Decomposing Hotelling s T 2 Statistic Using Four Variables

Size: px
Start display at page:

Download "Decomposing Hotelling s T 2 Statistic Using Four Variables"

Transcription

1 ISSN: Engineering and echnology (An ISO 397: 007 Certified Organization) Vol. 3, Issue 4, April 014 Decomposing Hotelling s Statistic Using Four Variables Nathan S. Agog 1, Hussaini G. Dikko, Osebekwin E. Asiribo 3 P.G. Student, Department of Mathematics, Ahmadu Bello University, Zaria, Kaduna State, Nigeria 1 Lecturer, Department of Mathematics, Ahmadu Bello University, Zaria, Kaduna State, Nigeria Professor, Department of Mathematics, Ahmadu Bello University, Zaria, Kaduna State, Nigeria 3 Abstract: he Mason, Young and racy (MY) decomposition approach has gained much acceptance due to its effectiveness in detecting variables that contributes to an out-of-control condition. he decomposition approach enables one to assess the value of each variable independently as while as their oint contribution. One of the setbacks of this approach is its computational complexity. In this work, the Hotelling s decomposition is extended from three variables to four variables using the MY decomposition technique. wenty four (4) models were obtained from the decomposition, where each model gives the same value proving the invariance property of the Hotelling s statistic. Keywords: Invariance Property, Matrix Permutation, Multivariate Statistical Process Control (MSPC), MY decomposition. I. INRODUCION he decomposition of the Hotelling s statistic into orthogonal components is considered to be one of the most effective tools for detecting variables that significantly contributes to out-of-control signal. his concept reflects the contribution of each individual variable as well as the oin contribution between two or more variables in a multivariate quality control chart. Multivariate control charts are widely used in practice to monitor the simultaneous performance of several related quality characteristics. he origin of multivariate control chart can be attributed to Hotelling [1]. A multivariate control scheme has a better sensitivity than the univariate control charts in monitoring multivariate quality process (Lu et al., []) Woodall and Montgomery [1] in one of their discussion paper stated that multivariate process control is one of the most rapidly developing sections of statistical process control. he demand to implement MSPC in a production process for quality improvement increases daily. According to Woodall [13], statistical methods play a very important role in quality improvement in manufacturing industries. he most commonly used multivariate statistical technique is the statistical Hotelling s control chart. here are a lot of literatures focusing on multivariate control charting methods based on Hotelling s statistic in detecting mean shift such as Sullivan and Woodall [9], Mason and Young [5], ong et al., [10] and many others. Much application of the Hotelling s decomposition technique has been on two and three process variables as seen in the case of Mason et al.,[4], Ulen and Demir [11], Sani and Abubakar [8] and many others. In this article, our interest is to extend this approach by deriving the decomposition model using four variables. his decomposition will not only be helpful to quality control engineers but also to researchers in the field of quality control. Copyright to IJIRSE

2 ISSN: Engineering and echnology (An ISO 397: 007 Certified Organization) Vol. 3, Issue 4, April 014 II. DECOMPOSIION MEHOD Mason et al., [3], proposed the use of decomposition in detecting out-of-control variable. he decomposition is considered to be the most valuable technique in detecting influential variable(s). he main idea of this method is to decompose the statistic into independent parts, each of which reflects the contribution of an individual variable. he characteristic that is significantly contributing to the signal is more readily identified by decomposing the Mason et al., [4], presented a practical application of the decomposition on a bivariate data (two process variables, p=). Where there were two possible decompositions; Sani and Abubakar [8], presented the decomposition of three process variables (p=3) by Mason and Young [6] to demonstrate the invariance property of the Hotelling s statistic. he decomposition of the Hotelling s statistic for three process variables is as follows; 1..1,.1.1, , , , ,3 his work extends the decomposition of Hotelling s statistic from three variable (p=3) to four variables (p=4). he number of decompositions increased from 6 to 4 possible ways (p! =3! = (6 decompositions) to p! = 4! = (4 decompositions)). hese decompositions give the same overall statistic as stated by Mason et al.,[3] III. MASON, YOUNG AND RACY (MY) DECOMPOSIION ECHNIQUE he Hotelling s control chart is the most commonly used multivariate control charts when all the quality characteristics are normally distributed. Let x1, x,..., xp be p quality characteristics. Assuming they are normally distributed with multivariate mean, and covariance matrix,. he statistic for a p dimensional observation vector ' x1 x x p (,,..., ) ' 1 S can be represented as, ( ) ( ) (1) his approach is to decompose the statistic into independent components, each of which reflects the contribution of individual variables. he statistic in (1) can be partitioned into two independent parts (Rencher [7]). hese components are given by, () p1 p.1,,..., p1 Since the first term in () is a statistic, it can also be separated into two orthogonal parts; (3) p1 p p1.1,,..., p1 Continuing in the same fashion, we can generate one of the many possible MY decompositions of the statistic. 1..1,... p.1,,3..., p1 (4) Copyright to IJIRSE

3 ISSN: Engineering and echnology (An ISO 397: 007 Certified Organization) Vol. 3, Issue 4, April 014 III.1. DECOMPOSIION MODEL USING FOUR VARIABLES he process is initiated by selecting any one of the p variables, followed by any of the (p-1) remaining variables to condition on the first selected variable. Next, select any of the remaining (p-1) variables to be condition on the first two selected variables. And finally, select any of the (p-3) variables to condition on the first three selected variables. Iterating in the same procedure will generate all the decomposition equations which compose the same over all statistic. For the first p variables, assuming we select p=1(remaining nd, 3 rd and 4 th variables). he decomposition is as follows; 1..1, 4.1,, ,3.1,3, ,4 3.1,,4 he next step is to keep the selected p variable and the (p-1) remaining variables conditioned on the p selected variable constant (that is, the first and the second decomposition terms). hen select any of the remaining (p-) variables not used in the first decomposition to be condition on the first two kept variables. And finally, select any of the remaining (p-3) variables not used during the first decomposition to condition on the first three selected variables. hese yield the following results; , 3.1,,4.1.1,3 4.1,, ,4.1,3,4 Iterating in the same procedure will generate all the possible decomposition equations which compose the same overall statistic. his condition satisfies the invariance property which states that the value of the cannot change by permuting the observation vector (Mason and Young [6]). Hence, the complete decomposition using four variables (p = 4) is as follows; 1..1, 4.1,, ,3.1,3, ,4 3.1,, , 3.1,,4.1.1,3 4.1,, ,4.1,3, , 4.1,, ,3 1.,3, ,3 3.1,, , 3.1,, ,3 4.1,, ,4 1.,3, ,3 4.1,, ,3 1.,3,4 Copyright to IJIRSE

4 ISSN: Engineering and echnology ,4.1,3, ,3.1,3, ,3 4.1,, ,4 1.,3, ,4 3.1,, ,4 1.,3, ,4.1,3, ,4.1,3, ,4 3.1,, ,4 1.,3,4 (An ISO 397: 007 Certified Organization) Vol. 3, Issue 4, April 014 IV. COMPUING HE DECOMPOSIION ERMS One of the decomposition for the observation vector ( x1, x, x3, x 4) is given as (5) ( x, x, x, x ).1.1,3 4.1,, he computation starts by first determining the value of the conditional term, 4.1,,3 ( x, x, x, x ) ( x, x, x ) ,,3. From the above equation, (6) ( x, x, x, x ) is given as; he variance-covariance matrix and the mean vector for the observation vector S S S S S S1 S S3 S4 44 S31 S3 S3 S34 S41 S4 S43 S4 hus the computation of and ( x, x, x, x ) (4) x1 x x3 x 4 is as follows; ( ) S ( ) (8) (4) (4) ' 1 (4) (4) ( x, x, x, x ) 44 o obtain ( x, x, x ) 1 3, the original estimates of the mean vector and covariance structure is partitioned to obtain the (3) mean vector and covariance matrix of the sub vector ( x, x, x ). he corresponding partition is given as; S1 S1 S 13 x1 S33 S1 S S3 and x S31 S3 S 3 x 3 hus the computation is as follows; ( x, x, x ) 1 4 (3) (3) ' 1 (3) (3) ( x1, x, x3 ) ( ) S ( ) (10) Also the decomposition of ( x, x, x ) 1 3 is given by (7) (9) Copyright to IJIRSE

5 ISSN: Engineering and echnology (An ISO 397: 007 Certified Organization) Vol. 3, Issue 4, April 014 (11) ( x, x, x ).1.1,3 1 3 he equation above can be obtained by first computing the conditional term.1,3 ( x, x, x ) ( x, x ) 1 3 ( x1, x3).1,3 as follows; (1) o obtain the term, the original estimates of the mean vector and the covariance structure is partitioned to obtain the mean vector and covariance matrix of the sub vector as; S S S 1 13 S31 S3 and () x1 x3 Hence, the computation of the term ( x, x ) () () ' 1 () () ( x, x ) is as follows; () ( x, x ). he corresponding partition is given ( ) S ( ) (14) Also, the decomposition for ( x, x ).1 ( x, x ) is given by (15) he term is computed by ( x x ) s1 3.1 hus, is obtained by computing the value of the sub vector (1) 1 (13) ( x ). Hence, the unconditional term (16) is computed as; (17) 3.1 ( x, x ) ( x ) 1 ( x x ) s (18) = 1,,,p. is the square of a univariate t statistic for the observed value of the th variable of vector. V. CONCLUSION he MY decomposition has a beautiful way of presenting the contribution of independent variables and also the relationship between two or more variables. his work has presented a simplified way decomposing the statistic by using four process variables where 4 decompositions were obtained. Each of these decompositions can be used to identify variable(s) that significantly contributes to an out-of-control signal. REFERENCES 1. Hotelling, H. Multivariate quality control. In C. Eisenhart, M.W. Hastay and W.A. Wallis, eds., echniques of Statistical Analysis. New York: McGraw Hill, pp , Lu,.S., M. ie,.n. Goh and C.D. Lai, Control chart for multivariate attribute Processes, International Journal Production Research, Vol. 36, pp , Mason R.L., racy N.D. and Young J.C.,. Decomposition of for multivariate control chart interpretation Journal of Quality echnology Vol. 7, pp , Mason, R. L.,racy N.D., and Young J.C. A practical application for interpreting multivariate control chart signal. Journal of Quality echnology, Vol. 9, No.4, pp , Mason, R.L. and Young, J.C.. Improving the sensitivity of the statistic in multivariate process control. Journal of Quality echnology, Vol. 31, No., pp , Copyright to IJIRSE

6 ISSN: Engineering and echnology (An ISO 397: 007 Certified Organization) Vol. 3, Issue 4, April Mason, R.L. and Young, J.C., Multivariate Statistical Process Control with Industrial Applications, Philadelphia: ASA-SIAM. pp , Rencher, A.C., he contribution of individual variables to Hotelling s, Wilks Ʌ and R, Biometrics, Vol. 49, pp , Sani, S.A., and Abubakar, Y., Demonstrating the Invariance Property of the Hotelling Statistic, International Journal of Innovative Research in Science, Engineering and echnology, Vol., No. 7, pp , Sullivan, J.H. and Woodall, W.H., A comparison of multivariate control charts for individual observations, Journal of Quality echnology, Vol. 8, No. 4, pp , ong, L.I., Wang, C.H. and Huang, C.L., Monitoring defects in IC fabrication using a Hotelling control chart, IEE rans. Semiconductor Manufacturing, Vol. 18, No. 1, pp , Ulen, M. and Demir, I., Application of multivariate statistical quality control in pharmaceutical industry, Balkan Journal of Mathematics, Vol. 1, pp , Woodall, W.H and Montgomery, D.C., Research issues and ideas in statistical process control. Journal of Quality echnology, Vol. 31, No. 4, pp , Woodall, W.H., Controversies and contradictions in statistical process control, Journal of Quality echnology, vol. 3, No.4, pp , 000. Copyright to IJIRSE

MYT decomposition and its invariant attribute

MYT decomposition and its invariant attribute Abstract Research Journal of Mathematical and Statistical Sciences ISSN 30-6047 Vol. 5(), 14-, February (017) MYT decomposition and its invariant attribute Adepou Aibola Akeem* and Ishaq Olawoyin Olatuni

More information

Detecting Assignable Signals via Decomposition of MEWMA Statistic

Detecting Assignable Signals via Decomposition of MEWMA Statistic International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 4767 P-ISSN: 2321-4759 Volume 4 Issue 1 January. 2016 PP-25-29 Detecting Assignable Signals via Decomposition of MEWMA

More information

Application of Multivariate Statistical Quality Control In Pharmaceutical Industry

Application of Multivariate Statistical Quality Control In Pharmaceutical Industry BALKANJM 0 (03) 93-05 Contents lists available at BALKANJM BALKAN JOURNAL OF MAHEMAICS journal homepage: www.balkanjm.com Application of Multivariate Statistical Quality Control In Pharmaceutical Industry

More information

The Effect of Level of Significance (α) on the Performance of Hotelling-T 2 Control Chart

The Effect of Level of Significance (α) on the Performance of Hotelling-T 2 Control Chart The Effect of Level of Significance (α) on the Performance of Hotelling-T 2 Control Chart Obafemi, O. S. 1 Department of Mathematics and Statistics, Federal Polytechnic, Ado-Ekiti, Ekiti State, Nigeria

More information

A Power Analysis of Variable Deletion Within the MEWMA Control Chart Statistic

A Power Analysis of Variable Deletion Within the MEWMA Control Chart Statistic A Power Analysis of Variable Deletion Within the MEWMA Control Chart Statistic Jay R. Schaffer & Shawn VandenHul University of Northern Colorado McKee Greeley, CO 869 jay.schaffer@unco.edu gathen9@hotmail.com

More information

Bootstrap-Based T 2 Multivariate Control Charts

Bootstrap-Based T 2 Multivariate Control Charts Bootstrap-Based T 2 Multivariate Control Charts Poovich Phaladiganon Department of Industrial and Manufacturing Systems Engineering University of Texas at Arlington Arlington, Texas, USA Seoung Bum Kim

More information

The Robustness of the Multivariate EWMA Control Chart

The Robustness of the Multivariate EWMA Control Chart The Robustness of the Multivariate EWMA Control Chart Zachary G. Stoumbos, Rutgers University, and Joe H. Sullivan, Mississippi State University Joe H. Sullivan, MSU, MS 39762 Key Words: Elliptically symmetric,

More information

Detecting Assignable Signals via Decomposition Statistic

Detecting Assignable Signals via Decomposition Statistic J International Journal of Mathematics and Statistics Invention (IJM51) E-ISSN: 2321-4767 P-ISSN: 2321-4759 Volume 4 Issue 1 11 JOIlUQIJ.'. 201611 PP-25-29 Detecting Assignable Signals via Decomposition

More information

Re-weighted Robust Control Charts for Individual Observations

Re-weighted Robust Control Charts for Individual Observations Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia 426 Re-weighted Robust Control Charts for Individual Observations Mandana Mohammadi 1, Habshah Midi 1,2 and Jayanthi Arasan 1,2 1 Laboratory of Applied

More information

Songklanakarin Journal of Science and Technology SJST R1 Sukparungsee

Songklanakarin Journal of Science and Technology SJST R1 Sukparungsee Songklanakarin Journal of Science and Technology SJST-0-0.R Sukparungsee Bivariate copulas on the exponentially weighted moving average control chart Journal: Songklanakarin Journal of Science and Technology

More information

PRODUCT yield plays a critical role in determining the

PRODUCT yield plays a critical role in determining the 140 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 18, NO. 1, FEBRUARY 2005 Monitoring Defects in IC Fabrication Using a Hotelling T 2 Control Chart Lee-Ing Tong, Chung-Ho Wang, and Chih-Li Huang

More information

Directionally Sensitive Multivariate Statistical Process Control Methods

Directionally Sensitive Multivariate Statistical Process Control Methods Directionally Sensitive Multivariate Statistical Process Control Methods Ronald D. Fricker, Jr. Naval Postgraduate School October 5, 2005 Abstract In this paper we develop two directionally sensitive statistical

More information

A New Bootstrap Based Algorithm for Hotelling s T2 Multivariate Control Chart

A New Bootstrap Based Algorithm for Hotelling s T2 Multivariate Control Chart Journal of Sciences, Islamic Republic of Iran 7(3): 69-78 (16) University of Tehran, ISSN 16-14 http://jsciences.ut.ac.ir A New Bootstrap Based Algorithm for Hotelling s T Multivariate Control Chart A.

More information

On the Distribution of Hotelling s T 2 Statistic Based on the Successive Differences Covariance Matrix Estimator

On the Distribution of Hotelling s T 2 Statistic Based on the Successive Differences Covariance Matrix Estimator On the Distribution of Hotelling s T 2 Statistic Based on the Successive Differences Covariance Matrix Estimator JAMES D. WILLIAMS GE Global Research, Niskayuna, NY 12309 WILLIAM H. WOODALL and JEFFREY

More information

Module B1: Multivariate Process Control

Module B1: Multivariate Process Control Module B1: Multivariate Process Control Prof. Fugee Tsung Hong Kong University of Science and Technology Quality Lab: http://qlab.ielm.ust.hk I. Multivariate Shewhart chart WHY MULTIVARIATE PROCESS CONTROL

More information

Retrospective Hotelling s T 2 Control Chart for Automotive Stamped Parts: a Case Study

Retrospective Hotelling s T 2 Control Chart for Automotive Stamped Parts: a Case Study Retrospective Hotelling s T Control Chart for Automotive Stamped Parts: a Case Study Muzalwana A. Talib 1,*, Susila Munisamy 1, Shamsuddin Ahmed 1 Department of Applied Statistics, Faculty of Economics

More information

Detection of change points in panel data based on Bayesian MT method

Detection of change points in panel data based on Bayesian MT method Change-points detection by Bayesian M, Enomoto et al. Detection of change points in panel data based on Bayesian M method akumi Enomoto*, Yasushi Nagata Waseda University: 3-4- Okubo, Shinjuku-ku, okyo

More information

Nonparametric Multivariate Control Charts Based on. A Linkage Ranking Algorithm

Nonparametric Multivariate Control Charts Based on. A Linkage Ranking Algorithm Nonparametric Multivariate Control Charts Based on A Linkage Ranking Algorithm Helen Meyers Bush Data Mining & Advanced Analytics, UPS 55 Glenlake Parkway, NE Atlanta, GA 30328, USA Panitarn Chongfuangprinya

More information

Harold HOTELLING b. 29 September d. 26 December 1973

Harold HOTELLING b. 29 September d. 26 December 1973 Harold HOTELLING b. 29 September 1895 - d. 26 December 1973 Summary. A major developer of the foundations of statistics and an important contributor to mathematical economics, Hotelling introduced the

More information

A Multivariate Process Variability Monitoring Based on Individual Observations

A Multivariate Process Variability Monitoring Based on Individual Observations www.ccsenet.org/mas Modern Applied Science Vol. 4, No. 10; October 010 A Multivariate Process Variability Monitoring Based on Individual Observations Maman A. Djauhari (Corresponding author) Department

More information

Performance In Science And Non Science Subjects

Performance In Science And Non Science Subjects Canonical Correlation And Hotelling s T 2 Analysis On Students Performance In Science And Non Science Subjects Mustapha Usman Baba 1, Nafisa Muhammad 1,Ibrahim Isa 1, Rabiu Ado Inusa 1 and Usman Hashim

More information

Generalized Variance Chart for Multivariate. Quality Control Process Procedure with. Application

Generalized Variance Chart for Multivariate. Quality Control Process Procedure with. Application Applied Mathematical Sciences, Vol. 8, 2014, no. 163, 8137-8151 HIKARI Ltd,www.m-hikari.com http://dx.doi.org/10.12988/ams.2014.49734 Generalized Variance Chart for Multivariate Quality Control Process

More information

Multivariate Process Control Chart for Controlling the False Discovery Rate

Multivariate Process Control Chart for Controlling the False Discovery Rate Industrial Engineering & Management Systems Vol, No 4, December 0, pp.385-389 ISSN 598-748 EISSN 34-6473 http://dx.doi.org/0.73/iems.0..4.385 0 KIIE Multivariate Process Control Chart for Controlling e

More information

Research Article A Hybrid ICA-SVM Approach for Determining the Quality Variables at Fault in a Multivariate Process

Research Article A Hybrid ICA-SVM Approach for Determining the Quality Variables at Fault in a Multivariate Process Mathematical Problems in Engineering Volume 1, Article ID 8491, 1 pages doi:1.1155/1/8491 Research Article A Hybrid ICA-SVM Approach for Determining the Quality Variables at Fault in a Multivariate Process

More information

Statistical Tools for Multivariate Six Sigma. Dr. Neil W. Polhemus CTO & Director of Development StatPoint, Inc.

Statistical Tools for Multivariate Six Sigma. Dr. Neil W. Polhemus CTO & Director of Development StatPoint, Inc. Statistical Tools for Multivariate Six Sigma Dr. Neil W. Polhemus CTO & Director of Development StatPoint, Inc. 1 The Challenge The quality of an item or service usually depends on more than one characteristic.

More information

A Multivariate EWMA Control Chart for Skewed Populations using Weighted Variance Method

A Multivariate EWMA Control Chart for Skewed Populations using Weighted Variance Method OPEN ACCESS Int. Res. J. of Science & Engineering, 04; Vol. (6): 9-0 ISSN: 3-005 RESEARCH ARTICLE A Multivariate EMA Control Chart for Skewed Populations using eighted Variance Method Atta AMA *, Shoraim

More information

TITLE : Robust Control Charts for Monitoring Process Mean of. Phase-I Multivariate Individual Observations AUTHORS : Asokan Mulayath Variyath.

TITLE : Robust Control Charts for Monitoring Process Mean of. Phase-I Multivariate Individual Observations AUTHORS : Asokan Mulayath Variyath. TITLE : Robust Control Charts for Monitoring Process Mean of Phase-I Multivariate Individual Observations AUTHORS : Asokan Mulayath Variyath Department of Mathematics and Statistics, Memorial University

More information

CONTROL charts are widely used in production processes

CONTROL charts are widely used in production processes 214 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 12, NO. 2, MAY 1999 Control Charts for Random and Fixed Components of Variation in the Case of Fixed Wafer Locations and Measurement Positions

More information

A Result on Best Proximity Point

A Result on Best Proximity Point ISSN(Online : 239-8753 ISSN (Print : 2347-670 Engineering and echnology (An ISO 3297: 2007 Certified Organization A Result on Best Proximity Point Sujata Goyal Assistant Professor, Deartment of Mathematics,

More information

Estimation and Test Statistic in Bivariate Probit Model ( r c)

Estimation and Test Statistic in Bivariate Probit Model ( r c) J Basic Appl Sci Res, (3)78-88, 0 00, extroad Publication ISSN 090-44X Journal of Basic and Applied Scientific Research wwwtextroadcom Estimation and est Statistic in Bivariate Probit Model ( r c) Vita

More information

Monitoring of Mineral Processing Operations based on Multivariate Similarity Indices

Monitoring of Mineral Processing Operations based on Multivariate Similarity Indices Monitoring of Mineral Processing Operations based on Multivariate Similarity Indices L. Auret, C. Aldrich* Department of Process Engineering, University of Stellenbosch, Private Bag X1, Matieland 7602,

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

On Monitoring Shift in the Mean Processes with. Vector Autoregressive Residual Control Charts of. Individual Observation

On Monitoring Shift in the Mean Processes with. Vector Autoregressive Residual Control Charts of. Individual Observation Applied Mathematical Sciences, Vol. 8, 14, no. 7, 3491-3499 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.12988/ams.14.44298 On Monitoring Shift in the Mean Processes with Vector Autoregressive Residual

More information

DEMONSTRATING THE INVARIANCE PROPERTY OF HOTELLING T 2 STATISTIC

DEMONSTRATING THE INVARIANCE PROPERTY OF HOTELLING T 2 STATISTIC ISSN: 319-8753 Intenational Jounal of Innovative Reseach in Science, Engineeing and echnology Vol., Issue 7, July 013 DEMONSRAING HE INVARIANCE PROPERY OF HOELLING SAISIC Sani Salihu Abubaka 1, Abubaka

More information

POWER AND TYPE I ERROR RATE COMPARISON OF MULTIVARIATE ANALYSIS OF VARIANCE

POWER AND TYPE I ERROR RATE COMPARISON OF MULTIVARIATE ANALYSIS OF VARIANCE POWER AND TYPE I ERROR RATE COMPARISON OF MULTIVARIATE ANALYSIS OF VARIANCE Supported by Patrick Adebayo 1 and Ahmed Ibrahim 1 Department of Statistics, University of Ilorin, Kwara State, Nigeria Department

More information

On Efficient Memory-Type Control Charts for Monitoring out of Control Signals in a Process Using Diabetic Data

On Efficient Memory-Type Control Charts for Monitoring out of Control Signals in a Process Using Diabetic Data Biomedical Statistics and Informatics 017; (4): 138-144 http://www.sciencepublishinggroup.com/j/bsi doi: 10.11648/j.bsi.017004.1 On Efficient Memory-Type Control Charts for Monitoring out of Control Signals

More information

Distribution-Free Monitoring of Univariate Processes. Peihua Qiu 1 and Zhonghua Li 1,2. Abstract

Distribution-Free Monitoring of Univariate Processes. Peihua Qiu 1 and Zhonghua Li 1,2. Abstract Distribution-Free Monitoring of Univariate Processes Peihua Qiu 1 and Zhonghua Li 1,2 1 School of Statistics, University of Minnesota, USA 2 LPMC and Department of Statistics, Nankai University, China

More information

UPSET AND SENSOR FAILURE DETECTION IN MULTIVARIATE PROCESSES

UPSET AND SENSOR FAILURE DETECTION IN MULTIVARIATE PROCESSES UPSET AND SENSOR FAILURE DETECTION IN MULTIVARIATE PROCESSES Barry M. Wise, N. Lawrence Ricker and David J. Veltkamp Center for Process Analytical Chemistry and Department of Chemical Engineering University

More information

An Introduction to Multivariate Statistical Analysis

An Introduction to Multivariate Statistical Analysis An Introduction to Multivariate Statistical Analysis Third Edition T. W. ANDERSON Stanford University Department of Statistics Stanford, CA WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents

More information

VALUES FOR THE CUMULATIVE DISTRIBUTION FUNCTION OF THE STANDARD MULTIVARIATE NORMAL DISTRIBUTION. Carol Lindee

VALUES FOR THE CUMULATIVE DISTRIBUTION FUNCTION OF THE STANDARD MULTIVARIATE NORMAL DISTRIBUTION. Carol Lindee VALUES FOR THE CUMULATIVE DISTRIBUTION FUNCTION OF THE STANDARD MULTIVARIATE NORMAL DISTRIBUTION Carol Lindee LindeeEmail@netscape.net (708) 479-3764 Nick Thomopoulos Illinois Institute of Technology Stuart

More information

Analysis of Variance. ภาว น ศ ร ประภาน ก ล คณะเศรษฐศาสตร มหาว ทยาล ยธรรมศาสตร

Analysis of Variance. ภาว น ศ ร ประภาน ก ล คณะเศรษฐศาสตร มหาว ทยาล ยธรรมศาสตร Analysis of Variance ภาว น ศ ร ประภาน ก ล คณะเศรษฐศาสตร มหาว ทยาล ยธรรมศาสตร pawin@econ.tu.ac.th Outline Introduction One Factor Analysis of Variance Two Factor Analysis of Variance ANCOVA MANOVA Introduction

More information

Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition

Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition Applied Multivariate Statistical Analysis Richard Johnson Dean Wichern Sixth Edition Pearson Education Limited Edinburgh Gate Harlow Essex CM20 2JE England and Associated Companies throughout the world

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 9 for Applied Multivariate Analysis Outline Addressing ourliers 1 Addressing ourliers 2 Outliers in Multivariate samples (1) For

More information

Algorithm to Compute Minimal Nullspace Basis of a Polynomial Matrix

Algorithm to Compute Minimal Nullspace Basis of a Polynomial Matrix Proceedings of the 19th International Symposium on Mathematical heory of Networks and Systems MNS 1 5 9 July, 1 Budapest, Hungary Algorithm to Compute Minimal Nullspace Basis of a Polynomial Matrix S.

More information

DonnishJournals

DonnishJournals DonnishJournals 204-89 Donnish Journal of Educational Research and Reviews. Vol 2() pp. 008-07 January, 205. http:///djerr Copyright 205 Donnish Journals Original Research Paper Solution of Linear Systems

More information

S* Control Chart in Screw Quality Assessment

S* Control Chart in Screw Quality Assessment Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 13, Number 11 (2017), pp. 7879-7887 Research India Publications http://www.ripublication.com S* Control Chart in Screw Quality Assessment

More information

Multivariate Change Point Control Chart Based on Data Depth for Phase I Analysis

Multivariate Change Point Control Chart Based on Data Depth for Phase I Analysis Multivariate Change Point Control Chart Based on Data Depth for Phase I Analysis Zhonghua Li a, Yi Dai a, Zhaojun Wang a, a LPMC and School of Mathematical Sciences, Nankai University, Tianjin 300071,

More information

Linear Models in Statistics

Linear Models in Statistics Linear Models in Statistics ALVIN C. RENCHER Department of Statistics Brigham Young University Provo, Utah A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane

More information

Monitoring Production Processes Using Multivariate Control Charts

Monitoring Production Processes Using Multivariate Control Charts ISSN No: 239-4893 I Vol-4, Issue-4, August 216 Monitoring Production Processes Using Multivariate Control Charts Mohamed H. Abo-Hawa*, M. A. Sharaf El-Din**, Omayma A. Nada*** Department of Production

More information

Intro VEC and BEKK Example Factor Models Cond Var and Cor Application Ref 4. MGARCH

Intro VEC and BEKK Example Factor Models Cond Var and Cor Application Ref 4. MGARCH ntro VEC and BEKK Example Factor Models Cond Var and Cor Application Ref 4. MGARCH JEM 140: Quantitative Multivariate Finance ES, Charles University, Prague Summer 2018 JEM 140 () 4. MGARCH Summer 2018

More information

Linear Models 1. Isfahan University of Technology Fall Semester, 2014

Linear Models 1. Isfahan University of Technology Fall Semester, 2014 Linear Models 1 Isfahan University of Technology Fall Semester, 2014 References: [1] G. A. F., Seber and A. J. Lee (2003). Linear Regression Analysis (2nd ed.). Hoboken, NJ: Wiley. [2] A. C. Rencher and

More information

A problem faced in the context of control charts generally is the measurement error variability. This problem is the result of the inability to

A problem faced in the context of control charts generally is the measurement error variability. This problem is the result of the inability to A problem faced in the context of control charts generally is the measurement error variability. This problem is the result of the inability to measure accurately the variable of interest X. The use of

More information

INFORMATION THEORY AND STATISTICS

INFORMATION THEORY AND STATISTICS INFORMATION THEORY AND STATISTICS Solomon Kullback DOVER PUBLICATIONS, INC. Mineola, New York Contents 1 DEFINITION OF INFORMATION 1 Introduction 1 2 Definition 3 3 Divergence 6 4 Examples 7 5 Problems...''.

More information

Function Operations and Composition of Functions. Unit 1 Lesson 6

Function Operations and Composition of Functions. Unit 1 Lesson 6 Function Operations and Composition of Functions Unit 1 Lesson 6 Students will be able to: Combine standard function types using arithmetic operations Compose functions Key Vocabulary: Function operation

More information

BATCH PROCESS MONITORING THROUGH THE INTEGRATION OF SPECTRAL AND PROCESS DATA. Julian Morris, Elaine Martin and David Stewart

BATCH PROCESS MONITORING THROUGH THE INTEGRATION OF SPECTRAL AND PROCESS DATA. Julian Morris, Elaine Martin and David Stewart BATCH PROCESS MONITORING THROUGH THE INTEGRATION OF SPECTRAL AND PROCESS DATA Julian Morris, Elaine Martin and David Stewart Centre for Process Analytics and Control Technology School of Chemical Engineering

More information

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA:

MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: MULTIVARIATE ANALYSIS OF VARIANCE MANOVA is an extension of the univariate ANOVA as it involves more than one Dependent Variable (DV). The following are assumptions for using MANOVA: 1. Cell sizes : o

More information

Thermal Analysis of Cross Flow Heat Exchangers

Thermal Analysis of Cross Flow Heat Exchangers Website: www.ijetae.com (ISSN 225-2459, ISO 9:28 Certified Journal, Volume 4, Special Issue 9, September 24) hermal Analysis of Cross Flow Heat Exchangers Shreyas Muralidharan & B. Gokul Maharaj School

More information

A New Demerit Control Chart for Monitoring the Quality of Multivariate Poisson Processes. By Jeh-Nan Pan Chung-I Li Min-Hung Huang

A New Demerit Control Chart for Monitoring the Quality of Multivariate Poisson Processes. By Jeh-Nan Pan Chung-I Li Min-Hung Huang Athens Journal of Technology and Engineering X Y A New Demerit Control Chart for Monitoring the Quality of Multivariate Poisson Processes By Jeh-Nan Pan Chung-I Li Min-Hung Huang This study aims to develop

More information

Improvement of The Hotelling s T 2 Charts Using Robust Location Winsorized One Step M-Estimator (WMOM)

Improvement of The Hotelling s T 2 Charts Using Robust Location Winsorized One Step M-Estimator (WMOM) Punjab University Journal of Mathematics (ISSN 1016-2526) Vol. 50(1)(2018) pp. 97-112 Improvement of The Hotelling s T 2 Charts Using Robust Location Winsorized One Step M-Estimator (WMOM) Firas Haddad

More information

Chart for Monitoring Univariate Autocorrelated Processes

Chart for Monitoring Univariate Autocorrelated Processes The Autoregressive T 2 Chart for Monitoring Univariate Autocorrelated Processes DANIEL W APLEY Texas A&M University, College Station, TX 77843-33 FUGEE TSUNG Hong Kong University of Science and Technology,

More information

ANALYSIS OF HIGHRISE BUILDING STRUCTURE WITH SETBACK SUBJECT TO EARTHQUAKE GROUND MOTIONS

ANALYSIS OF HIGHRISE BUILDING STRUCTURE WITH SETBACK SUBJECT TO EARTHQUAKE GROUND MOTIONS ANALYSIS OF HIGHRISE BUILDING SRUCURE WIH SEBACK SUBJEC O EARHQUAKE GROUND MOIONS 157 Xiaojun ZHANG 1 And John L MEEK SUMMARY he earthquake response behaviour of unframed highrise buildings with setbacks

More information

HOTELLING S CHARTS USING WINSORIZED MODIFIED ONE STEP M-ESTIMATOR FOR INDIVIDUAL NON NORMAL DATA

HOTELLING S CHARTS USING WINSORIZED MODIFIED ONE STEP M-ESTIMATOR FOR INDIVIDUAL NON NORMAL DATA 20 th February 205. Vol.72 No.2 2005-205 JATIT & LLS. All rights reserved. ISSN: 992-8645 www.jatit.org E-ISSN: 87-395 HOTELLING S CHARTS USING WINSORIZED MODIFIED ONE STEP M-ESTIMATOR FOR INDIVIDUAL NON

More information

Monitoring and diagnosing a two-stage production process with attribute characteristics

Monitoring and diagnosing a two-stage production process with attribute characteristics Iranian Journal of Operations Research Vol., No.,, pp. -6 Monitoring and diagnosing a two-stage production process with attribute characteristics Downloaded from iors.ir at :6 +33 on Wednesday October

More information

Product Quality Analysis RS CD 10 SY-C9 Using Multivariate Statistical Process Control

Product Quality Analysis RS CD 10 SY-C9 Using Multivariate Statistical Process Control Product Quality Analysis RS CD 10 SY-C9 Using Multivariate Statistical Process Control Yuyun Hidayat, Titi Purwandari, Sofyan Abdurahman Departement of Statistics, Faculty of Mathematics and Natural Sciences

More information

In the bivariate regression model, the original parameterization is. Y i = β 1 + β 2 X2 + β 2 X2. + β 2 (X 2i X 2 ) + ε i (2)

In the bivariate regression model, the original parameterization is. Y i = β 1 + β 2 X2 + β 2 X2. + β 2 (X 2i X 2 ) + ε i (2) RNy, econ460 autumn 04 Lecture note Orthogonalization and re-parameterization 5..3 and 7.. in HN Orthogonalization of variables, for example X i and X means that variables that are correlated are made

More information

Construction of Multivariate Compactly Supported Orthonormal Wavelets

Construction of Multivariate Compactly Supported Orthonormal Wavelets Construction of Multivariate Compactly Supported Orthonormal Wavelets Ming-Jun Lai Department of Mathematics The University of Georgia Athens, GA 30602 April 30, 2004 Dedicated to Professor Charles A.

More information

The optimal filtering of a class of dynamic multiscale systems

The optimal filtering of a class of dynamic multiscale systems Science in China Ser. F Information Sciences 2004 Vol.47 No.4 50 57 50 he optimal filtering of a class of dynamic multiscale systems PAN Quan, ZHANG Lei, CUI Peiling & ZHANG Hongcai Department of Automatic

More information

Analyzing the Impact of Process Variations on Parametric Measurements: Novel Models and Applications

Analyzing the Impact of Process Variations on Parametric Measurements: Novel Models and Applications Analyzing the Impact of Process Variations on Parametric Measurements: Novel Models and Applications Sherief Reda Division of Engineering Brown University Providence, RI 0292 Email: sherief reda@brown.edu

More information

A MACRO FOR MULTIVARIATE STATISTICAL PROCESS CONTROL

A MACRO FOR MULTIVARIATE STATISTICAL PROCESS CONTROL A MACRO FOR MULTIVARIATE STATISTICAL PROCESS CONTROL Meng-Koon Chua, Arizona State University Abstract The usefulness of multivariate statistical process control techniques has been received a tremendous

More information

The Efficiency of the 4-out-of-5 Runs Rules Scheme for monitoring the Ratio of Population Means of a Bivariate Normal distribution

The Efficiency of the 4-out-of-5 Runs Rules Scheme for monitoring the Ratio of Population Means of a Bivariate Normal distribution Proceedings of the 22nd ISSAT International Conference on Reliability and Quality in Design August 4-6, 2016 - Los Angeles, California, U.S.A. The Efficiency of the 4-out-of-5 Runs Rules Scheme for monitoring

More information

Nonlinear Multivariate Statistical Sensitivity Analysis of Environmental Models

Nonlinear Multivariate Statistical Sensitivity Analysis of Environmental Models Nonlinear Multivariate Statistical Sensitivity Analysis of Environmental Models with Application on Heavy Metals Adsorption from Contaminated Wastewater A. Fassò, A. Esposito, E. Porcu, A.P. Reverberi,

More information

MULTIVARIATE STATISTICAL PROCESS OF HOTELLING S T CONTROL CHARTS PROCEDURES WITH INDUSTRIAL APPLICATION

MULTIVARIATE STATISTICAL PROCESS OF HOTELLING S T CONTROL CHARTS PROCEDURES WITH INDUSTRIAL APPLICATION Journal of Statistics: Advances in heory and Alications Volume 8, Number, 07, Pages -44 Available at htt://scientificadvances.co.in DOI: htt://dx.doi.org/0.864/jsata_700868 MULIVARIAE SAISICAL PROCESS

More information

STA 437: Applied Multivariate Statistics

STA 437: Applied Multivariate Statistics Al Nosedal. University of Toronto. Winter 2015 1 Chapter 5. Tests on One or Two Mean Vectors If you can t explain it simply, you don t understand it well enough Albert Einstein. Definition Chapter 5. Tests

More information

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 2.830J / 6.780J / ESD.63J Control of Processes (SMA 6303) Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/term

More information

Statistical Process Control for Multivariate Categorical Processes

Statistical Process Control for Multivariate Categorical Processes Statistical Process Control for Multivariate Categorical Processes Fugee Tsung The Hong Kong University of Science and Technology Fugee Tsung 1/27 Introduction Typical Control Charts Univariate continuous

More information

Multivariate Random Variable

Multivariate Random Variable Multivariate Random Variable Author: Author: Andrés Hincapié and Linyi Cao This Version: August 7, 2016 Multivariate Random Variable 3 Now we consider models with more than one r.v. These are called multivariate

More information

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur

Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Applied Multivariate Statistical Modeling Prof. J. Maiti Department of Industrial Engineering and Management Indian Institute of Technology, Kharagpur Lecture - 29 Multivariate Linear Regression- Model

More information

Fitting Linear Statistical Models to Data by Least Squares I: Introduction

Fitting Linear Statistical Models to Data by Least Squares I: Introduction Fitting Linear Statistical Models to Data by Least Squares I: Introduction Brian R. Hunt and C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling February 5, 2014 version

More information

CONTROL CHARTS FOR THE GENERALIZED POISSON PROCESS WITH UNDER-DISPERSION

CONTROL CHARTS FOR THE GENERALIZED POISSON PROCESS WITH UNDER-DISPERSION International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 10 No. III (December, 2016), pp. 173-181 CONTROL CHARTS FOR THE GENERALIZED POISSON PROCESS WITH UNDER-DISPERSION NARUNCHARA

More information

Cusum charts for preliminary analysis of individual observations

Cusum charts for preliminary analysis of individual observations Cusum charts for preliminary analysis of individual observations Alex J. Koning æ Econometric Institute Erasmus University Rotterdam P.O. Box 1738 NL-3000 DR Rotterdam koning@few.eur.nl Ronald J.M.M. Does

More information

Computing Probability Integrals of a Bivariate Normal Distribution. Saeed Maghsoodloo and Chien-Lung Huang 1. Author reference address:

Computing Probability Integrals of a Bivariate Normal Distribution. Saeed Maghsoodloo and Chien-Lung Huang 1. Author reference address: Computing Probability Integrals of a Bivariate Normal Distribution by Saeed Maghsoodloo and Chien-Lung Huang 1 Author reference address: Dr. Saeed Maghsoodloo Department of Industrial Engineering Auburn

More information

General Principles Within-Cases Factors Only Within and Between. Within Cases ANOVA. Part One

General Principles Within-Cases Factors Only Within and Between. Within Cases ANOVA. Part One Within Cases ANOVA Part One 1 / 25 Within Cases A case contributes a DV value for every value of a categorical IV It is natural to expect data from the same case to be correlated - NOT independent For

More information

Comparison of Fast ICA and Gradient Algorithms of Independent Component Analysis for Separation of Speech Signals

Comparison of Fast ICA and Gradient Algorithms of Independent Component Analysis for Separation of Speech Signals K. Mohanaprasad et.al / International Journal of Engineering and echnolog (IJE) Comparison of Fast ICA and Gradient Algorithms of Independent Component Analsis for Separation of Speech Signals K. Mohanaprasad

More information

Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models

Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models Repeated Measures ANOVA Multivariate ANOVA and Their Relationship to Linear Mixed Models EPSY 905: Multivariate Analysis Spring 2016 Lecture #12 April 20, 2016 EPSY 905: RM ANOVA, MANOVA, and Mixed Models

More information

Received 17 November 2004; Revised 4 April 2005

Received 17 November 2004; Revised 4 April 2005 QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL Qual. Reliab. Engng. Int. 2007; 23:203 218 Published online 23 May 2006 in Wiley InterScience (www.interscience.wiley.com..785 Research Economic Design

More information

LOAD FREQUENCY CONTROL FOR A TWO AREA INTERCONNECTED POWER SYSTEM USING ROBUST GENETIC ALGORITHM CONTROLLER

LOAD FREQUENCY CONTROL FOR A TWO AREA INTERCONNECTED POWER SYSTEM USING ROBUST GENETIC ALGORITHM CONTROLLER Journal of heoretical and Applied Information echnology 00-008 JAI. All rights reserved. LOAD FREQUENCY CONROL FOR A WO AREA INERCONNECED POWER SYSEM USING ROBUS GENEIC ALGORIHM CONROLLER B. Venkata Prasanth,

More information

Stochastic Analysis of Benue River Flow Using Moving Average (Ma) Model.

Stochastic Analysis of Benue River Flow Using Moving Average (Ma) Model. American Journal of Engineering Research (AJER) 24 American Journal of Engineering Research (AJER) e-issn : 232-847 p-issn : 232-936 Volume-3, Issue-3, pp-274-279 www.ajer.org Research Paper Open Access

More information

Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test

Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test Introduction to Statistical Inference Lecture 10: ANOVA, Kruskal-Wallis Test la Contents The two sample t-test generalizes into Analysis of Variance. In analysis of variance ANOVA the population consists

More information

Signal Interpretation in Hotelling s T 2 Control Chart for Compositional Data

Signal Interpretation in Hotelling s T 2 Control Chart for Compositional Data Signal Interpretation in Hotelling s T 2 Control Chart for Compositional Data Marina Vives-Mestres, Josep Daunis-i-Estadella and Josep-Antoni Martín-Fernández Department of Computer Science, Applied Mathematics

More information

An Investigation of Combinations of Multivariate Shewhart and MEWMA Control Charts for Monitoring the Mean Vector and Covariance Matrix

An Investigation of Combinations of Multivariate Shewhart and MEWMA Control Charts for Monitoring the Mean Vector and Covariance Matrix Technical Report Number 08-1 Department of Statistics Virginia Polytechnic Institute and State University, Blacksburg, Virginia January, 008 An Investigation of Combinations of Multivariate Shewhart and

More information

lecture 3 and 4: algorithms for linear algebra

lecture 3 and 4: algorithms for linear algebra lecture 3 and 4: algorithms for linear algebra STAT 545: Introduction to computational statistics Vinayak Rao Department of Statistics, Purdue University August 30, 2016 Solving a system of linear equations

More information

Letícia Pereira Pinto 1 and Sueli Aparecida Mingoti 2*

Letícia Pereira Pinto 1 and Sueli Aparecida Mingoti 2* Pesquisa Operacional (2015) 35(1): 123-142 2015 Brazilian Operations Research Society Printed version ISSN 0101-7438 / Online version ISSN 1678-5142 www.scielo.br/pope doi: 10.1590/0101-7438.2015.035.01.0123

More information

lecture 2 and 3: algorithms for linear algebra

lecture 2 and 3: algorithms for linear algebra lecture 2 and 3: algorithms for linear algebra STAT 545: Introduction to computational statistics Vinayak Rao Department of Statistics, Purdue University August 27, 2018 Solving a system of linear equations

More information

High-Dimensional Process Monitoring and Fault Isolation via Variable Selection

High-Dimensional Process Monitoring and Fault Isolation via Variable Selection High-Dimensional Process Monitoring and Fault Isolation via Variable Selection KAIBO WANG Tsinghua University, Beijing 100084, P. R. China WEI JIANG The Hong Kong University of Science & Technology, Kowloon,

More information

Estimating Variances and Covariances in a Non-stationary Multivariate Time Series Using the K-matrix

Estimating Variances and Covariances in a Non-stationary Multivariate Time Series Using the K-matrix Estimating Variances and Covariances in a Non-stationary Multivariate ime Series Using the K-matrix Stephen P Smith, January 019 Abstract. A second order time series model is described, and generalized

More information

Multivariate Statistical Analysis

Multivariate Statistical Analysis Multivariate Statistical Analysis Fall 2011 C. L. Williams, Ph.D. Lecture 4 for Applied Multivariate Analysis Outline 1 Eigen values and eigen vectors Characteristic equation Some properties of eigendecompositions

More information

04-Economic Dispatch 2. EE570 Energy Utilization & Conservation Professor Henry Louie

04-Economic Dispatch 2. EE570 Energy Utilization & Conservation Professor Henry Louie 04-Economic Dispatch EE570 Energy Utilization & Conservation Professor Henry Louie 1 Topics Example 1 Example Dr. Henry Louie Consider two generators with the following cost curves and constraints: C 1

More information

SUCCESSIVE POLE SHIFTING USING SAMPLED-DATA LQ REGULATORS. Sigeru Omatu

SUCCESSIVE POLE SHIFTING USING SAMPLED-DATA LQ REGULATORS. Sigeru Omatu SUCCESSIVE POLE SHIFING USING SAMPLED-DAA LQ REGULAORS oru Fujinaka Sigeru Omatu Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, 599-8531 Japan Abstract: Design of sampled-data

More information

Modeling of the Extraction of Oil from Neem Seed using Minitab 14 Software

Modeling of the Extraction of Oil from Neem Seed using Minitab 14 Software Modeling of the Extraction of Oil from Neem Seed using Minitab 14 Software Usman J.G 1., Okonkwo P.C 2*. 1.Department of Chemical Engineering, Kaduna Polytechnic, Nigeria. 2.Department of Chemical Engineering,

More information

From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. About This Book... xiii About The Author...

From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. About This Book... xiii About The Author... From Practical Data Analysis with JMP, Second Edition. Full book available for purchase here. Contents About This Book... xiii About The Author... xxiii Chapter 1 Getting Started: Data Analysis with JMP...

More information