais lattice Surface physics, Bravais lattice 1. Structure of the solid surface characterized by the (Bravais) lattice + space + point group lattice describes also the symmetry of the solid material vector directions

More information

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals.

100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. 2.21 Ionic Bonding 100% ionic compounds do not exist but predominantly ionic compounds are formed when metals combine with non-metals. Forming ions Metal atoms lose electrons to form +ve ions. Non-metal

More information

Intro to ab initio methods

Intro to ab initio methods Lecture 2 Part A Intro to ab initio methods Recommended reading: Leach, Chapters 2 & 3 for QM methods For more QM methods: Essentials of Computational Chemistry by C.J. Cramer, Wiley (2002) 1 ab initio

More information

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Optical Properties of Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India Optical Properties of Semiconductors 1 Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India http://folk.uio.no/ravi/semi2013 Light Matter Interaction Response to external electric

More information

Visualization of atomic-scale phenomena in superconductors

Visualization of atomic-scale phenomena in superconductors Visualization of atomic-scale phenomena in superconductors Andreas Kreisel, Brian Andersen Niels Bohr Institute, University of Copenhagen, 2100 København, Denmark Peayush Choubey, Peter Hirschfeld Department

More information