Algorithm to Compute Minimal Nullspace Basis of a Polynomial Matrix

Size: px
Start display at page:

Download "Algorithm to Compute Minimal Nullspace Basis of a Polynomial Matrix"

Transcription

1 Proceedings of the 19th International Symposium on Mathematical heory of Networks and Systems MNS July, 1 Budapest, Hungary Algorithm to Compute Minimal Nullspace Basis of a Polynomial Matrix S. R. Khare, H. K. Pillai*, M. N. Belur Abstract In this paper we propose a numerical algorithm to compute the minimal nullspace basis of a univariate polynomial matrix of arbitrary size. In order to do so a sequence of structured matrices is obtained from the given polynomial matrix. he nullspace of the polynomial matrix can be computed from the nullspaces of these structured matrices. Index erms Singular Value Decomposition (SVD), polynomial matrix, nullspace of a polynomial matrix, minimal polynomial basis I. INRODUCION Computation of the nullspace of a polynomial matrix is a very important problem. We give an algorithm to compute the minimal polynomial basis for a given polynomial matrix. Before stating the problem, we introduce some notation and preliminaries required for this paper. Let R p q denote the set of all matrices of size p q with entries from the field of real numbers. For A R p q, let A = UΣ be the Singular Value Decomposition (SVD) of A. Rank of A is then equal to the number nonzero singular values of A. Let r be the rank of A. hen A = U Σ V is called the condensed SVD (see [1]) of A where Σ is a square diagonal matrix of size r r with nonzero singular values on its diagonal, U is an isometry that is obtained by taking the first r columns of U which correspond to the nonzero singular values and V is obtained from V in similar way. In standard MALAB notation U = U(:, 1 : r). Let R[s] denote the ring of polynomials in a single variable s with coefficients from the real field. A polynomial vector v R w [s] is a vector of size w with each entry being a polynomial. he degree of a vector v R w [s] is the maximum amongst degrees of its polynomial components. Alternatively we can write v as v = v +v 1 s+v s + +v n s n where n is the degree of v and v i R w for i =, 1,..., n and v n. hus v is a polynomial of degree n with the coefficients being the vectors from R w. Similarly a polynomial matrix R R g w [s] is a matrix of size g w with the entries from R[s]. he degree of a polynomial matrix is the maximum of the degrees amongst its polynomial entries. As in the case of vectors, a polynomial matrix can be written in polynomial form as R = R + R 1 s + R s + + R n s n (1) where n is the degree of R and R i R g w for i =, 1,..., n are the coefficient matrices and R n. he *Corresponding Author he authors are with the Department of Electrical Engineering, Indian Institute of echnology Bombay, Powai, Mumbai, India ids: S. R. Khare swanand@ee.iitb.ac.in, H. K. Pillai hp@ee.iitb.ac.in, M. N. Belur belur@ee.iitb.ac.in matrix polynomial representation of polynomial matrices plays a key role in the discussion that follows. A set of vectors {v 1, v,..., v n } R w [s] is called a polynomially independent set if the polynomial combination a 1 (s)v 1 +a (s)v + +a n (s)v n = implies that a i (s) = identically for all i = 1,,..., n. If a set of polynomial vectors is not polynomially independent, then it is called polynomially dependent. Rank (or normal rank) of a polynomial matrix R R g w [s] is defined as the number max λ R rank R(λ). It can be shown that this number is same as the number of polynomially independent rows in R. Further if the matrix R is considered to be an element of R g w (s) (the set of matrices with entries from R(s) which is the quotient field of ring of polynomials R[s]), then the above notion of rank matches the notion of rank on this quotient field. he nullspace of R is defined as N = {v R w [s] Rv = }. We now define minimal polynomial basis for the nullspace N. Definition 1.1: Let B = {m 1 (s), m (s),..., m k (s)} R w [s] be a generating set for N with degrees δ 1 δ δ k. his generating set is called minimal basis (see []) if for any other basis of N with degrees γ 1 γ γ k, it turns out that δ i γ i for i = 1,,..., k. he numbers δ 1, δ,..., δ k are called right minimal indices of N (see [3]). Given a minimal polynomial basis for N, degree of N is defined as the maximum amongst the degrees of the minimal polynomial basis vectors, that is, δ k. We now state the problem. Problem Statement 1.: Given a polynomial matrix R R g w [s] with rank r compute a minimal polynomial basis for the nullspace N of R. he paper is organized as follows: the rest of this section is devoted to discussing the related work in the literature. In Section II we discuss the main results of the paper. In Section III we propose an algorithm to compute the minimal nullspace basis of the given polynomial matrix. Further we illustrate the algorithm with some numerical examples in Section IV. Finally we conclude in Section V. Computation of the minimal nullspace basis has a lot of applications in systems theory where the systems are described using the polynomial matrices. See for instance [4], [5]. Recently an application of nullspace basis in fault detection methods was reported in [6]. In literature there are several ways to compute the minimal polynomial nullspace basis of a given polynomial matrix. One of the approaches to deal with polynomial matrices is to convert the given polynomial matrix into matrix pencil (this is also known in literature as linearization). In [7] and ISBN

2 S. R. Khare et al. Algorithm to Compute Minimal Nullspace Basis of a Polynomial Matrix [8] the given polynomial matrix is converted to a matrix pencil and then the problem of computing nullspace basis is solved using this matrix pencil. After computing a nullspace basis for the matrix pencil, this result is then converted back into the polynomial domain. In [9] two vector spaces of matrix pencils that generalize the first and the second companion form were introduced. In [3], it was shown that these linearizations can be used to obtain the left and right minimal indices and minimal bases. As opposed to pencil algorithms, in nonpencil algorithms (see for instance[1], [11]), the problem is converted to the problem of structured matrices obtained from the polynomial matrix. he manipulations are done on these structured matrices in order to compute a minimal nullspace basis. Another approach to compute the nullspace basis is using randomized algorithm as proposed in [1], [13]). he problem of computing the nullspace of a polynomial matrix is reduced to polynomial matrix multiplication. he randomized algorithm is used to compute the minimal or small degree basis elements in the nullspace of the given polynomial matrix. II. MAIN RESULS he algorithm we develop to compute the minimal nullspace basis is a non pencil algorithm. he main idea of computing the nullspace of a polynomial matrix involves constructing a sequence of structured real matrices from the given polynomial matrix. he nullspace of the given polynomial matrix is related to the nullspaces of these real structured matrices. Let R R g w [s] of degree n be represented in matrix polynomial form as in the equation (1). We R R 1 construct matrix A R (n+1)g w from R as A =.. A sequence of the structured matrices is obtained as follows: A 1 = A A, A = A A 1, () R n where s in the above equation are all zero matrices of size g w. In general for some i, A i R (n+i+1)g (i+1)w. Let K i = ker(a i ) and d i = dim(k i ). A result about the sequence {d i } i=,1,... is now proved which is essential in the computation of the basis of nullspace of R. Lemma.1: Let K i = ker(a i ) and d i = dim(k i ). Let A j be as in equation () where j is the smallest index for which d j >. hen d j+k (k + 1)d j for k 1. Proof: Let V = {v 1, v,..., v dj } be a basis for K j, where v i R (j+1)w for i = 1,..., d j. hen p 1 1 = v 1. and p 1 v 1 =., and so on up to p1 k =. are all in v 1 the kernel of A k+j, where is a zero vector of size w and each of p 1 i R(j+k+1)w for i = 1,,..., k. Also note that {p 1 1, p 1,..., p 1 k } forms a linearly independent set. Since this is true for all v i s in the kernel of A j, and V is a linearly independent set, the set {p n m} m=1,...,k,n=1,...,dj is a linearly independent set. Hence kernel of A j+k contains at least (k+ 1)d j linearly independent vectors. We now illustrate the relation of the vectors in the nullspace N with the vectors in the kernel K i. Let for some i, v R (i+1)w be such that v K i. Partition this vector v as v = [v v 1 v i ] where v j = v(jw + 1 : (j + 1)w) for j =, 1,..., i. hen it is easy to see that the polynomial vector x(s) R w [s] defined as x(s) = i j= v js j satisfies Rx(s) =. hat is x(s) N. hus a vector v K j is identified with a polynomial [ ] [ ] vector x(s) N. From Lemma v.1 it is clear that, K v j+1. hese vectors present in K j+1 can now be identified with the polynomial vectors x(s) and sx(s) in N respectively. hus Lemma.1 gives a limit based on all the polynomially dependent vectors present in K j+1 that arise from vectors in K j. In the following theorem we give the minimum stage i for which all the polynomially independent vectors in the nullspace N can be computed from the kernel K i. Before proceeding to the next result we define what we mean by a steadily increasing sequence of real numbers. Definition.: Let {a n } n=,1,... be a non-decreasing sequence of real numbers. hen we say that the sequence {a n } n=,1,... a steadily-increasing sequence if there exists a non-negative integer n N and c >, a positive constant, such that a m+1 a m = c, for all m n. heorem.3: Let R R g w [s] and construct A i as in the equation () where A i R (n+i+1)g (i+1)w. Let K i = ker A i and d i = dim(k i ). hen sequence {d i } i=,1,... a steadilyincreasing sequence and there exists n N such that d i+1 d i = k for i n, where k is the number of polynomially independent generators for the nullspace of the polynomial matrix R. Proof: We first prove that the sequence {d i } i=,1,... is a nondecreasing sequence. Let j be the smallest index such that d j >. Let d j+1 = d j + γ j+1. his implies d j+1 d j. If γ j+1 >, then new polynomially independent vector is added in the basis of N. If γ j+1 = then no new polynomially independent vectors are added in the basis of N. Further d j+ = 3d j + γ j+1 + γ j+. his implies d j+ d j+1. Depending on whether γ j+ is zero or not, we can conclude if polynomially independent vectors are added in the basis of N. Continuing this way it can be shown that the sequence {d i } i=,1,... is a nondecreasing sequence. In general for l 1 d j+l = (l + 1)d j + l (l i + 1)γ j+i. (3) i=1

3 Proceedings of the 19th International Symposium on Mathematical heory of Networks and Systems MNS July, 1 Budapest, Hungary Note that at the stage j + l, the number of polynomially independent vectors added in the basis of N are given by d j + l i=1 γ j+i for l 1. Let n N be such that k = d j + n j i=1 γ j+i. hen at this stage n, all the polynomially independent vectors are added in the the basis of N. hen from equation (3) we get, d n+1 d n = d j + n j i=1 γ j+i = k. Since γ n+1 =. In fact d n+l d n+l 1 = k as γ n+l = for l = 1,,. his proves the theorem. Remark.4: Let j be the smallest non-negative integer so that d j >. hen d = d 1 = = d j 1 =. In fact the sequence {d i } i=,1, is a strictly increasing sequence after j th term. Remark.5: From heorem.3 it is clear that we pick the polynomially independent vectors in the nullspace of R in an increasing order of degrees without missing any polynomial vector of smaller degree. hus the basis that is obtained using the theorem is a minimal basis for the nullspace of the polynomial matrix R. Further the degree of the minimal polynomial basis is also obtained from the above theorem. III. AN ALGORIHM O COMPUE MINIMAL NULLSPACE BASIS In this section we discuss an algorithm to compute the minimal nullspace basis of a given polynomial matrix R R g w [s] with rank r. We extract a minimal polynomial basis of N from the kernels K i. In order to achieve greater numerical efficiency we use the matrices obtained from the SVD of A for the computations instead of using matrices A i themselves. We now describe the construction of a sequence of matrices J i which are useful in further discussion. Construction 3.1: For a given polynomial matrix R R g w [s] with degree n, form A R (n+1)g w as in equation (). Let A = U Σ be the condensed SVD of A. Let J = U and rank (U ) = r. Further construct U J 1 = R (n+)g r where s are zero U matrices of size g r. Let J 1 = U 1 Σ 1 V1 be the condensed SVD of J 1. Let r 1 = rank(j 1 ). Now J is constructed as U J = U 1 R(n+3)g (r+r1) where s below U are zero matrices of size g r and above U 1 is the zero matrix of size g r 1. Let J = U Σ V be the condensed SVD and r = rank(j ). In general, let U J i = R (n+i+1)g (r+ri 1) (4). U i 1 where s below U are zero matrices of size g r and above U i 1 is the zero matrix of size g r i 1. Let r i = rank(j i ). We now describe the relation between matrices J i and matrices A i. As in Construction 3.1 let A = U Σ be the condensed SVD of A. hen we can write A 1 as A 1 = J 1 [ Σ Σ ] [ V ]. (5) Clearly the above relation is not the SVD of the matrix A 1 as J 1 is not an isometry. Further since the condensed SVD of A is considered, the second and third matrices in the product on the RHS of equation (5) are always full rank. hus the rank drop in A 1 is reflected in the rank drop in J 1. Stated otherwise A 1 loses rank if and only if J 1 loses rank. hus the information of the rank drop in A 1 can be obtained just by studying the rank of J 1. Further, we do similar analysis for A. U A = 6 J Σ 5 3 Σ 5 4 V Σ (6) he above equation clearly is not an SVD of A. he first matrix in the product on the RHS of equation (6) can be written as U J 1 = J I Σ 1 I V1 From equations (6) and (7) it is clear that the rank drop in A is reflected in the rank drop in J as all the other matrices in the product are always full rank. We now illustrate the relationship between ker J and K. Let v R r+r1 be such that v ker J. hen we first compute the corresponding nullspace element, say y R 3r, of the matrix on the LHS of the equation (7). For y to be in the nullspace of that matrix, y has to satisfy the following equation: I Σ 1 I V (7) y = v. (8) Since Σ 1 is a diagonal matrix and V 1 is an isometry, we can compute the vector y very easily from the above equation as I I y = v. (9) V1 1 Since Σ 1 is a diagonal matrix, the number of flops that are required in the above equation are just equal to the flops required to multiply a matrix to a vector. Further both the identity matrices in equation (8) are of the size r r. Hence first r entries in the vector v are not required in the computation of the vector y. hus matrix vector multiplication in equation (8) is that of a matrix of size r 1 r 1 (the size of ) and a vector of size r 1 (the size of truncated v required in the computation of y). hus the system of equations in (8) can be solved in a numerically efficient way. From y we now compute x R 3w, the corresponding element 1

4 S. R. Khare et al. Algorithm to Compute Minimal Nullspace Basis of a Polynomial Matrix A i = U U U Σ Σ Σ. (1) in K, in a similar way. he nullspace vector x K is obtained as x = y. (11) Note that Σ is a diagonal matrix and we obtain x from y in a numerically efficient way. hus in the case when i =, we obtain the nullspace vector of A from that of J in two steps. We now generalize the procedure to obtain nullspace element of A i from that of J i. In order to do so, we start with the following recurrence relation. [ ] [ ] I I J i+1 Σ i Vi = U. J i (1) Now for some i N, we write A i as in equation (1). Further using recurrence relation (1) we have, U U.... = J i P i 1 P i P 1, (13).. U where matrix P j, for j = 1,..., i 1, is defined as i j times { }}{ I P j = I Σ j i j times {}}{ I I j. (14) From equation (1) and (13) it is clear that the rank loss in A i is reflected in the rank loss of J i since Σ j s are diagonal matrices with nonzero entries on the diagonal and V j s are isometries. We now illustrate the method to compute the corresponding vector in K i to a vector in ker J i. Let v i R r+ri 1 be such that J i v i =. hen we first compute y R (i+1)r such that y is in the nullspace of the matrix on the LHS of equation (13). In order to do so, we go through a series of steps as follows. Given v i R r+ri 1, we first compute v i 1 R r+ri 1 such that v i 1 is in the nullspace of the matrix J i P i 1. Since Σ i 1 is a diagonal matrix and Vi 1 is an isometry, v i 1 can be obtained from v i as a matrix vector multiplication. Note that since the identity matrices in P i 1 are of the size r r, the first r entries in v i are not required in the computation of v i 1. Further we compute v i such that it is in the nullspace of the matrix J i P i 1 P i. We compute v i from v i 1 in a similar way. Note here that the identity matrices in P i are of the size of r r. hus first r entries in v i 1 are not required in the computation of v i. Continuing in this way we compute y = v 1 which is in the nullspace of J i P i 1 P i P 1. Now we compute x R (i+1)w from y such that A i x =. In order to do so we use relation in equation (1). hus we have x = y. (15) Since Σ is a diagonal matrix, we obtain x from y in a numerically efficient way. We obtain y from v i 1 in i 1 steps and in the final step we obtain x from y. hus we require i steps in order to compute the nullspace element in K i given a nullspace element of J i. We now propose an algorithm to compute a minimal polynomial basis for the nullspace N of a given polynomial matrix R R g w [s]. In order to compute this basis, we use the sequence of matrices J i obtained from R. Let δ i = dim(ker J i ). In heorem 3. we show that δ i denotes the number of polynomially independent vectors upto degree i in N. In heorem.3 we proved that the sequence {d i } i=,1,... saturates at some stage n N and the degree of minimal polynomial basis is n. hus at the stage n, δ n denotes the number of all the polynomially independent vectors in N upto degree n. heorem 3.: Let R R g w [s] be a polynomial matrix with degree n. Let N denote the nullspace of the polyno-

5 Proceedings of the 19th International Symposium on Mathematical heory of Networks and Systems MNS July, 1 Budapest, Hungary N = [ ] (16) mial matrix R. Further construct the sequence of matrices {J i } i=,1,... as in Construction 3.1. Let δ i = nullity (J i ). hen the following statements hold: (a) δ i+1 δ i for all i. (b) δ i denotes the number of polynomially independent vectors of degree upto i in the minimal polynomial basis of N. Remark 3.3: From the statement (b) of the above theorem we get the terminating criterion for the algorithm to compute the minimal nullspace basis of N as follows: let r be the normal rank of R R g w [s] with g w without loss of generality. hen the number of polynomially independent vectors in N is given by w r. hus for the smallest i such that δ i = w r, we get all the polynomially independent vectors in N and we know that the highest degree of minimal nullspace basis vectors is i. Algorithm 3.4: Computation of a minimal nullspace basis Input: Polynomial matrix R R g w [s] with rank r Output: Polynomial matrix M R w w r [s] where columns of M form the minimal polynomial basis of N Construct A as in equation (). Compute the condensed SVD of A as A = U Σ r rank(a ), δ nullity(a ), J U i while δ i < dim(n ) = w r δ, repeat i i [ + 1 ] U J i U i 1 Compute the condensed SVD of J i as J i = U i Σ i Vi r i rank(j i ), δ i nullity(j i ) end while m i N [n 1 n... n δm ] R (r+rm 1) δm such that J m N = M f N(1 : r, :) for j = m 1 : 1, repeat N V j j N(jr + 1 : jr + r j, :) M f [M f ; N(1 : r, :)] end for ˆM [ ] for j = : m, repeat ˆM [ ˆM; V M f (jr + 1 : (j + 1)r, :)] end for M m j= ˆM(:, jw + 1 : (j + 1)w)s j. Remark 3.5: he main advantage of the proposed algorithm is that all the polynomially independent vectors in N are computed at one stage as is proved in heorem 3.. Here all the polynomially independent vectors are obtained at the last iteration of the while loop of Algorithm 3.4. IV. NUMERICAL EXAMPLES In this section we consider the numerical examples to illustrate the algorithm proposed to compute the minimal nullspace basis. Example 4.1: [11, Example 3]. Let R = 1 s q 1 s q Rg g+1 [s] for some g, q N. 1 s q he nullspace is spanned by [s qg s q(g 1) s q 1]. Here m = qg and for q = and g = 3, M = [.771s 6.771s 4.771s.771]. Example 4.: In this example we illustrate the different steps in the algorithm with a randomly generated polynomial matrix of size 4 with degree. Consider the polynomial matrix R with rank as [ ] 1 s s + 1 s R = + s + 1 s 1 s + 1 s s s Here the degree m of the minimal nullspace basis is. In the notation of the algorithm N at i = is given as in equation (16). Further the matrix M f is formed by appending the following matrices as M f = [ ] M1 M M3 where [ ] M 1 =, [ ] M =, [ ] M 3 = Further the matrix M is obtained as follows where the columns of M form the minimal nullspace bas M = s s (17).. V. CONCLUDING REMARKS In this paper we discussed a numerical algorithm to compute the minimal nullspace basis of a given polynomial matrix. he algorithm involved constructing structured real matrices and working with these matrices to compute the 3

6 S. R. Khare et al. Algorithm to Compute Minimal Nullspace Basis of a Polynomial Matrix minimal nullspace basis. Advantage of our algorithm is that all the vectors in the nullspace basis are computed at one time and the efforts to track the new polynomially independent vectors that are added in the nullspace at each stage is avoided. REFERENCES [1] D. S. Watkins, Fundamentals of Matrix Computations. John Wiley and Sons Publications,. [] G. D. Forney, Minimal bases of rational vector spaces, with applications to multivariable linear systems, SIAM Journal of Control, vol. 13, pp , [3] F. D. eran, F. M. Dopico, and D. S. Mackey, Linearizations of singular matrix polynomials and the recovery of minimal indices, Electronic Journal of Linear Algebra, vol. 18, pp , 9. [4] J. Polderman and J. Willems, Introduction to Mathematical Systems heory: A Behavioral Approach. New York: Springer, 3. [5] V. Kucera, Discrete Linear Control: he polynomial Equation Approach. Willey, Chichester, UK, 197. [6] A. Varga, On computing nullspace basis - a fault detection perspective, in Proceedings of the IFAC Seoul, 8. [7]. Beelen and P. V. Dooren, A pencil approach for embedding a polynomial matrix into a unimodular matrix, SIAM Journal of Matrix Analysis and Applications, vol. 9, no. 1, pp , [8]. Beelen and G. W. Veltkamp, Numerical computation of a coprime factorization of a transfer function matrix, Systems & Control Letters, vol. 9, no. 4, pp , [9] D. S. Mackey, N. Mackey, C. Mehl, and V. Mehrmann, Vector spaces of linearizations for matrix polynomials, SIAM Journal of Matrix Analysis, vol. 8, pp , 6. [1] J. Z. Anaya and D. Henrion, An improved oeplitz algorithm for polynomial matrix null-space computation, Applied Mathematics and Computations, vol. 7, no. 1, pp. 56 7, 9. [11] E. N. Antoniou, A. I. G. Vardulakis, and S. Vologiannidis, Numerical computation of minimal polynomial bases: A generalized resultant approach, Linear Algebra and its Applications, vol. 45, pp , 5. [1] A. Strojohann and G. Villard, Computing the rank and a small nullspace basis of a polynomial matrix, in Proceedings of the International Symposium on Symbolic and Algebraic Computation, ISSAC, 5. [13] C. P. Jeannerod and G. Villard, Asymptotically fast polynomial matrix algorithms for multivariable systems, International Journal of Control, vol. 79, no. 11, pp , 6. 4

Generic degree structure of the minimal polynomial nullspace basis: a block Toeplitz matrix approach

Generic degree structure of the minimal polynomial nullspace basis: a block Toeplitz matrix approach Generic degree structure of the minimal polynomial nullspace basis: a block Toeplitz matrix approach Bhaskar Ramasubramanian, Swanand R Khare and Madhu N Belur Abstract This paper formulates the problem

More information

Generic degree structure of the minimal polynomial nullspace basis: a block Toeplitz matrix approach

Generic degree structure of the minimal polynomial nullspace basis: a block Toeplitz matrix approach Generic degree structure of the minimal polynomial nullspace basis: a block Toeplitz matrix approach Bhaskar Ramasubramanian 1, Swanand R. Khare and Madhu N. Belur 3 December 17, 014 1 Department of Electrical

More information

On the application of different numerical methods to obtain null-spaces of polynomial matrices. Part 1: block Toeplitz algorithms.

On the application of different numerical methods to obtain null-spaces of polynomial matrices. Part 1: block Toeplitz algorithms. On the application of different numerical methods to obtain null-spaces of polynomial matrices. Part 1: block Toeplitz algorithms. J.C. Zúñiga and D. Henrion Abstract Four different algorithms are designed

More information

Computing Minimal Nullspace Bases

Computing Minimal Nullspace Bases Computing Minimal Nullspace ases Wei Zhou, George Labahn, and Arne Storjohann Cheriton School of Computer Science University of Waterloo, Waterloo, Ontario, Canada {w2zhou,glabahn,astorjoh}@uwaterloo.ca

More information

Infinite elementary divisor structure-preserving transformations for polynomial matrices

Infinite elementary divisor structure-preserving transformations for polynomial matrices Infinite elementary divisor structure-preserving transformations for polynomial matrices N P Karampetakis and S Vologiannidis Aristotle University of Thessaloniki, Department of Mathematics, Thessaloniki

More information

EE731 Lecture Notes: Matrix Computations for Signal Processing

EE731 Lecture Notes: Matrix Computations for Signal Processing EE731 Lecture Notes: Matrix Computations for Signal Processing James P. Reilly c Department of Electrical and Computer Engineering McMaster University October 17, 005 Lecture 3 3 he Singular Value Decomposition

More information

The Singular Value Decomposition and Least Squares Problems

The Singular Value Decomposition and Least Squares Problems The Singular Value Decomposition and Least Squares Problems Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo September 27, 2009 Applications of SVD solving

More information

On some matrices related to a tree with attached graphs

On some matrices related to a tree with attached graphs On some matrices related to a tree with attached graphs R. B. Bapat Indian Statistical Institute New Delhi, 110016, India fax: 91-11-26856779, e-mail: rbb@isid.ac.in Abstract A tree with attached graphs

More information

Numerical Computation of Minimal Polynomial Bases: A Generalized Resultant Approach

Numerical Computation of Minimal Polynomial Bases: A Generalized Resultant Approach Numerical Computation of Minimal Polynomial Bases: A Generalized Resultant Approach E.N. Antoniou, A.I.G. Vardulakis and S. Vologiannidis Aristotle University of Thessaloniki Department of Mathematics

More information

Linear Algebra, part 3 QR and SVD

Linear Algebra, part 3 QR and SVD Linear Algebra, part 3 QR and SVD Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2012 Going back to least squares (Section 1.4 from Strang, now also see section 5.2). We

More information

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible.

MATH 2331 Linear Algebra. Section 2.1 Matrix Operations. Definition: A : m n, B : n p. Example: Compute AB, if possible. MATH 2331 Linear Algebra Section 2.1 Matrix Operations Definition: A : m n, B : n p ( 1 2 p ) ( 1 2 p ) AB = A b b b = Ab Ab Ab Example: Compute AB, if possible. 1 Row-column rule: i-j-th entry of AB:

More information

CSL361 Problem set 4: Basic linear algebra

CSL361 Problem set 4: Basic linear algebra CSL361 Problem set 4: Basic linear algebra February 21, 2017 [Note:] If the numerical matrix computations turn out to be tedious, you may use the function rref in Matlab. 1 Row-reduced echelon matrices

More information

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

ELA

ELA SHARP LOWER BOUNDS FOR THE DIMENSION OF LINEARIZATIONS OF MATRIX POLYNOMIALS FERNANDO DE TERÁN AND FROILÁN M. DOPICO Abstract. A standard way of dealing with matrixpolynomial eigenvalue problems is to

More information

Key words. n-d systems, free directions, restriction to 1-D subspace, intersection ideal.

Key words. n-d systems, free directions, restriction to 1-D subspace, intersection ideal. ALGEBRAIC CHARACTERIZATION OF FREE DIRECTIONS OF SCALAR n-d AUTONOMOUS SYSTEMS DEBASATTAM PAL AND HARISH K PILLAI Abstract In this paper, restriction of scalar n-d systems to 1-D subspaces has been considered

More information

Stat 159/259: Linear Algebra Notes

Stat 159/259: Linear Algebra Notes Stat 159/259: Linear Algebra Notes Jarrod Millman November 16, 2015 Abstract These notes assume you ve taken a semester of undergraduate linear algebra. In particular, I assume you are familiar with the

More information

Foundations of Matrix Analysis

Foundations of Matrix Analysis 1 Foundations of Matrix Analysis In this chapter we recall the basic elements of linear algebra which will be employed in the remainder of the text For most of the proofs as well as for the details, the

More information

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015

Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 2015 Chapters 5 & 6: Theory Review: Solutions Math 308 F Spring 205. If A is a 3 3 triangular matrix, explain why det(a) is equal to the product of entries on the diagonal. If A is a lower triangular or diagonal

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

Numerical computation of minimal polynomial bases: A generalized resultant approach

Numerical computation of minimal polynomial bases: A generalized resultant approach Linear Algebra and its Applications 405 (2005) 264 278 wwwelseviercom/locate/laa Numerical computation of minimal polynomial bases: A generalized resultant approach EN Antoniou,1, AIG Vardulakis, S Vologiannidis

More information

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg

Linear Algebra, part 3. Going back to least squares. Mathematical Models, Analysis and Simulation = 0. a T 1 e. a T n e. Anna-Karin Tornberg Linear Algebra, part 3 Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2010 Going back to least squares (Sections 1.7 and 2.3 from Strang). We know from before: The vector

More information

Linear Algebra Review

Linear Algebra Review Chapter 1 Linear Algebra Review It is assumed that you have had a beginning course in linear algebra, and are familiar with matrix multiplication, eigenvectors, etc I will review some of these terms here,

More information

Math 240 Calculus III

Math 240 Calculus III Generalized Calculus III Summer 2015, Session II Thursday, July 23, 2015 Agenda 1. 2. 3. 4. Motivation Defective matrices cannot be diagonalized because they do not possess enough eigenvectors to make

More information

Asymptotically Fast Polynomial Matrix Algorithms for Multivariable Systems

Asymptotically Fast Polynomial Matrix Algorithms for Multivariable Systems Laboratoire de l Informatique du Parallélisme École Normale Supérieure de Lyon Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL n o 5668 Asymptotically Fast Polynomial Matrix Algorithms for Multivariable

More information

First of all, the notion of linearity does not depend on which coordinates are used. Recall that a map T : R n R m is linear if

First of all, the notion of linearity does not depend on which coordinates are used. Recall that a map T : R n R m is linear if 5 Matrices in Different Coordinates In this section we discuss finding matrices of linear maps in different coordinates Earlier in the class was the matrix that multiplied by x to give ( x) in standard

More information

Singular Value Decomposition

Singular Value Decomposition Singular Value Decomposition Motivatation The diagonalization theorem play a part in many interesting applications. Unfortunately not all matrices can be factored as A = PDP However a factorization A =

More information

MATHEMATICS 217 NOTES

MATHEMATICS 217 NOTES MATHEMATICS 27 NOTES PART I THE JORDAN CANONICAL FORM The characteristic polynomial of an n n matrix A is the polynomial χ A (λ) = det(λi A), a monic polynomial of degree n; a monic polynomial in the variable

More information

Generalized eigenvector - Wikipedia, the free encyclopedia

Generalized eigenvector - Wikipedia, the free encyclopedia 1 of 30 18/03/2013 20:00 Generalized eigenvector From Wikipedia, the free encyclopedia In linear algebra, for a matrix A, there may not always exist a full set of linearly independent eigenvectors that

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Chapter SSM: Linear Algebra. 5. Find all x such that A x = , so that x 1 = x 2 = 0.

Chapter SSM: Linear Algebra. 5. Find all x such that A x = , so that x 1 = x 2 = 0. Chapter Find all x such that A x : Chapter, so that x x ker(a) { } Find all x such that A x ; note that all x in R satisfy the equation, so that ker(a) R span( e, e ) 5 Find all x such that A x 5 ; x x

More information

MAT Linear Algebra Collection of sample exams

MAT Linear Algebra Collection of sample exams MAT 342 - Linear Algebra Collection of sample exams A-x. (0 pts Give the precise definition of the row echelon form. 2. ( 0 pts After performing row reductions on the augmented matrix for a certain system

More information

Key words. Polynomial matrices, Toeplitz matrices, numerical linear algebra, computer-aided control system design.

Key words. Polynomial matrices, Toeplitz matrices, numerical linear algebra, computer-aided control system design. BLOCK TOEPLITZ ALGORITHMS FOR POLYNOMIAL MATRIX NULL-SPACE COMPUTATION JUAN CARLOS ZÚÑIGA AND DIDIER HENRION Abstract In this paper we present new algorithms to compute the minimal basis of the nullspace

More information

1. Introduction. Throughout this work we consider n n matrix polynomials with degree k of the form

1. Introduction. Throughout this work we consider n n matrix polynomials with degree k of the form LINEARIZATIONS OF SINGULAR MATRIX POLYNOMIALS AND THE RECOVERY OF MINIMAL INDICES FERNANDO DE TERÁN, FROILÁN M. DOPICO, AND D. STEVEN MACKEY Abstract. A standard way of dealing with a regular matrix polynomial

More information

SINGULAR VALUE DECOMPOSITION

SINGULAR VALUE DECOMPOSITION DEPARMEN OF MAHEMAICS ECHNICAL REPOR SINGULAR VALUE DECOMPOSIION Andrew Lounsbury September 8 No 8- ENNESSEE ECHNOLOGICAL UNIVERSIY Cookeville, N 38 Singular Value Decomposition Andrew Lounsbury Department

More information

2. Every linear system with the same number of equations as unknowns has a unique solution.

2. Every linear system with the same number of equations as unknowns has a unique solution. 1. For matrices A, B, C, A + B = A + C if and only if A = B. 2. Every linear system with the same number of equations as unknowns has a unique solution. 3. Every linear system with the same number of equations

More information

MATH 240 Spring, Chapter 1: Linear Equations and Matrices

MATH 240 Spring, Chapter 1: Linear Equations and Matrices MATH 240 Spring, 2006 Chapter Summaries for Kolman / Hill, Elementary Linear Algebra, 8th Ed. Sections 1.1 1.6, 2.1 2.2, 3.2 3.8, 4.3 4.5, 5.1 5.3, 5.5, 6.1 6.5, 7.1 7.2, 7.4 DEFINITIONS Chapter 1: Linear

More information

2: LINEAR TRANSFORMATIONS AND MATRICES

2: LINEAR TRANSFORMATIONS AND MATRICES 2: LINEAR TRANSFORMATIONS AND MATRICES STEVEN HEILMAN Contents 1. Review 1 2. Linear Transformations 1 3. Null spaces, range, coordinate bases 2 4. Linear Transformations and Bases 4 5. Matrix Representation,

More information

Vector and Matrix Norms. Vector and Matrix Norms

Vector and Matrix Norms. Vector and Matrix Norms Vector and Matrix Norms Vector Space Algebra Matrix Algebra: We let x x and A A, where, if x is an element of an abstract vector space n, and A = A: n m, then x is a complex column vector of length n whose

More information

POLYNOMIAL EMBEDDING ALGORITHMS FOR CONTROLLERS IN A BEHAVIORAL FRAMEWORK

POLYNOMIAL EMBEDDING ALGORITHMS FOR CONTROLLERS IN A BEHAVIORAL FRAMEWORK 1 POLYNOMIAL EMBEDDING ALGORITHMS FOR CONTROLLERS IN A BEHAVIORAL FRAMEWORK H.L. Trentelman, Member, IEEE, R. Zavala Yoe, and C. Praagman Abstract In this paper we will establish polynomial algorithms

More information

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007

Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 Math 224, Fall 2007 Exam 3 Thursday, December 6, 2007 You have 1 hour and 20 minutes. No notes, books, or other references. You are permitted to use Maple during this exam, but you must start with a blank

More information

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS

LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS LINEAR ALGEBRA BOOT CAMP WEEK 1: THE BASICS Unless otherwise stated, all vector spaces in this worksheet are finite dimensional and the scalar field F has characteristic zero. The following are facts (in

More information

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th.

Elementary Linear Algebra Review for Exam 2 Exam is Monday, November 16th. Elementary Linear Algebra Review for Exam Exam is Monday, November 6th. The exam will cover sections:.4,..4, 5. 5., 7., the class notes on Markov Models. You must be able to do each of the following. Section.4

More information

Control Systems. Linear Algebra topics. L. Lanari

Control Systems. Linear Algebra topics. L. Lanari Control Systems Linear Algebra topics L Lanari outline basic facts about matrices eigenvalues - eigenvectors - characteristic polynomial - algebraic multiplicity eigenvalues invariance under similarity

More information

MODEL ANSWERS TO THE FIRST QUIZ. 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function

MODEL ANSWERS TO THE FIRST QUIZ. 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function MODEL ANSWERS TO THE FIRST QUIZ 1. (18pts) (i) Give the definition of a m n matrix. A m n matrix with entries in a field F is a function A: I J F, where I is the set of integers between 1 and m and J is

More information

Topics in linear algebra

Topics in linear algebra Chapter 6 Topics in linear algebra 6.1 Change of basis I want to remind you of one of the basic ideas in linear algebra: change of basis. Let F be a field, V and W be finite dimensional vector spaces over

More information

Definition 2.3. We define addition and multiplication of matrices as follows.

Definition 2.3. We define addition and multiplication of matrices as follows. 14 Chapter 2 Matrices In this chapter, we review matrix algebra from Linear Algebra I, consider row and column operations on matrices, and define the rank of a matrix. Along the way prove that the row

More information

arxiv: v1 [math.na] 5 May 2011

arxiv: v1 [math.na] 5 May 2011 ITERATIVE METHODS FOR COMPUTING EIGENVALUES AND EIGENVECTORS MAYSUM PANJU arxiv:1105.1185v1 [math.na] 5 May 2011 Abstract. We examine some numerical iterative methods for computing the eigenvalues and

More information

Scientific Computing: Dense Linear Systems

Scientific Computing: Dense Linear Systems Scientific Computing: Dense Linear Systems Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 February 9th, 2012 A. Donev (Courant Institute)

More information

Vector Space Concepts

Vector Space Concepts Vector Space Concepts ECE 174 Introduction to Linear & Nonlinear Optimization Ken Kreutz-Delgado ECE Department, UC San Diego Ken Kreutz-Delgado (UC San Diego) ECE 174 Fall 2016 1 / 25 Vector Space Theory

More information

Lecture 6. Numerical methods. Approximation of functions

Lecture 6. Numerical methods. Approximation of functions Lecture 6 Numerical methods Approximation of functions Lecture 6 OUTLINE 1. Approximation and interpolation 2. Least-square method basis functions design matrix residual weighted least squares normal equation

More information

Answers in blue. If you have questions or spot an error, let me know. 1. Find all matrices that commute with A =. 4 3

Answers in blue. If you have questions or spot an error, let me know. 1. Find all matrices that commute with A =. 4 3 Answers in blue. If you have questions or spot an error, let me know. 3 4. Find all matrices that commute with A =. 4 3 a b If we set B = and set AB = BA, we see that 3a + 4b = 3a 4c, 4a + 3b = 3b 4d,

More information

SUMMARY OF MATH 1600

SUMMARY OF MATH 1600 SUMMARY OF MATH 1600 Note: The following list is intended as a study guide for the final exam. It is a continuation of the study guide for the midterm. It does not claim to be a comprehensive list. You

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

On the Simulatability Condition in Key Generation Over a Non-authenticated Public Channel

On the Simulatability Condition in Key Generation Over a Non-authenticated Public Channel On the Simulatability Condition in Key Generation Over a Non-authenticated Public Channel Wenwen Tu and Lifeng Lai Department of Electrical and Computer Engineering Worcester Polytechnic Institute Worcester,

More information

Fraction-free Row Reduction of Matrices of Skew Polynomials

Fraction-free Row Reduction of Matrices of Skew Polynomials Fraction-free Row Reduction of Matrices of Skew Polynomials Bernhard Beckermann Laboratoire d Analyse Numérique et d Optimisation Université des Sciences et Technologies de Lille France bbecker@ano.univ-lille1.fr

More information

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory.

GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. GRE Subject test preparation Spring 2016 Topic: Abstract Algebra, Linear Algebra, Number Theory. Linear Algebra Standard matrix manipulation to compute the kernel, intersection of subspaces, column spaces,

More information

CS6964: Notes On Linear Systems

CS6964: Notes On Linear Systems CS6964: Notes On Linear Systems 1 Linear Systems Systems of equations that are linear in the unknowns are said to be linear systems For instance ax 1 + bx 2 dx 1 + ex 2 = c = f gives 2 equations and 2

More information

Spring 2014 Math 272 Final Exam Review Sheet

Spring 2014 Math 272 Final Exam Review Sheet Spring 2014 Math 272 Final Exam Review Sheet You will not be allowed use of a calculator or any other device other than your pencil or pen and some scratch paper. Notes are also not allowed. In kindness

More information

On the computation of the Jordan canonical form of regular matrix polynomials

On the computation of the Jordan canonical form of regular matrix polynomials On the computation of the Jordan canonical form of regular matrix polynomials G Kalogeropoulos, P Psarrakos 2 and N Karcanias 3 Dedicated to Professor Peter Lancaster on the occasion of his 75th birthday

More information

Letting be a field, e.g., of the real numbers, the complex numbers, the rational numbers, the rational functions W(s) of a complex variable s, etc.

Letting be a field, e.g., of the real numbers, the complex numbers, the rational numbers, the rational functions W(s) of a complex variable s, etc. 1 Polynomial Matrices 1.1 Polynomials Letting be a field, e.g., of the real numbers, the complex numbers, the rational numbers, the rational functions W(s) of a complex variable s, etc., n ws ( ) as a

More information

1 Introduction. 2 Determining what the J i blocks look like. December 6, 2006

1 Introduction. 2 Determining what the J i blocks look like. December 6, 2006 Jordan Canonical Forms December 6, 2006 1 Introduction We know that not every n n matrix A can be diagonalized However, it turns out that we can always put matrices A into something called Jordan Canonical

More information

Linear Algebra Formulas. Ben Lee

Linear Algebra Formulas. Ben Lee Linear Algebra Formulas Ben Lee January 27, 2016 Definitions and Terms Diagonal: Diagonal of matrix A is a collection of entries A ij where i = j. Diagonal Matrix: A matrix (usually square), where entries

More information

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics

Rank and Nullity. MATH 322, Linear Algebra I. J. Robert Buchanan. Spring Department of Mathematics Rank and Nullity MATH 322, Linear Algebra I J. Robert Buchanan Department of Mathematics Spring 2015 Objectives We have defined and studied the important vector spaces associated with matrices (row space,

More information

Paul Van Dooren s Index Sum Theorem: To Infinity and Beyond

Paul Van Dooren s Index Sum Theorem: To Infinity and Beyond Paul Van Dooren s Index Sum Theorem: To Infinity and Beyond Froilán M. Dopico Departamento de Matemáticas Universidad Carlos III de Madrid, Spain Colloquium in honor of Paul Van Dooren on becoming Emeritus

More information

Latent Semantic Models. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze

Latent Semantic Models. Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze Latent Semantic Models Reference: Introduction to Information Retrieval by C. Manning, P. Raghavan, H. Schutze 1 Vector Space Model: Pros Automatic selection of index terms Partial matching of queries

More information

Lecture notes: Applied linear algebra Part 1. Version 2

Lecture notes: Applied linear algebra Part 1. Version 2 Lecture notes: Applied linear algebra Part 1. Version 2 Michael Karow Berlin University of Technology karow@math.tu-berlin.de October 2, 2008 1 Notation, basic notions and facts 1.1 Subspaces, range and

More information

Singular Value Decomposition (SVD) and Polar Form

Singular Value Decomposition (SVD) and Polar Form Chapter 2 Singular Value Decomposition (SVD) and Polar Form 2.1 Polar Form In this chapter, we assume that we are dealing with a real Euclidean space E. Let f: E E be any linear map. In general, it may

More information

Lattice reduction of polynomial matrices

Lattice reduction of polynomial matrices Lattice reduction of polynomial matrices Arne Storjohann David R. Cheriton School of Computer Science University of Waterloo Presented at the SIAM conference on Applied Algebraic Geometry at the Colorado

More information

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian FE661 - Statistical Methods for Financial Engineering 2. Linear algebra Jitkomut Songsiri matrices and vectors linear equations range and nullspace of matrices function of vectors, gradient and Hessian

More information

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

Lecture 1: Review of linear algebra

Lecture 1: Review of linear algebra Lecture 1: Review of linear algebra Linear functions and linearization Inverse matrix, least-squares and least-norm solutions Subspaces, basis, and dimension Change of basis and similarity transformations

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 1: Course Overview & Matrix-Vector Multiplication Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 20 Outline 1 Course

More information

Chapter 2. Vector Space (2-4 ~ 2-6)

Chapter 2. Vector Space (2-4 ~ 2-6) Chapter 2. Vector Space (2-4 ~ 2-6) KAIS wit Lab 2012. 06. 14 송유재 he four fundamental subspaces Column space C( A) : all linear combination of column vector Dimension : rank r Nullspace ( ): all vectors

More information

Math 360 Linear Algebra Fall Class Notes. a a a a a a. a a a

Math 360 Linear Algebra Fall Class Notes. a a a a a a. a a a Math 360 Linear Algebra Fall 2008 9-10-08 Class Notes Matrices As we have already seen, a matrix is a rectangular array of numbers. If a matrix A has m columns and n rows, we say that its dimensions are

More information

Computational Approaches to Finding Irreducible Representations

Computational Approaches to Finding Irreducible Representations Computational Approaches to Finding Irreducible Representations Joseph Thomas Research Advisor: Klaus Lux May 16, 2008 Introduction Among the various branches of algebra, linear algebra has the distinctions

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

Elementary Row Operations on Matrices

Elementary Row Operations on Matrices King Saud University September 17, 018 Table of contents 1 Definition A real matrix is a rectangular array whose entries are real numbers. These numbers are organized on rows and columns. An m n matrix

More information

Solution to Homework 8, Math 2568

Solution to Homework 8, Math 2568 Solution to Homework 8, Math 568 S 5.4: No. 0. Use property of heorem 5 to test for linear independence in P 3 for the following set of cubic polynomials S = { x 3 x, x x, x, x 3 }. Solution: If we use

More information

Definitions for Quizzes

Definitions for Quizzes Definitions for Quizzes Italicized text (or something close to it) will be given to you. Plain text is (an example of) what you should write as a definition. [Bracketed text will not be given, nor does

More information

Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces. Section 1: Linear Independence

Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces. Section 1: Linear Independence Math 123, Week 5: Linear Independence, Basis, and Matrix Spaces Section 1: Linear Independence Recall that every row on the left-hand side of the coefficient matrix of a linear system A x = b which could

More information

EE731 Lecture Notes: Matrix Computations for Signal Processing

EE731 Lecture Notes: Matrix Computations for Signal Processing EE731 Lecture Notes: Matrix Computations for Signal Processing James P. Reilly c Department of Electrical and Computer Engineering McMaster University September 22, 2005 0 Preface This collection of ten

More information

18.312: Algebraic Combinatorics Lionel Levine. Lecture 22. Smith normal form of an integer matrix (linear algebra over Z).

18.312: Algebraic Combinatorics Lionel Levine. Lecture 22. Smith normal form of an integer matrix (linear algebra over Z). 18.312: Algebraic Combinatorics Lionel Levine Lecture date: May 3, 2011 Lecture 22 Notes by: Lou Odette This lecture: Smith normal form of an integer matrix (linear algebra over Z). 1 Review of Abelian

More information

SYMBOL EXPLANATION EXAMPLE

SYMBOL EXPLANATION EXAMPLE MATH 4310 PRELIM I REVIEW Notation These are the symbols we have used in class, leading up to Prelim I, and which I will use on the exam SYMBOL EXPLANATION EXAMPLE {a, b, c, } The is the way to write the

More information

MATH 320, WEEK 11: Eigenvalues and Eigenvectors

MATH 320, WEEK 11: Eigenvalues and Eigenvectors MATH 30, WEEK : Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors We have learned about several vector spaces which naturally arise from matrix operations In particular, we have learned about the

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Linear Algebra Practice Final

Linear Algebra Practice Final . Let (a) First, Linear Algebra Practice Final Summer 3 3 A = 5 3 3 rref([a ) = 5 so if we let x 5 = t, then x 4 = t, x 3 =, x = t, and x = t, so that t t x = t = t t whence ker A = span(,,,, ) and a basis

More information

Algorithms to Compute Bases and the Rank of a Matrix

Algorithms to Compute Bases and the Rank of a Matrix Algorithms to Compute Bases and the Rank of a Matrix Subspaces associated to a matrix Suppose that A is an m n matrix The row space of A is the subspace of R n spanned by the rows of A The column space

More information

Chapter 2: Matrix Algebra

Chapter 2: Matrix Algebra Chapter 2: Matrix Algebra (Last Updated: October 12, 2016) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). Write A = 1. Matrix operations [a 1 a n. Then entry

More information

18.06SC Final Exam Solutions

18.06SC Final Exam Solutions 18.06SC Final Exam Solutions 1 (4+7=11 pts.) Suppose A is 3 by 4, and Ax = 0 has exactly 2 special solutions: 1 2 x 1 = 1 and x 2 = 1 1 0 0 1 (a) Remembering that A is 3 by 4, find its row reduced echelon

More information

Matrix invertibility. Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n

Matrix invertibility. Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n Matrix invertibility Rank-Nullity Theorem: For any n-column matrix A, nullity A +ranka = n Corollary: Let A be an R C matrix. Then A is invertible if and only if R = C and the columns of A are linearly

More information

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018 Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

More information

σ 11 σ 22 σ pp 0 with p = min(n, m) The σ ii s are the singular values. Notation change σ ii A 1 σ 2

σ 11 σ 22 σ pp 0 with p = min(n, m) The σ ii s are the singular values. Notation change σ ii A 1 σ 2 HE SINGULAR VALUE DECOMPOSIION he SVD existence - properties. Pseudo-inverses and the SVD Use of SVD for least-squares problems Applications of the SVD he Singular Value Decomposition (SVD) heorem For

More information

THE STABLE EMBEDDING PROBLEM

THE STABLE EMBEDDING PROBLEM THE STABLE EMBEDDING PROBLEM R. Zavala Yoé C. Praagman H.L. Trentelman Department of Econometrics, University of Groningen, P.O. Box 800, 9700 AV Groningen, The Netherlands Research Institute for Mathematics

More information

Math 321: Linear Algebra

Math 321: Linear Algebra Math 32: Linear Algebra T. Kapitula Department of Mathematics and Statistics University of New Mexico September 8, 24 Textbook: Linear Algebra,by J. Hefferon E-mail: kapitula@math.unm.edu Prof. Kapitula,

More information

What is A + B? What is A B? What is AB? What is BA? What is A 2? and B = QUESTION 2. What is the reduced row echelon matrix of A =

What is A + B? What is A B? What is AB? What is BA? What is A 2? and B = QUESTION 2. What is the reduced row echelon matrix of A = STUDENT S COMPANIONS IN BASIC MATH: THE ELEVENTH Matrix Reloaded by Block Buster Presumably you know the first part of matrix story, including its basic operations (addition and multiplication) and row

More information

MATH 304 Linear Algebra Lecture 20: Review for Test 1.

MATH 304 Linear Algebra Lecture 20: Review for Test 1. MATH 304 Linear Algebra Lecture 20: Review for Test 1. Topics for Test 1 Part I: Elementary linear algebra (Leon 1.1 1.4, 2.1 2.2) Systems of linear equations: elementary operations, Gaussian elimination,

More information

Preliminary Linear Algebra 1. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 100

Preliminary Linear Algebra 1. Copyright c 2012 Dan Nettleton (Iowa State University) Statistics / 100 Preliminary Linear Algebra 1 Copyright c 2012 Dan Nettleton (Iowa State University) Statistics 611 1 / 100 Notation for all there exists such that therefore because end of proof (QED) Copyright c 2012

More information

Kernels of Directed Graph Laplacians. J. S. Caughman and J.J.P. Veerman

Kernels of Directed Graph Laplacians. J. S. Caughman and J.J.P. Veerman Kernels of Directed Graph Laplacians J. S. Caughman and J.J.P. Veerman Department of Mathematics and Statistics Portland State University PO Box 751, Portland, OR 97207. caughman@pdx.edu, veerman@pdx.edu

More information

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix.

MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. MATH 323 Linear Algebra Lecture 12: Basis of a vector space (continued). Rank and nullity of a matrix. Basis Definition. Let V be a vector space. A linearly independent spanning set for V is called a basis.

More information