Introduction to mesoscopic physics

Size: px
Start display at page:

Download "Introduction to mesoscopic physics"

Transcription

1 Introduction to mesoscopic physics Markus Büttiker University of Geneva NiPS Summer School 2010: Energy Harvesting at the micro and nanoscale Avigliano, Umbro, August 1 August 6, (2010).

2 Mesoscopic Physics 2 Wave nature of electrons becomes important Webb et al., 1985 Yacoby et al. 1995

3 Mach-Zehnder Interferometers Neder, Heiblum, Levinson, Mahalu, Umansky, PRL 96, (2006) 3 Roulleau, Portier, Glattli, Roche, Faini, Gennser, and D. Mailly, PRL 100, (2008) Bieri, Schoenenberger, Oberholzer, et al. PRB (2009). Litvin, Tranitz, Wegscheider and Strunk, PRB 75, (2007)

4 Probing mesoscopics on the nanoscale 4 M. J. Brukman and D. A. Bonnell, Physics Today, June 2008, p. 36

5 Grapehne: single and bilayer Li unige

6 Length scales 6 Geometrical dimension (size of conductor) Phase coherence length (distance an electron travels before suffering a phase change of Elastic scattering length (mean free path between elastic scattering events) Inelastic scattering length (distance an electron travels before loosing an energy kt) Beenakker and van Houten, 1991 ) Macroscopic conductor Mesoscopic conductor

7 7 Physics versus geometry Mesoscopic physics = «Between mircoscopic and macroscopic» Nano physics = on the geometrical length of a nanometer Definition of mesoscopic physics is based on physical length scales. In contrast, nanophysiscs, is a definition based on a geometrical length scale.

8 Lecture contents Conductance from transmission 1. Single channel conductors 2. Multichannel conductors 3. Multiprobe conductors 8 Thermoelectric transport Nonlinear transport Noise 1. Basic 2. Equilibrium noise 3. Shot-noise two-probe conductors Fluctuation relations

9 9 Conductance from Transmission 1. Single channel conductors

10 Conductance from scattering theory Heuristic discussion Fermi energy left contact Fermi energy right contact applied voltage transmission probability reflection probability 10 incident current density density of states independent of material!! «Landauer formula»

11 Drift and diffusion 11 at constant Einstein relation for space dependent

12 Scattering matrix 12 scattering state scattering matrix current conservation S is a unitray matrix In the absence of a magnetic field S is an orthogonal matrix

13 Conductance from transmission 13 conductance quantum resistance quantum dissipation and irreversibility boundary conditions

14 Persistent current (periodic boundary conditions) 14 Buttiker, Imry and Landauer, Phys. Lett. 96A, 365 (1983). Measured in 1990 by L. Levy et al, in 1991 by Webb et al..

15 Persistent current 15 A. C. Bleszynski-Jayich, W. E. Shanks, B. Peaudecerf, E. Ginossar, F. von Oppen, L.Glazman, and J. G. E. Harris,, Science 326, 272 (2009).

16 Tunable wave splitter 16 Buttiker, Imry, Azbel, Phys. Rev. A30, 1982 (1984)

17 Aharonov-Bohm conductance oscillations 17 Gefen, Imry, Azbel, PRL 2004 Buttiker, Imry, Azbel, Phys. Rev. A30, 1982 (1984)

18 Aharonov-Bohm oscillations 18

19 Conductance from Transmission Two-probe multi-channel conductors

20 Multi-channel conductance: leads 20 asymptotic perfect translation invariant potential seprable wave function energy of transverse motion channel threshold energy for transverse and longitudnial motion scattering channel

21 Mulit-channel conductance 21 incident current in channel i density in channel i density of states in channel i independent of channel «Landauer formula»

22 Eigen channels 22 Eigen channels hermitian matrix; real eigenvalues hermitian matrix; real eigenvalues are the genetic code of mesoscopic conductors!! Many single channel conductors in parallel. All the properties we discussed for single-channel two-probe conductors apply equally to many-channel multi-probe conductors: in particular

23 Conductance of a perfect wire 23 equilbrium electrochemical potential number of channels with threshold spin degeneracy Example: Single wall carbon nanotube:

24 Quantum Point Contact 24 van Wees et al., PRL 60, 848 (1988) Wharam et al, J. Phys. C 21, L209 (1988) gate 2D-electron gas gate

25 Saddle-point potential Quantized conductance: saddle Buttiker, Phys. Rev. B41, 7906 (1990) 25 Transmission probability

26 Quantized conductance-magnetic field Buttiker, Phys. Rev. B41, 7906 (1990) 26 magnetic field B

27 Chaotic cavity 27 for symmetric cavity with asmmetric cavity including weak localization: Baranger and Mello, 1994

28 Diffusive wire 28 Dorokhov-Mello-Pereyra-Kumar Universal conductance fluctuations Stone and Lee, Altschuler

29 Conductance from Transmission Multi-probe conductors

30 Multi-probe conductors 30 Buttiker, PRL 57, 1761 (1986); IBM J. Res. Developm. 32, 317 (1988)

31 Four-probe resistances Buttiker, PRL 57, 1761 (1986); IBM J. Res. Developm. 32, 317 (1988) 31 G has eigenvalue zero! Current contacts Voltgae probes

32 Sub-determinants of conductance matrix 32 D is a sub-determinant of rank three of the conductance matrix. All sub-determinants are (up to a sign) equal. Proof: Expand total determinant into sub-determinants: The only solution without current at any terminal requires that all applied voltages are equal.

33 Multi-probe conductors: scattering matrix Buttiker, PRL 57, 1761 (1986); IBM J. Res. Developm. 32, 317 (1988) 33 magnetic field symmetry

34 Reciprocity 34 From and

35 Reciprocity: Benoit et al. Benoit, Washburn, Umbach, Laibowitz, Webb, PRL 57, 1765 (1986) 35

36 Reciprocity: van Houten et al. 36 skipping orbit electron focusing van Houten et al., Phys. Rev. B39, 8556 (1989)

37 Historical remarks 37 Plane-parallel barriers J. Frenkel, Phys. Rev. 36, 1604 (1930) W. Ehrenberg and H. Hoenel, Z. f. Physik 68, 289 (1931) A. Sommerfeld and H. Bethe, Handbuch der Physik (1945) R. Landauer, IBM J. Res. Developm. 1, 223 (1957) Single-channel transport R. Landauer, Phil. Mag. 21, 863 (1970) H. L. Engquist and P. W. Anderson, Phys. Rev. B24, 1151 (1981) Multi-channel conductors Anderson, Economou and Soukoulis, Azbel, Fisher and Lee, Buttiker, Imry and Landauer, Buttiker

38 Success and limitations Success: Magntic field symmetry : Reciprocity relations Negative four probe resistances, «uphill voltages» Widely applied to ballistic, chaotic and metallic diffusive relatively open conductors Theory of the Quantum Hall effect (edge state transport): probably the most stringent test of the approach 39 Range of application probably the same as DFT (!!) Limitations: Kondo effects, conductance anomalies,.. however extensions to incorporate inelastic scattering, dephasing, time-dependent potentials, etc. exist

39 Thermoelectric Transport 40

40 Energy current 40 Energy flux in a quantum channel: reservoirs at T1 and T2: Small temperature difference Thermal quantum (independent of electron or channel properties!!) H. L. Engquist and P. W. Anderson, Phys. Rev. B24, 1151 (1981) Lorentz factor (Sommerfeld theory)

41 Heat current 41 Heat current in perfect quantum channel (linear response) Heat current (elastic backscattering, linear response) Thermoelectric transport

42 Thermoelectric transport 42 Fluxes in response to potentials Current and temperature differences as driving forces R resistance S thermopower Peltier thermal conductance Multi-terminal expressions: P. N. Butcher, J. Phys.: Condensed Matter 2, 4869 (1990).

43 Thermopower S. F. Godijn, S. Möller, H. Buhmann, L. W. Molenkamp, S. A. van Langen PRL 82, (1999) Cutler-Mott-formula 43 zero temperature limit Probability distribution of the thermopower of a chaotic cavity one channel leads S. A. van Langen, P. G. Silvestrov, C. W. J. Beenakker, Supperlattice and Microstructures, 23, 691 (1999).

44 Nonlinear transport 44

45 Rectification 45 Scattering matrix: Weakly nonlinear transport: where 18 elements M. Büttiker, J. Phys.: Condens. Matter 5, 9361 (1993); T. Christen and M. Büttiker, Europhys. Lett. 35, 523 (1996)

46 Characteristic potentials M. Buttiker, J. Phys. Condensed Matter 5, (1993). 46 Voltage partial DOS: injectivity emissivity Magnetic-field symmetry: Poisson equation: injectivity is source of

47 Magnetic field asymmetry of rectification Elastic transport: 47 Naive expectation: since T is even in the two-probe case, nonlinear I-V is also even Correct only in linear regime: reciprocity of s-matrix hinges on symmetry of U EQULIBRIUM AWAY FROM EQUILIBRIUM: Interaction effect At equilibrium microreversibilty is sufficient to dictate symmetry of transport coefficients: Away from equilibrium boundary conditions become important

48 Second order conductance of a chaotic dot D. Sanchez and M. Buttiker, PRL 93, (2004) M. Polianski and M. Buttiker, PRL 96, (2006) 48 Unitray limit Numerical RMT

49 Carbon nanotubes Rectification: experiments I 49 Cavities J. Wei et al., PRL 95, (2005) Rings D. M. Zumbuhl et al, PRL 96, (2006) Theory agrees with experiment for N > 4 R. Leturcq et al., PRL 96, (2006)

50 Rectification: experiments II 50 D. Hartmann, L. Worschech, A. Forchel, PRB 78, (2008).

51 Current Noise in Mesoscopic Conductors Basics

52 Fundamental sources of noise Buttiker, PRB 46, (1992) Thermal fluctuations of occupation numbers in the contacts 52 Nyquist-Johnson noise Quantum partition noise: kt = 0 occupation numbers: incident beam transmitted beam reflected beam averages: Each particle can only be either transmitted or reflected: Blanter and Buttiker, Phys. Rep. 336, 1 (2000)

53 Occupation number and current amplitudes Incident current at kt = 0 Buttiker, PRB 46, (1992) 53 Incident current at kt > 0 Occupation number Creation and annihilation operators < > = statistical average «Incident current» «Current amplitude»

54 Noise spectral density Spectral density S (noise power) 54 quantum statistical average of four creation and annihilation op. zero-frequency spectrum (white noise limit) equilibrium non-equilibrium fluctuation-dissipation theorem shot-noise Buttiker, PRL 65, 2901 (1990); PRB 46, (1992)

55 Current Noise in Mesoscopic 55 Conductors 2. Equilibrium Noise

56 Use Thermal current fluctuations 56 with for all auto-correlation cross-correlation QHE-plateau N:

57 Current Noise in Mesoscopic 57 Conductors 3. Shot Noise: Two-probe conductors

58 Shot-noise: two-terminal 60 Consider kt = 0, V>0, and a two-terminal conductor: Quantum partition noise If all Shottky (Poisson) Fano factor Khlus (1987) Lesovik (1989) Buttiker (1990)

59 Shot-noise: Qunatum point contact 61 Kumar, L. Saminadayar, D. C. Glattli, Y. Jin, B. Etienne, PRL 76, 2778 (1996) M. I. Reznikov, M. Heiblum, H. Shtrikman, D. Mahalu, PRL 75, 3340 (1996) Ideally only one channel contributes

60 Crossover from thermal to shot noise 62 tunnel junction H. Birk et al., PRL 75, 1610 (1995)

61 Current Noise in Mesoscopic 63 Conductors 4. Shot Noise: Correlations

62 Shot-noise correlations 64 Consider multi-terminal conductor at kt = 0, M source contacts with distribution voltage All other contacts grounded at voltage Correlation measured bewteen two grounded contacts: M =1, partition noise M =2, exchange effects, two paricle Aharonov-Bohm effect, orbital entanglement, violation of Bell inequality Samuelsson, Sukhorukov, Buttiker, PRL 92, (2004) Buttiker, Samuelsson, Sukhorukov, Physica E20, 33 (2003)

63 Beam splitter with noisy input state 65 Oberholzer et al. Physica E6, 314 (2000) Here Bias configuration:

64 Experiment of Oberholzer et al. 66 Oberholzer et al, Physica E6, 314 (2000) See also: Henny, et al., Science 284, 296 (1999); Oliver et al. Science 284, 299 (1999)

65 Review on Shot Noise 67 «Shot Noise in Mesoscopic Conductors» Ya. M. Blanter and M. Buttiker, Phys. Rep. 336, 1 (2000)

66 Fluctuation relations 68

67 Nonlinear transport and noise H. Forster and M. Buttiker, PISA, arxiv: Fluctuation dissipation theorem 69 Fluctuation relation of Forster and Buttiker (microreversible only at eq.) Fluctation relation of Saito and Utsumi [General case: H. Forster and M. Buttiker, PRL 101, (2008) ]

68 Nonlinearity and noise H. Forster and M. Buttiker, arxiv: Negative excess noise

69 Kobayashi s experiment Nakamura, Yamauchi, Hashisaka, Chida, Kobayashi, Ono, Leturcq, Ensslin, Saito, Utsumi, and Gossard, Phys. Rev. Lett. 104, (2010) 71

70 Nongaussian noise on macroscopic scales Nagaev, Ayvazyan, Sergeeva, and Buttiker, arxiv: macroscopic!! potential dependence of conductance cyclotron-frequency times scattering time [Saito and Utsumi, 2008]

71 Summary Transport theory for coherent electron transport Conductance Thermal transport Non linear transport Noise Correlations Fluctuation relations

Scattering theory of thermoelectric transport. Markus Büttiker University of Geneva

Scattering theory of thermoelectric transport. Markus Büttiker University of Geneva Scattering theory of thermoelectric transport Markus Büttiker University of Geneva Summer School "Energy harvesting at micro and nanoscales, Workshop "Energy harvesting: models and applications, Erice,

More information

Lecture 3. Shot noise correlations: The two-particle Aharonv-Bohm effect. Markus Buttiker University of Geneva

Lecture 3. Shot noise correlations: The two-particle Aharonv-Bohm effect. Markus Buttiker University of Geneva Lecture 3 Shot noise correlations: The two-particle haronv-bohm effect 1 6 1 C 3 B 8 5 4 D 3 4 7 Markus Buttiker University of Geneva IV-th Windsor Summer School on Condensed Matter Theory, organized by

More information

Three-terminal quantum-dot thermoelectrics

Three-terminal quantum-dot thermoelectrics Three-terminal quantum-dot thermoelectrics Björn Sothmann Université de Genève Collaborators: R. Sánchez, A. N. Jordan, M. Büttiker 5.11.2013 Outline Introduction Quantum dots and Coulomb blockade Quantum

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 25 Jun 1999

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 25 Jun 1999 CHARGE RELAXATION IN THE PRESENCE OF SHOT NOISE IN COULOMB COUPLED MESOSCOPIC SYSTEMS arxiv:cond-mat/9906386v1 [cond-mat.mes-hall] 25 Jun 1999 MARKUS BÜTTIKER Département de Physique Théorique, Université

More information

Failure of the Wiedemann-Franz law in mesoscopic conductors

Failure of the Wiedemann-Franz law in mesoscopic conductors PHYSICAL REVIEW B 7, 05107 005 Failure of the Wiedemann-Franz law in mesoscopic conductors Maxim G. Vavilov and A. Douglas Stone Department of Applied Physics, Yale University, New Haven, Connecticut 0650,

More information

Dephasing of an Electronic Two-Path Interferometer

Dephasing of an Electronic Two-Path Interferometer Dephasing of an Electronic Two-Path Interferometer I. Gurman, R. Sabo, M. Heiblum, V. Umansky, and D. Mahalu Braun Center for Submicron Research, Dept. of Condensed Matter physics, Weizmann Institute of

More information

Currents from hot spots

Currents from hot spots NANO-CTM Currents from hot spots Markus Büttiker, Geneva with Björn Sothmann, Geneva Rafael Sanchez, Madrid Andrew N. Jordan, Rochester Summer School "Energy harvesting at micro and nanoscales, Workshop

More information

arxiv: v1 [cond-mat.mes-hall] 15 Mar 2010

arxiv: v1 [cond-mat.mes-hall] 15 Mar 2010 Quantum phases: years of the Aharonov-Bohm Effect and years of the Berry phase arxiv:.8v [cond-mat.mes-hall] Mar Inferring the transport properties of edge-states formed at quantum Hall based Aharonov-Bohm

More information

arxiv: v2 [cond-mat.mes-hall] 18 Oct 2010

arxiv: v2 [cond-mat.mes-hall] 18 Oct 2010 Tuning Excess Noise by Aharonov-Bohm Interferometry arxiv:13.511v [cond-mat.mes-hall] 18 Oct 1 Fabrizio Dolcini 1, and Hermann Grabert, 3 1 Dipartimento di Fisica del Politecnico di Torino, I-119 Torino,

More information

Quantum transport in nanoscale solids

Quantum transport in nanoscale solids Quantum transport in nanoscale solids The Landauer approach Dietmar Weinmann Institut de Physique et Chimie des Matériaux de Strasbourg Strasbourg, ESC 2012 p. 1 Quantum effects in electron transport R.

More information

Shot-noise and conductance measurements of transparent superconductor/two-dimensional electron gas junctions

Shot-noise and conductance measurements of transparent superconductor/two-dimensional electron gas junctions Shot-noise and conductance measurements of transparent superconductor/two-dimensional electron gas junctions B.-R. Choi, A. E. Hansen, T. Kontos, C. Hoffmann, S. Oberholzer, W. Belzig, and C. Schönenberger*

More information

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab Nanoscience, MCC026 2nd quarter, fall 2012 Quantum Transport, Lecture 1/2 Tomas Löfwander Applied Quantum Physics Lab Quantum Transport Nanoscience: Quantum transport: control and making of useful things

More information

Quantum coherence in quantum dot - Aharonov-Bohm ring hybrid systems

Quantum coherence in quantum dot - Aharonov-Bohm ring hybrid systems Superlattices and Microstructures www.elsevier.com/locate/jnlabr/yspmi Quantum coherence in quantum dot - Aharonov-Bohm ring hybrid systems S. Katsumoto, K. Kobayashi, H. Aikawa, A. Sano, Y. Iye Institute

More information

The Physics of Nanoelectronics

The Physics of Nanoelectronics The Physics of Nanoelectronics Transport and Fluctuation Phenomena at Low Temperatures Tero T. Heikkilä Low Temperature Laboratory, Aalto University, Finland OXFORD UNIVERSITY PRESS Contents List of symbols

More information

Martes Cuánticos. Quantum Capacitors. (Quantum RC-circuits) Victor A. Gopar

Martes Cuánticos. Quantum Capacitors. (Quantum RC-circuits) Victor A. Gopar Martes Cuánticos Quantum Capacitors (Quantum RC-circuits) Victor A. Gopar -Universal resistances of the quantum resistance-capacitance circuit. Nature Physics, 6, 697, 2010. C. Mora y K. Le Hur -Violation

More information

Fluctuation Theorem for a Small Engine and Magnetization Switching by Spin Torque

Fluctuation Theorem for a Small Engine and Magnetization Switching by Spin Torque Fluctuation Theorem for a Small Engine and Magnetization Switching by Spin Torque Yasuhiro Utsumi Tomohiro Taniguchi Mie Univ. Spintronics Research Center, AIST YU, Tomohiro Taniguchi, PRL 114, 186601,

More information

Types of electrical noise

Types of electrical noise Quantum Shot Noise Fluctuations in the flow of electrons signal the transition from particle to wave behavior. Published in revised form in Physics Today, May 2003, page 37. Carlo Beenakker & Christian

More information

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid

Observation of neutral modes in the fractional quantum hall effect regime. Aveek Bid Observation of neutral modes in the fractional quantum hall effect regime Aveek Bid Department of Physics, Indian Institute of Science, Bangalore Nature 585 466 (2010) Quantum Hall Effect Magnetic field

More information

Charge carrier statistics/shot Noise

Charge carrier statistics/shot Noise Charge carrier statistics/shot Noise Sebastian Waltz Department of Physics 16. Juni 2010 S.Waltz (Biomolecular Dynamics) Charge carrier statistics/shot Noise 16. Juni 2010 1 / 36 Outline 1 Charge carrier

More information

Weakly nonlinear ac response: Theory and application. Physical Review B (Condensed Matter and Materials Physics), 1999, v. 59 n. 11, p.

Weakly nonlinear ac response: Theory and application. Physical Review B (Condensed Matter and Materials Physics), 1999, v. 59 n. 11, p. Title Weakly nonlinear ac response: Theory and application Author(s) Ma, ZS; Wang, J; Guo, H Citation Physical Review B (Condensed Matter and Materials Physics), 1999, v. 59 n. 11, p. 7575-7578 Issued

More information

Quantum Shot Noise. arxiv:cond-mat/ v1 [cond-mat.mes-hall] 30 Apr 2006

Quantum Shot Noise. arxiv:cond-mat/ v1 [cond-mat.mes-hall] 30 Apr 2006 arxiv:cond-mat/0605025v [cond-mat.mes-hall] 30 Apr 2006 Quantum Shot Noise Fluctuations in the flow of electrons signal the transition from particle to wave behavior. Published in revised form in Physics

More information

Effect of a voltage probe on the phase-coherent conductance of a ballistic chaotic cavity

Effect of a voltage probe on the phase-coherent conductance of a ballistic chaotic cavity PHYSICAL REVIEW B VOLUME 51, NUMBER 12 15 MARCH 1995-11 Effect of a voltage probe on the phase-coherent conductance of a ballistic chaotic cavity P. W. Brouwer and C. W. J. Beenakker Instituut-Lorentz,

More information

Quantum physics in quantum dots

Quantum physics in quantum dots Quantum physics in quantum dots Klaus Ensslin Solid State Physics Zürich AFM nanolithography Multi-terminal tunneling Rings and dots Time-resolved charge detection Moore s Law Transistors per chip 10 9

More information

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime

Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Universal conductance fluctuation of mesoscopic systems in the metal-insulator crossover regime Zhenhua Qiao, Yanxia Xing, and Jian Wang* Department of Physics and the Center of Theoretical and Computational

More information

Current and noise in chiral and non chiral Luttinger liquids. Thierry Martin Université de la Méditerranée Centre de Physique Théorique, Marseille

Current and noise in chiral and non chiral Luttinger liquids. Thierry Martin Université de la Méditerranée Centre de Physique Théorique, Marseille Current and noise in chiral and non chiral Luttinger liquids Thierry Martin Université de la Méditerranée Centre de Physique Théorique, Marseille Outline: Luttinger liquids 101 Transport in Mesoscopic

More information

Electrical Transport in Nanoscale Systems

Electrical Transport in Nanoscale Systems Electrical Transport in Nanoscale Systems Description This book provides an in-depth description of transport phenomena relevant to systems of nanoscale dimensions. The different viewpoints and theoretical

More information

What is Quantum Transport?

What is Quantum Transport? What is Quantum Transport? Branislav K. Nikolić Department of Physics and Astronomy, University of Delaware, U.S.A. http://www.physics.udel.edu/~bnikolic Semiclassical Transport (is boring!) Bloch-Boltzmann

More information

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS

QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS QUANTUM INTERFERENCE IN SEMICONDUCTOR RINGS PhD theses Orsolya Kálmán Supervisors: Dr. Mihály Benedict Dr. Péter Földi University of Szeged Faculty of Science and Informatics Doctoral School in Physics

More information

Nanoscience quantum transport

Nanoscience quantum transport Nanoscience quantum transport Janine Splettstößer Applied Quantum Physics, MC2, Chalmers University of Technology Chalmers, November 2 10 Plan/Outline 4 Lectures (1) Introduction to quantum transport (2)

More information

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Scattering theory of current-induced forces Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf Overview Current-induced forces in mesoscopic systems: In molecule/dot with slow mechanical

More information

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact

Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Scanning gate microscopy and individual control of edge-state transmission through a quantum point contact Stefan Heun NEST, CNR-INFM and Scuola Normale Superiore, Pisa, Italy Coworkers NEST, Pisa, Italy:

More information

Introduction to Theory of Mesoscopic Systems

Introduction to Theory of Mesoscopic Systems Introduction to Theory of Mesoscopic Systems Boris Altshuler Princeton University, Columbia University & NEC Laboratories America Lecture 5 Beforehand Yesterday Today Anderson Localization, Mesoscopic

More information

Semiclassical formulation

Semiclassical formulation The story so far: Transport coefficients relate current densities and electric fields (currents and voltages). Can define differential transport coefficients + mobility. Drude picture: treat electrons

More information

Ballistic quantum transport through nanostructures

Ballistic quantum transport through nanostructures Ballistic quantum transport through nanostructures S. Rotter, F. Libisch, F. Aigner, B. Weingartner, J. Feist, I. Březinová, and J. Burgdörfer Inst. for Theoretical Physics/E136 A major aim in ballistic

More information

Adiabatic quantum motors

Adiabatic quantum motors Felix von Oppen Freie Universität Berlin with Raul Bustos Marun and Gil Refael Motion at the nanoscale Brownian motion Directed motion at the nanoscale?? 2 Directed motion at the nanoscale Nanocars 3 Nanoscale

More information

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg

Laurens W. Molenkamp. Physikalisches Institut, EP3 Universität Würzburg Laurens W. Molenkamp Physikalisches Institut, EP3 Universität Würzburg Onsager Coefficients I electric current density J particle current density J Q heat flux, heat current density µ chemical potential

More information

Charge fluctuations in coupled systems: Ring coupled to a wire or ring

Charge fluctuations in coupled systems: Ring coupled to a wire or ring Charge fluctuations in coupled systems: Ring coupled to a wire or ring P. Singha Deo, 1 P. Koskinen, 2 and M. Manninen 2 1 Unit for Nano-Science & Technology, S. N. Bose National Centre for Basic Sciences,

More information

Detecting noise with shot noise: a new on-chip photon detector

Detecting noise with shot noise: a new on-chip photon detector Detecting noise with shot noise: a new on-chip photon detector Y. Jompol 1,,, P. Roulleau 1,, T. Jullien 1, B. Roche 1, I. Farrer 2, D.A. Ritchie 2, and D. C. Glattli 1 1 Nanoelectronics Group, Service

More information

Coherent nonlinear transport in quantum rings

Coherent nonlinear transport in quantum rings Physica E 35 (26) 327 331 www.elsevier.com/locate/physe Coherent nonlinear transport in quantum rings R. Leturcq a,, R. Bianchetti a, G. Go tz a, T. Ihn a, K. Ensslin a, D.C. Driscoll b, A.C. Gossard b

More information

arxiv: v1 [cond-mat.mes-hall] 26 Jun 2009

arxiv: v1 [cond-mat.mes-hall] 26 Jun 2009 S-Matrix Formulation of Mesoscopic Systems and Evanescent Modes Sheelan Sengupta Chowdhury 1, P. Singha Deo 1, A. M. Jayannavar 2 and M. Manninen 3 arxiv:0906.4921v1 [cond-mat.mes-hall] 26 Jun 2009 1 Unit

More information

Electron counting with quantum dots

Electron counting with quantum dots Electron counting with quantum dots Klaus Ensslin Solid State Physics Zürich with S. Gustavsson I. Shorubalko R. Leturcq T. Ihn A. C. Gossard Time-resolved charge detection Single photon detection Time-resolved

More information

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime

Charging and Kondo Effects in an Antidot in the Quantum Hall Regime Semiconductor Physics Group Cavendish Laboratory University of Cambridge Charging and Kondo Effects in an Antidot in the Quantum Hall Regime M. Kataoka C. J. B. Ford M. Y. Simmons D. A. Ritchie University

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Nov 2001 Published in: Single-Electron Tunneling and Mesoscopic Devices, edited by H. Koch and H. Lübbig (Springer, Berlin, 1992): pp. 175 179. arxiv:cond-mat/0111505v1 [cond-mat.mes-hall] 27 Nov 2001 Resonant

More information

QUANTUM ELECTRONICS ON THE TRAY* *Sur le plateau (de Saclay)

QUANTUM ELECTRONICS ON THE TRAY* *Sur le plateau (de Saclay) QUANTUM ELECTRONIC ON THE TRAY* *ur le plateau (de aclay) Goal: Reveal the quantum behavior of electrons everal ways of revealing the quantum behavior of electrons 1 Interference experiments of coherent

More information

Coherence and Phase Sensitive Measurements in a Quantum Dot /95/74(20)/4047(4)$ The American Physical Society 4047

Coherence and Phase Sensitive Measurements in a Quantum Dot /95/74(20)/4047(4)$ The American Physical Society 4047 VOLUME 74, NUMBER 20 PHYSICAL REVIEW LETTERS 15 MAY 1995 Coherence and Phase Sensitive Measurements in a Quantum Dot A. Yacoby, M. Heiblum, D. Mahalu, and Hadas Shtrikman Braun Center for Submicron Research,

More information

QUANTUM ELECTRON OPTICS AND ITS APPLICATIONS. 1. Introduction

QUANTUM ELECTRON OPTICS AND ITS APPLICATIONS. 1. Introduction QUANUM ELECRON OPICS AND IS APPLICAIONS W. D. OLIVER, R. C. LIU, J. KIM, X. MAIRE, L. DI CARLO AND Y. YAMAMOO Departments of Electrical Engineering and Applied Physics Ginzton Laboratory, Stanford, CA

More information

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect

8.513 Lecture 14. Coherent backscattering Weak localization Aharonov-Bohm effect 8.513 Lecture 14 Coherent backscattering Weak localization Aharonov-Bohm effect Light diffusion; Speckle patterns; Speckles in coherent backscattering phase-averaged Coherent backscattering Contribution

More information

Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE

Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE Strong back-action of a linear circuit on a single electronic quantum channel F. PIERRE F. Parmentier, A. Anthore, S. Jézouin, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly Laboratory for Photonics &

More information

Charges and Spins in Quantum Dots

Charges and Spins in Quantum Dots Charges and Spins in Quantum Dots L.I. Glazman Yale University Chernogolovka 2007 Outline Confined (0D) Fermi liquid: Electron-electron interaction and ground state properties of a quantum dot Confined

More information

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Lectures: Condensed Matter II 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures Luis Dias UT/ORNL Lectures: Condensed Matter II 1 Electronic Transport

More information

Büttiker s probe in molecular electronics: Applications to charge and heat transport

Büttiker s probe in molecular electronics: Applications to charge and heat transport Büttiker s probe in molecular electronics: Applications to charge and heat transport Dvira Segal Department of Chemistry University of Toronto Michael Kilgour (poster) Büttiker s probe in molecular electronics:

More information

Quantum Noise as an Entanglement Meter

Quantum Noise as an Entanglement Meter Quantum Noise as an Entanglement Meter Leonid Levitov MIT and KITP UCSB Landau memorial conference Chernogolovka, 06/22/2008 Part I: Quantum Noise as an Entanglement Meter with Israel Klich (2008); arxiv:

More information

The Role of Spin in Ballistic-Mesoscopic Transport

The Role of Spin in Ballistic-Mesoscopic Transport The Role of Spin in Ballistic-Mesoscopic Transport INT Program Chaos and Interactions: From Nuclei to Quantum Dots Seattle, WA 8/12/2 CM Marcus, Harvard University Supported by ARO-MURI, DARPA, NSF Spin-Orbit

More information

Quantum Hall Effect in Graphene p-n Junctions

Quantum Hall Effect in Graphene p-n Junctions Quantum Hall Effect in Graphene p-n Junctions Dima Abanin (MIT) Collaboration: Leonid Levitov, Patrick Lee, Harvard and Columbia groups UIUC January 14, 2008 Electron transport in graphene monolayer New

More information

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique

Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique Bruit de grenaille mesuré par comptage d'électrons dans une boîte quantique GDR Physique Quantique Mésoscopique, Aussois, 19-22 mars 2007 Simon Gustavsson Matthias Studer Renaud Leturcq Barbara Simovic

More information

Spin Filtering: how to write and read quantum information on mobile qubits

Spin Filtering: how to write and read quantum information on mobile qubits Spin Filtering: how to write and read quantum information on mobile qubits Amnon Aharony Physics Department and Ilse Katz Nano institute Ora Entin-Wohlman (BGU), Guy Cohen (BGU) Yasuhiro Tokura (NTT) Shingo

More information

Theory of Fano effects in an Aharonov-Bohm ring with a quantum dot

Theory of Fano effects in an Aharonov-Bohm ring with a quantum dot Theory of Fano effects in an Aharonov-Bohm ring with a quantum dot Takeshi Nakanishi and Kiyoyuki Terakura National Institute of Advanced Industrial Science and Technology, 1 Umezono, Tsukuba 35-8568,

More information

Interferometric and noise signatures of Majorana fermion edge states in transport experiments

Interferometric and noise signatures of Majorana fermion edge states in transport experiments Interferometric and noise signatures of ajorana fermion edge states in transport experiments Grégory Strübi, Wolfgang Belzig, ahn-soo Choi, and C. Bruder Department of Physics, University of Basel, CH-056

More information

Spin Currents in Mesoscopic Systems

Spin Currents in Mesoscopic Systems Spin Currents in Mesoscopic Systems Philippe Jacquod - U of Arizona I Adagideli (Sabanci) J Bardarson (Berkeley) M Duckheim (Berlin) D Loss (Basel) J Meair (Arizona) K Richter (Regensburg) M Scheid (Regensburg)

More information

QUANTUM- CLASSICAL ANALOGIES

QUANTUM- CLASSICAL ANALOGIES D. Dragoman M. Dragoman QUANTUM- CLASSICAL ANALOGIES With 78 Figures ^Ü Springer 1 Introduction 1 2 Analogies Between Ballistic Electrons and Electromagnetic Waves 9 2.1 Analog Parameters for Ballistic

More information

Mesoscopics with Superconductivity. Philippe Jacquod. U of Arizona. R. Whitney (ILL, Grenoble)

Mesoscopics with Superconductivity. Philippe Jacquod. U of Arizona. R. Whitney (ILL, Grenoble) Mesoscopics with Superconductivity Philippe Jacquod U of Arizona R. Whitney (ILL, Grenoble) Mesoscopics without superconductivity Mesoscopic = between «microscopic» and «macroscopic»; N. van Kampen 81

More information

Persistent spin current in a spin ring

Persistent spin current in a spin ring Persistent spin current in a spin ring Ming-Che Chang Dept of Physics Taiwan Normal Univ Jing-Nuo Wu (NCTU) Min-Fong Yang (Tunghai U.) A brief history precursor: Hund, Ann. Phys. 1934 spin charge persistent

More information

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik

Majorana single-charge transistor. Reinhold Egger Institut für Theoretische Physik Majorana single-charge transistor Reinhold Egger Institut für Theoretische Physik Overview Coulomb charging effects on quantum transport through Majorana nanowires: Two-terminal device: Majorana singlecharge

More information

SPONTANEOUS PERSISTENT CURRENTS IN MESOSCOPIC RINGS Ε. ZIPPER AND M. SZOPA

SPONTANEOUS PERSISTENT CURRENTS IN MESOSCOPIC RINGS Ε. ZIPPER AND M. SZOPA Vol. 87 (1995) ACTΛ PHYSICA POLONICΛ A No. 1 Proceedings of the XXIII International School of Seiniconducting Compounds, Jaszowiec 1994 SPONTANEOUS PERSISTENT CURRENTS IN MESOSCOPIC RINGS Ε. ZIPPER AND

More information

Physics of Low-Dimensional Semiconductor Structures

Physics of Low-Dimensional Semiconductor Structures Physics of Low-Dimensional Semiconductor Structures Edited by Paul Butcher University of Warwick Coventry, England Norman H. March University of Oxford Oxford, England and Mario P. Tosi Scuola Normale

More information

Capri - 04/04/ Hanbury Brown and Twiss type experiments in elecronic conductors

Capri - 04/04/ Hanbury Brown and Twiss type experiments in elecronic conductors Capri - 04/04/2006-1 Hanbury Brown and Twiss type experiments in elecronic conductors 50 years of HBT Pioneering experiments in the field of quantum statistics by R. Hanbury-Brown and R. Q. Twiss 50 years

More information

Quantum coherent transport in Meso- and Nanoscopic Systems

Quantum coherent transport in Meso- and Nanoscopic Systems Quantum coherent transport in Meso- and Nanoscopic Systems Philippe Jacquod pjacquod@physics.arizona.edu U of Arizona http://www.physics.arizona.edu/~pjacquod/ Quantum coherent transport Outline Quantum

More information

arxiv: v2 [cond-mat.mes-hall] 21 Jan 2014

arxiv: v2 [cond-mat.mes-hall] 21 Jan 2014 Hanbury Brown and Twiss Correlations of Cooper Pairs in Helical Liquids Mahn-Soo Choi Department of Physics, Korea University, Seoul 136-713, Korea School of Physics, Korea Institute for dvanced Study,

More information

arxiv: v1 [cond-mat.mes-hall] 28 Mar 2016

arxiv: v1 [cond-mat.mes-hall] 28 Mar 2016 http://www.nature.com/nnano/journal/v10/n10/abs/nnano.015.176.html Three-Terminal Energy Harvester with Coupled Quantum Dots arxiv:1603.08570v1 [cond-mat.mes-hall] 8 Mar 016 Holger Thierschmann 1,5,, Rafael

More information

MESOSCOPIC QUANTUM OPTICS

MESOSCOPIC QUANTUM OPTICS MESOSCOPIC QUANTUM OPTICS by Yoshihisa Yamamoto Ata Imamoglu A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim Brisbane Toronto Singapore Preface xi 1 Basic Concepts

More information

List of Comprehensive Exams Topics

List of Comprehensive Exams Topics List of Comprehensive Exams Topics Mechanics 1. Basic Mechanics Newton s laws and conservation laws, the virial theorem 2. The Lagrangian and Hamiltonian Formalism The Lagrange formalism and the principle

More information

Nanomaterials Characterization by lowtemperature Scanning Probe Microscopy

Nanomaterials Characterization by lowtemperature Scanning Probe Microscopy Nanomaterials Characterization by lowtemperature Scanning Probe Microscopy Stefan Heun NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore Piazza San Silvestro 12, 56127 Pisa, Italy e-mail: stefan.heun@nano.cnr.it

More information

arxiv: v1 [cond-mat.mes-hall] 29 Jan 2013

arxiv: v1 [cond-mat.mes-hall] 29 Jan 2013 Coherence and Indistinguishability of Single Electrons Emitted by Independent Sources arxiv:1301.7093v1 [cond-mat.mes-hall] 29 Jan 2013 E. Bocquillon, 1 V. Freulon, 1 J.-M Berroir, 1 P. Degiovanni, 2 B.

More information

A Tunable Fano System Realized in a Quantum Dot in an Aharonov-Bohm Ring

A Tunable Fano System Realized in a Quantum Dot in an Aharonov-Bohm Ring A Tunable Fano System Realized in a Quantum Dot in an Aharonov-Bohm Ring K. Kobayashi, H. Aikawa, S. Katsumoto, and Y. Iye Institute for Solid State Physics, University of Tokyo, Kashiwanoha, Chiba 277-8581,

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

M12.L6 Low frequency noise in magnetic tunnel junctions. Shot noise: from photons to electrons

M12.L6 Low frequency noise in magnetic tunnel junctions. Shot noise: from photons to electrons M12.L6 Low frequency noise in magnetic tunnel junctions L6 Shot noise: from photons to electrons 59 What we understand under noise in electron transport Definitions Noise is the SIGNAL (Rodolf Landauer)

More information

Introduction to a few basic concepts in thermoelectricity

Introduction to a few basic concepts in thermoelectricity Introduction to a few basic concepts in thermoelectricity Giuliano Benenti Center for Nonlinear and Complex Systems Univ. Insubria, Como, Italy 1 Irreversible thermodynamic Irreversible thermodynamics

More information

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona

Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators. Philippe Jacquod. U of Arizona Symmetries in Quantum Transport : From Random Matrix Theory to Topological Insulators Philippe Jacquod U of Arizona UA Phys colloquium - feb 1, 2013 Continuous symmetries and conservation laws Noether

More information

Symmetry. conduction. of electrical. by M. Buttiker. resistances is linked directly to the microscopic. reciprocity of the S-matrix, which describes

Symmetry. conduction. of electrical. by M. Buttiker. resistances is linked directly to the microscopic. reciprocity of the S-matrix, which describes Symmetry of electrical conduction by M. Buttiker The resistance of a conductor measured in a theorem for electrical conductors. This theorem applies to four-probe setup is invariant if the exchange of

More information

Quantum Effects in Thermal and Thermo-Electric Transport in Semiconductor Nanost ructu res

Quantum Effects in Thermal and Thermo-Electric Transport in Semiconductor Nanost ructu res Physica Scripta. Vol. T49, 441-445, 1993 Quantum Effects in Thermal and Thermo-Electric Transport in Semiconductor Nanost ructu res L. W. Molenkamp, H. van Houten and A. A. M. Staring Philips Research

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

Supercondcting Qubits

Supercondcting Qubits Supercondcting Qubits Patricia Thrasher University of Washington, Seattle, Washington 98195 Superconducting qubits are electrical circuits based on the Josephson tunnel junctions and have the ability to

More information

Superconductivity at nanoscale

Superconductivity at nanoscale Superconductivity at nanoscale Superconductivity is the result of the formation of a quantum condensate of paired electrons (Cooper pairs). In small particles, the allowed energy levels are quantized and

More information

Coulomb blockade and single electron tunnelling

Coulomb blockade and single electron tunnelling Coulomb blockade and single electron tunnelling Andrea Donarini Institute of theoretical physics, University of Regensburg Three terminal device Source System Drain Gate Variation of the electrostatic

More information

Physics of Semiconductors

Physics of Semiconductors Physics of Semiconductors 13 th 2016.7.11 Shingo Katsumoto Department of Physics and Institute for Solid State Physics University of Tokyo Outline today Laughlin s justification Spintronics Two current

More information

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS Chaire de Physique Mésoscopique Michel Devoret Année 2007, Cours des 7 et 14 juin INTRODUCTION À LA PHYSIQUE MÉSOSCOPIQUE: ÉLECTRONS ET PHOTONS INTRODUCTION TO MESOSCOPIC PHYSICS: ELECTRONS AND PHOTONS

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Schematic representation of the experimental set up. The PC of the hot line being biased, the temperature raises. The temperature is extracted from noise

More information

Coherence and Correlations in Transport through Quantum Dots

Coherence and Correlations in Transport through Quantum Dots Coherence and Correlations in Transport through Quantum Dots Rolf J. Haug Abteilung Nanostrukturen Institut für Festkörperphysik and Laboratory for Nano and Quantum Engineering Gottfried Wilhelm Leibniz

More information

The Kondo Effect in the Unitary Limit

The Kondo Effect in the Unitary Limit The Kondo Effect in the Unitary Limit W.G. van der Wiel 1,*, S. De Franceschi 1, T. Fujisawa 2, J.M. Elzerman 1, S. Tarucha 2,3 and L.P. Kouwenhoven 1 1 Department of Applied Physics, DIMES, and ERATO

More information

Project Periodic Report

Project Periodic Report Project Periodic Report Publishable Summary Grant Agreement n. 256959 Project title Nanoscale energy management for powering ICT devices Project acronym NANOPOWER Call identifier FP7-ICT-2009-5 Funding

More information

arxiv: v1 [cond-mat.mes-hall] 28 Feb 2012

arxiv: v1 [cond-mat.mes-hall] 28 Feb 2012 Electron quantum optics : partitioning electrons one by one arxiv:.6v [cond-mat.mes-hall] 8 Feb E. Bocquillon, F.D. Parmentier, C. Grenier, J.-M. Berroir, P. Degiovanni, D.C. Glattli, B. Plaçais, A. Cavanna,

More information

Topological Effects. PH671 - Transport

Topological Effects. PH671 - Transport Topological Effects PH671 - Transport Speakers include Yakir Aharonov Boris Altshuler Yshai Avishai Michael Berry Markus Buttiker Georgi Dvali Francois Englert Klaus Ensslin Yuval Gefen David Gross* Moty

More information

arxiv:cond-mat/ v1 15 Mar 1997

arxiv:cond-mat/ v1 15 Mar 1997 A local approach for global partial density of states Jian Wang and Qingrong Zheng arxiv:cond-mat/9703156v1 15 Mar 1997 Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong. Hong

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena

Introduction to Wave Scattering, Localization and Mesoscopic Phenomena Springer Series in Materials Science 88 Introduction to Wave Scattering, Localization and Mesoscopic Phenomena Bearbeitet von Ping Sheng Neuausgabe 2006. Buch. xv, 329 S. Hardcover ISBN 978 3 540 29155

More information

Fano Resonance in a Quantum Wire with a Side-coupled Quantum Dot

Fano Resonance in a Quantum Wire with a Side-coupled Quantum Dot Fano Resonance in a Quantum Wire with a Side-coupled Quantum Dot Kensuke Kobayashi, Hisashi Aikawa, Akira Sano, Shingo Katsumoto, and Yasuhiro Iye Institute for Solid State Physics, University of Tokyo,

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

Topological Hall effect studied in simple models

Topological Hall effect studied in simple models PHYSICAL REVIEW B 74, 045327 2006 Topological Hall effect studied in simple models G. Metalidis* and P. Bruno Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle, Germany Received 24

More information