Lecture 17: Differential Entropy

Size: px
Start display at page:

Download "Lecture 17: Differential Entropy"

Transcription

1 Lecture 17: Differential Entropy Differential entropy AEP for differential entropy Quantization Maximum differential entropy Estimation counterpart of Fano s inequality Dr. Yao Xie, ECE587, Information Theory, Duke University

2 From discrete to continuous world Dr. Yao Xie, ECE587, Information Theory, Duke University 1

3 Differential entropy defined for continuous random variable differential entropy: h(x) = S f(x) log f(x)dx S is the support of probability density function (PDF) sometimes denote as h(f) Dr. Yao Xie, ECE587, Information Theory, Duke University 2

4 Uniform distribution f(x) = 1/a, x [0, a] differential entropy: h(x) = a 0 1/a log(a)dx = log a bits for a < 1, log a < 0, differential entropy can be negative! (unlike the discrete world) interpretation: volume of support set is 2 h(x) = 2 log a = a > 0 Dr. Yao Xie, ECE587, Information Theory, Duke University 3

5 Normal distribution f(x) = 1 x2 e 2σ 2, x R 2πσ 2 Differential entropy: h(x) = 1 2 log 2πeσ2 bits Calculation: Dr. Yao Xie, ECE587, Information Theory, Duke University 4

6 Some properties h(x + c) = h(x) h(ax) = h(x) + log a h(ax) = h(x) + log det(a) Dr. Yao Xie, ECE587, Information Theory, Duke University 5

7 AEP for continuous random variable Discrete world: for a sequence of i.i.d. random variables p(x 1,..., X n ) 2 nh(x) Continuous world: for a sequence of i.i.d. random variables 1 n log f(x 1,..., X n ) h(x), in probability. Proof from weak law of large number Dr. Yao Xie, ECE587, Information Theory, Duke University 6

8 Size of typical set Discrete world: number of typical sequences A (n) ϵ 2 nh(x) Continuous world: volume of typical set Volume of set A: Vol(A) = A dx 1 dx n Dr. Yao Xie, ECE587, Information Theory, Duke University 7

9 p(a (n) ϵ ) > 1 ϵ for n sufficiently large Vol(A) 2 n(h(x)+ϵ) for n sufficiently large Vol(A) (1 ϵ)2 n(h(x) ϵ) for n sufficiently large Proofs: very similar to the discrete world 1 = f(x 1,, x n )dx 1 dx n A (n) ϵ f(x 1,, x n )dx 1 dx n 2 n(h(x)+ϵ) A (n) ϵ dx 1 dx n Dr. Yao Xie, ECE587, Information Theory, Duke University 8

10 Volume of smallest set that contains most of the probability is 2 nh(x) for n-dimensional space, this means that each dim has measure 2 h(x)! "#$%&! "#$%& Differential entropy is a the volume of the typical set Fisher information is a the surface area of the typical set Dr. Yao Xie, ECE587, Information Theory, Duke University 9

11 Mean value theorem (MVT) If a function f is continuous on the closed interval [a, b], and differentiable on (a, b), then there exists a point c (a, b) such that f (c) = f(b) f(a) b a Dr. Yao Xie, ECE587, Information Theory, Duke University 10

12 Relation of continuous entropy to discrete entropy Discretize a continuous pdf f(x), divide the range of X into bins of length MVT: exist a value x i within each bin such that f(x i ) = (i+1) i f(x)dx f(x) x Dr. Yao Xie, ECE587, Information Theory, Duke University 11

13 Define a random variable X {x 1,...} with probability mass function p i = (i+1) i f(x)dx = f(x i ) Entropy of X H(X ) = p i log p i = f(x i ) log f(x i ) log, If f(x) is Riemann integrable, H(X ) + log h(x), as 0 Dr. Yao Xie, ECE587, Information Theory, Duke University 12

14 Implication on quantization Let = 2 n, log = n In general, h(x) + n is the number of bits on average to describe a continuous variable X to n-bit accuracy e.g. if X is uniform on [0, 1/8], the first 3 bits must be zero. Hence to describe X to n bit accuracy we need n 3 bits. Agrees with h(x) = 3 if X N (0, 100), n + h(x) = n +.5 log(2πe 100) = n Dr. Yao Xie, ECE587, Information Theory, Duke University 13

15 Joint and conditional differential entropy Joint differential entropy h(x 1,..., X n ) = f(x 1,..., x n ) log f(x 1,..., x n )dx 1 dx n Conditional differential entropy h(x Y ) = f(x, y) log f(x, y)dxdy = h(x, Y ) h(y ) Dr. Yao Xie, ECE587, Information Theory, Duke University 14

16 Relative entropy and mutual information Relative entropy D(f q) = f log f g Not necessarily finite. Let 0 log(0/0) = 0 Mutual information I(X; Y ) = f(x, y) log f(x, y) f(x)f(y) dxdy I(X; Y ) 0, D(f q) 0 Same Venn diagram relationship as in the discrete world: chain rule, conditioning reduces entropy, union bound... Dr. Yao Xie, ECE587, Information Theory, Duke University 15

17 Entropy of multivariate Gaussian Theorem. Let X 1,..., X n N (µ, K), µ: mean vector, K: covariance matrix, then h(x 1, X 2,..., X n ) = 1 2 log(2πe)n K bits Proof: Dr. Yao Xie, ECE587, Information Theory, Duke University 16

18 Mutual information of multivariate Gaussian (X, Y ) N (0, K) K = [ ] σ 2 ρσ 2 ρσ 2 σ 2 h(x) = h(y ) = 1 2 log(2πeσ2 ) h(x, Y ) = 1 2 log(2πe)2 K h(x; Y ) = h(x) + h(y ) h(x; Y ) = 1 2 log(1 ρ2 ) ρ = ±1, perfectly correlated, mutual information is! Dr. Yao Xie, ECE587, Information Theory, Duke University 17

19 Multivariate Gaussian is maximum entropy distribution Theorem. Let X R n be random vector with zero mean and covariance matrix K. Then h(x) 1 2 log(2πe)n K Proof: Dr. Yao Xie, ECE587, Information Theory, Duke University 18

20 Estimation counterpart of Fano s inequality Random variable X, estimator ˆX E(X ˆX) 2 1 2πe e2h(x) equality iff X is Gaussian and ˆX is the mean of X corollary: given side information Y and estimator ˆX(Y ) E(X ˆX(Y )) 2 1 2πe e2h(x Y ) Dr. Yao Xie, ECE587, Information Theory, Duke University 19

21 Summary discrete random variable continuous random variable entropy differential entropy Many things similar: mutual information, AEP Some things are different in continuous world: h(x) can be negative, maximum entropy distribution is Gaussian. Dr. Yao Xie, ECE587, Information Theory, Duke University 20

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye Chapter 8: Differential entropy Chapter 8 outline Motivation Definitions Relation to discrete entropy Joint and conditional differential entropy Relative entropy and mutual information Properties AEP for

More information

Lecture 22: Final Review

Lecture 22: Final Review Lecture 22: Final Review Nuts and bolts Fundamental questions and limits Tools Practical algorithms Future topics Dr Yao Xie, ECE587, Information Theory, Duke University Basics Dr Yao Xie, ECE587, Information

More information

Lecture 5: Asymptotic Equipartition Property

Lecture 5: Asymptotic Equipartition Property Lecture 5: Asymptotic Equipartition Property Law of large number for product of random variables AEP and consequences Dr. Yao Xie, ECE587, Information Theory, Duke University Stock market Initial investment

More information

Lecture 8: Channel Capacity, Continuous Random Variables

Lecture 8: Channel Capacity, Continuous Random Variables EE376A/STATS376A Information Theory Lecture 8-02/0/208 Lecture 8: Channel Capacity, Continuous Random Variables Lecturer: Tsachy Weissman Scribe: Augustine Chemparathy, Adithya Ganesh, Philip Hwang Channel

More information

Lecture 11: Continuous-valued signals and differential entropy

Lecture 11: Continuous-valued signals and differential entropy Lecture 11: Continuous-valued signals and differential entropy Biology 429 Carl Bergstrom September 20, 2008 Sources: Parts of today s lecture follow Chapter 8 from Cover and Thomas (2007). Some components

More information

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions EE/Stat 376B Handout #5 Network Information Theory October, 14, 014 1. Problem.4 parts (b) and (c). Homework Set # Solutions (b) Consider h(x + Y ) h(x + Y Y ) = h(x Y ) = h(x). (c) Let ay = Y 1 + Y, where

More information

Exercises with solutions (Set D)

Exercises with solutions (Set D) Exercises with solutions Set D. A fair die is rolled at the same time as a fair coin is tossed. Let A be the number on the upper surface of the die and let B describe the outcome of the coin toss, where

More information

Lecture 5 Channel Coding over Continuous Channels

Lecture 5 Channel Coding over Continuous Channels Lecture 5 Channel Coding over Continuous Channels I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw November 14, 2014 1 / 34 I-Hsiang Wang NIT Lecture 5 From

More information

Lecture 6: Gaussian Channels. Copyright G. Caire (Sample Lectures) 157

Lecture 6: Gaussian Channels. Copyright G. Caire (Sample Lectures) 157 Lecture 6: Gaussian Channels Copyright G. Caire (Sample Lectures) 157 Differential entropy (1) Definition 18. The (joint) differential entropy of a continuous random vector X n p X n(x) over R is: Z h(x

More information

x log x, which is strictly convex, and use Jensen s Inequality:

x log x, which is strictly convex, and use Jensen s Inequality: 2. Information measures: mutual information 2.1 Divergence: main inequality Theorem 2.1 (Information Inequality). D(P Q) 0 ; D(P Q) = 0 iff P = Q Proof. Let ϕ(x) x log x, which is strictly convex, and

More information

Lecture 6: Entropy Rate

Lecture 6: Entropy Rate Lecture 6: Entropy Rate Entropy rate H(X) Random walk on graph Dr. Yao Xie, ECE587, Information Theory, Duke University Coin tossing versus poker Toss a fair coin and see and sequence Head, Tail, Tail,

More information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information 4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

More information

Lecture 20: Quantization and Rate-Distortion

Lecture 20: Quantization and Rate-Distortion Lecture 20: Quantization and Rate-Distortion Quantization Introduction to rate-distortion theorem Dr. Yao Xie, ECE587, Information Theory, Duke University Approimating continuous signals... Dr. Yao Xie,

More information

Hands-On Learning Theory Fall 2016, Lecture 3

Hands-On Learning Theory Fall 2016, Lecture 3 Hands-On Learning Theory Fall 016, Lecture 3 Jean Honorio jhonorio@purdue.edu 1 Information Theory First, we provide some information theory background. Definition 3.1 (Entropy). The entropy of a discrete

More information

Random Variables and Their Distributions

Random Variables and Their Distributions Chapter 3 Random Variables and Their Distributions A random variable (r.v.) is a function that assigns one and only one numerical value to each simple event in an experiment. We will denote r.vs by capital

More information

National Sun Yat-Sen University CSE Course: Information Theory. Maximum Entropy and Spectral Estimation

National Sun Yat-Sen University CSE Course: Information Theory. Maximum Entropy and Spectral Estimation Maximum Entropy and Spectral Estimation 1 Introduction What is the distribution of velocities in the gas at a given temperature? It is the Maxwell-Boltzmann distribution. The maximum entropy distribution

More information

Solutions to Homework Set #4 Differential Entropy and Gaussian Channel

Solutions to Homework Set #4 Differential Entropy and Gaussian Channel Solutions to Homework Set #4 Differential Entropy and Gaussian Channel 1. Differential entropy. Evaluate the differential entropy h(x = f lnf for the following: (a Find the entropy of the exponential density

More information

LECTURE 13. Last time: Lecture outline

LECTURE 13. Last time: Lecture outline LECTURE 13 Last time: Strong coding theorem Revisiting channel and codes Bound on probability of error Error exponent Lecture outline Fano s Lemma revisited Fano s inequality for codewords Converse to

More information

Chapter I: Fundamental Information Theory

Chapter I: Fundamental Information Theory ECE-S622/T62 Notes Chapter I: Fundamental Information Theory Ruifeng Zhang Dept. of Electrical & Computer Eng. Drexel University. Information Source Information is the outcome of some physical processes.

More information

EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm

EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm 1. Feedback does not increase the capacity. Consider a channel with feedback. We assume that all the recieved outputs are sent back immediately

More information

CHAPTER 3. P (B j A i ) P (B j ) =log 2. j=1

CHAPTER 3. P (B j A i ) P (B j ) =log 2. j=1 CHAPTER 3 Problem 3. : Also : Hence : I(B j ; A i ) = log P (B j A i ) P (B j ) 4 P (B j )= P (B j,a i )= i= 3 P (A i )= P (B j,a i )= j= =log P (B j,a i ) P (B j )P (A i ).3, j=.7, j=.4, j=3.3, i=.7,

More information

On Upper Bounding Discrete Entropy

On Upper Bounding Discrete Entropy On Upper Bounding Discrete Entropy by Razan Al-nakhli A report submitted to the Department of mathematics and statistics in conformity with the requirements for the degree of Master of Science Queen s

More information

Information Theory Primer:

Information Theory Primer: Information Theory Primer: Entropy, KL Divergence, Mutual Information, Jensen s inequality Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 2018 Please submit on Gradescope. Start every question on a new page.

EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 2018 Please submit on Gradescope. Start every question on a new page. EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 28 Please submit on Gradescope. Start every question on a new page.. Maximum Differential Entropy (a) Show that among all distributions supported

More information

ELEC546 Review of Information Theory

ELEC546 Review of Information Theory ELEC546 Review of Information Theory Vincent Lau 1/1/004 1 Review of Information Theory Entropy: Measure of uncertainty of a random variable X. The entropy of X, H(X), is given by: If X is a discrete random

More information

Chapter 6. Continuous Sources and Channels. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University

Chapter 6. Continuous Sources and Channels. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University Chapter 6 Continuous Sources and Channels Po-Ning Chen, Professor Department of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 300, R.O.C. Continuous Sources and Channels I:

More information

ENGG2430A-Homework 2

ENGG2430A-Homework 2 ENGG3A-Homework Due on Feb 9th,. Independence vs correlation a For each of the following cases, compute the marginal pmfs from the joint pmfs. Explain whether the random variables X and Y are independent,

More information

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16 EE539R: Problem Set 3 Assigned: 24/08/6, Due: 3/08/6. Cover and Thomas: Problem 2.30 (Maimum Entropy): Solution: We are required to maimize H(P X ) over all distributions P X on the non-negative integers

More information

Solutions to Homework Set #1 Sanov s Theorem, Rate distortion

Solutions to Homework Set #1 Sanov s Theorem, Rate distortion st Semester 00/ Solutions to Homework Set # Sanov s Theorem, Rate distortion. Sanov s theorem: Prove the simple version of Sanov s theorem for the binary random variables, i.e., let X,X,...,X n be a sequence

More information

( 1 k "information" I(X;Y) given by Y about X)

( 1 k information I(X;Y) given by Y about X) SUMMARY OF SHANNON DISTORTION-RATE THEORY Consider a stationary source X with f (x) as its th-order pdf. Recall the following OPTA function definitions: δ(,r) = least dist'n of -dim'l fixed-rate VQ's w.

More information

Lecture 5: GPs and Streaming regression

Lecture 5: GPs and Streaming regression Lecture 5: GPs and Streaming regression Gaussian Processes Information gain Confidence intervals COMP-652 and ECSE-608, Lecture 5 - September 19, 2017 1 Recall: Non-parametric regression Input space X

More information

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows.

Perhaps the simplest way of modeling two (discrete) random variables is by means of a joint PMF, defined as follows. Chapter 5 Two Random Variables In a practical engineering problem, there is almost always causal relationship between different events. Some relationships are determined by physical laws, e.g., voltage

More information

Math 416 Lecture 2 DEFINITION. Here are the multivariate versions: X, Y, Z iff P(X = x, Y = y, Z =z) = p(x, y, z) of X, Y, Z iff for all sets A, B, C,

Math 416 Lecture 2 DEFINITION. Here are the multivariate versions: X, Y, Z iff P(X = x, Y = y, Z =z) = p(x, y, z) of X, Y, Z iff for all sets A, B, C, Math 416 Lecture 2 DEFINITION. Here are the multivariate versions: PMF case: p(x, y, z) is the joint Probability Mass Function of X, Y, Z iff P(X = x, Y = y, Z =z) = p(x, y, z) PDF case: f(x, y, z) is

More information

EE4601 Communication Systems

EE4601 Communication Systems EE4601 Communication Systems Week 2 Review of Probability, Important Distributions 0 c 2011, Georgia Institute of Technology (lect2 1) Conditional Probability Consider a sample space that consists of two

More information

Ch. 8 Math Preliminaries for Lossy Coding. 8.5 Rate-Distortion Theory

Ch. 8 Math Preliminaries for Lossy Coding. 8.5 Rate-Distortion Theory Ch. 8 Math Preliminaries for Lossy Coding 8.5 Rate-Distortion Theory 1 Introduction Theory provide insight into the trade between Rate & Distortion This theory is needed to answer: What do typical R-D

More information

Chapter 4: Continuous channel and its capacity

Chapter 4: Continuous channel and its capacity meghdadi@ensil.unilim.fr Reference : Elements of Information Theory by Cover and Thomas Continuous random variable Gaussian multivariate random variable AWGN Band limited channel Parallel channels Flat

More information

EE5585 Data Compression May 2, Lecture 27

EE5585 Data Compression May 2, Lecture 27 EE5585 Data Compression May 2, 2013 Lecture 27 Instructor: Arya Mazumdar Scribe: Fangying Zhang Distributed Data Compression/Source Coding In the previous class we used a H-W table as a simple example,

More information

Lecture Notes for Statistics 311/Electrical Engineering 377. John Duchi

Lecture Notes for Statistics 311/Electrical Engineering 377. John Duchi Lecture Notes for Statistics 311/Electrical Engineering 377 March 13, 019 Contents 1 Introduction and setting 6 1.1 Information theory..................................... 6 1. Moving to statistics....................................

More information

Joint p.d.f. and Independent Random Variables

Joint p.d.f. and Independent Random Variables 1 Joint p.d.f. and Independent Random Variables Let X and Y be two discrete r.v. s and let R be the corresponding space of X and Y. The joint p.d.f. of X = x and Y = y, denoted by f(x, y) = P(X = x, Y

More information

ECE Information theory Final

ECE Information theory Final ECE 776 - Information theory Final Q1 (1 point) We would like to compress a Gaussian source with zero mean and variance 1 We consider two strategies In the first, we quantize with a step size so that the

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Ch. 8 Math Preliminaries for Lossy Coding. 8.4 Info Theory Revisited

Ch. 8 Math Preliminaries for Lossy Coding. 8.4 Info Theory Revisited Ch. 8 Math Preliminaries for Lossy Coding 8.4 Info Theory Revisited 1 Info Theory Goals for Lossy Coding Again just as for the lossless case Info Theory provides: Basis for Algorithms & Bounds on Performance

More information

COMPSCI 650 Applied Information Theory Jan 21, Lecture 2

COMPSCI 650 Applied Information Theory Jan 21, Lecture 2 COMPSCI 650 Applied Information Theory Jan 21, 2016 Lecture 2 Instructor: Arya Mazumdar Scribe: Gayane Vardoyan, Jong-Chyi Su 1 Entropy Definition: Entropy is a measure of uncertainty of a random variable.

More information

Homework 2: Solution

Homework 2: Solution 0-704: Information Processing and Learning Sring 0 Lecturer: Aarti Singh Homework : Solution Acknowledgement: The TA graciously thanks Rafael Stern for roviding most of these solutions.. Problem Hence,

More information

Homework 1 Due: Thursday 2/5/2015. Instructions: Turn in your homework in class on Thursday 2/5/2015

Homework 1 Due: Thursday 2/5/2015. Instructions: Turn in your homework in class on Thursday 2/5/2015 10-704 Homework 1 Due: Thursday 2/5/2015 Instructions: Turn in your homework in class on Thursday 2/5/2015 1. Information Theory Basics and Inequalities C&T 2.47, 2.29 (a) A deck of n cards in order 1,

More information

Bivariate distributions

Bivariate distributions Bivariate distributions 3 th October 017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Bivariate Distributions of the Discrete Type The Correlation Coefficient

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14 Math 325 Intro. Probability & Statistics Summer Homework 5: Due 7/3/. Let X and Y be continuous random variables with joint/marginal p.d.f. s f(x, y) 2, x y, f (x) 2( x), x, f 2 (y) 2y, y. Find the conditional

More information

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy Coding and Information Theory Chris Williams, School of Informatics, University of Edinburgh Overview What is information theory? Entropy Coding Information Theory Shannon (1948): Information theory is

More information

Gaussian channel. Information theory 2013, lecture 6. Jens Sjölund. 8 May Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26

Gaussian channel. Information theory 2013, lecture 6. Jens Sjölund. 8 May Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26 Gaussian channel Information theory 2013, lecture 6 Jens Sjölund 8 May 2013 Jens Sjölund (IMT, LiU) Gaussian channel 1 / 26 Outline 1 Definitions 2 The coding theorem for Gaussian channel 3 Bandlimited

More information

5 Mutual Information and Channel Capacity

5 Mutual Information and Channel Capacity 5 Mutual Information and Channel Capacity In Section 2, we have seen the use of a quantity called entropy to measure the amount of randomness in a random variable. In this section, we introduce several

More information

The binary entropy function

The binary entropy function ECE 7680 Lecture 2 Definitions and Basic Facts Objective: To learn a bunch of definitions about entropy and information measures that will be useful through the quarter, and to present some simple but

More information

Communications Theory and Engineering

Communications Theory and Engineering Communications Theory and Engineering Master's Degree in Electronic Engineering Sapienza University of Rome A.A. 2018-2019 AEP Asymptotic Equipartition Property AEP In information theory, the analog of

More information

There are two basic kinds of random variables continuous and discrete.

There are two basic kinds of random variables continuous and discrete. Summary of Lectures 5 and 6 Random Variables The random variable is usually represented by an upper case letter, say X. A measured value of the random variable is denoted by the corresponding lower case

More information

Information Theory and Communication

Information Theory and Communication Information Theory and Communication Ritwik Banerjee rbanerjee@cs.stonybrook.edu c Ritwik Banerjee Information Theory and Communication 1/8 General Chain Rules Definition Conditional mutual information

More information

10-704: Information Processing and Learning Fall Lecture 9: Sept 28

10-704: Information Processing and Learning Fall Lecture 9: Sept 28 10-704: Information Processing and Learning Fall 2016 Lecturer: Siheng Chen Lecture 9: Sept 28 Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy

More information

LECTURE 2. Convexity and related notions. Last time: mutual information: definitions and properties. Lecture outline

LECTURE 2. Convexity and related notions. Last time: mutual information: definitions and properties. Lecture outline LECTURE 2 Convexity and related notions Last time: Goals and mechanics of the class notation entropy: definitions and properties mutual information: definitions and properties Lecture outline Convexity

More information

EE595A Submodular functions, their optimization and applications Spring 2011

EE595A Submodular functions, their optimization and applications Spring 2011 EE595A Submodular functions, their optimization and applications Spring 2011 Prof. Jeff Bilmes University of Washington, Seattle Department of Electrical Engineering Spring Quarter, 2011 http://ssli.ee.washington.edu/~bilmes/ee595a_spring_2011/

More information

Lecture 18: Gaussian Channel

Lecture 18: Gaussian Channel Lecture 18: Gaussian Channel Gaussian channel Gaussian channel capacity Dr. Yao Xie, ECE587, Information Theory, Duke University Mona Lisa in AWGN Mona Lisa Noisy Mona Lisa 100 100 200 200 300 300 400

More information

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture : Mutual Information Method Lecturer: Yihong Wu Scribe: Jaeho Lee, Mar, 06 Ed. Mar 9 Quick review: Assouad s lemma

More information

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code Chapter 3 Source Coding 3. An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code 3. An Introduction to Source Coding Entropy (in bits per symbol) implies in average

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information

PROOF OF ZADOR-GERSHO THEOREM

PROOF OF ZADOR-GERSHO THEOREM ZADOR-GERSHO THEOREM FOR VARIABLE-RATE VQ For a stationary source and large R, the least distortion of k-dim'l VQ with nth-order entropy coding and rate R or less is δ(k,n,r) m k * σ 2 η kn 2-2R = Z(k,n,R)

More information

Shannon meets Wiener II: On MMSE estimation in successive decoding schemes

Shannon meets Wiener II: On MMSE estimation in successive decoding schemes Shannon meets Wiener II: On MMSE estimation in successive decoding schemes G. David Forney, Jr. MIT Cambridge, MA 0239 USA forneyd@comcast.net Abstract We continue to discuss why MMSE estimation arises

More information

5 Operations on Multiple Random Variables

5 Operations on Multiple Random Variables EE360 Random Signal analysis Chapter 5: Operations on Multiple Random Variables 5 Operations on Multiple Random Variables Expected value of a function of r.v. s Two r.v. s: ḡ = E[g(X, Y )] = g(x, y)f X,Y

More information

LECTURE 10. Last time: Lecture outline

LECTURE 10. Last time: Lecture outline LECTURE 10 Joint AEP Coding Theorem Last time: Error Exponents Lecture outline Strong Coding Theorem Reading: Gallager, Chapter 5. Review Joint AEP A ( ɛ n) (X) A ( ɛ n) (Y ) vs. A ( ɛ n) (X, Y ) 2 nh(x)

More information

Appendix A : Introduction to Probability and stochastic processes

Appendix A : Introduction to Probability and stochastic processes A-1 Mathematical methods in communication July 5th, 2009 Appendix A : Introduction to Probability and stochastic processes Lecturer: Haim Permuter Scribe: Shai Shapira and Uri Livnat The probability of

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning Introduction to Probabilistic Methods Varun Chandola Computer Science & Engineering State University of New York at Buffalo Buffalo, NY, USA chandola@buffalo.edu Chandola@UB

More information

Quick Tour of Basic Probability Theory and Linear Algebra

Quick Tour of Basic Probability Theory and Linear Algebra Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra CS224w: Social and Information Network Analysis Fall 2011 Quick Tour of and Linear Algebra Quick Tour of and Linear Algebra Outline Definitions

More information

ECE534, Spring 2018: Solutions for Problem Set #3

ECE534, Spring 2018: Solutions for Problem Set #3 ECE534, Spring 08: Solutions for Problem Set #3 Jointly Gaussian Random Variables and MMSE Estimation Suppose that X, Y are jointly Gaussian random variables with µ X = µ Y = 0 and σ X = σ Y = Let their

More information

Lecture Notes for Statistics 311/Electrical Engineering 377. John Duchi

Lecture Notes for Statistics 311/Electrical Engineering 377. John Duchi Lecture Notes for Statistics 311/Electrical Engineering 377 February 23, 2016 Contents 1 Introduction and setting 5 1.1 Information theory..................................... 5 1.2 Moving to statistics....................................

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

ECE 587 / STA 563: Lecture 2 Measures of Information Information Theory Duke University, Fall 2017

ECE 587 / STA 563: Lecture 2 Measures of Information Information Theory Duke University, Fall 2017 ECE 587 / STA 563: Lecture 2 Measures of Information Information Theory Duke University, Fall 207 Author: Galen Reeves Last Modified: August 3, 207 Outline of lecture: 2. Quantifying Information..................................

More information

Review of Statistics

Review of Statistics Review of Statistics Topics Descriptive Statistics Mean, Variance Probability Union event, joint event Random Variables Discrete and Continuous Distributions, Moments Two Random Variables Covariance and

More information

Probability on a Riemannian Manifold

Probability on a Riemannian Manifold Probability on a Riemannian Manifold Jennifer Pajda-De La O December 2, 2015 1 Introduction We discuss how we can construct probability theory on a Riemannian manifold. We make comparisons to this and

More information

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n

P (x). all other X j =x j. If X is a continuous random vector (see p.172), then the marginal distributions of X i are: f(x)dx 1 dx n JOINT DENSITIES - RANDOM VECTORS - REVIEW Joint densities describe probability distributions of a random vector X: an n-dimensional vector of random variables, ie, X = (X 1,, X n ), where all X is are

More information

Lecture 1. Introduction

Lecture 1. Introduction Lecture 1. Introduction What is the course about? Logistics Questionnaire Dr. Yao Xie, ECE587, Information Theory, Duke University What is information? Dr. Yao Xie, ECE587, Information Theory, Duke University

More information

Algorithms for Uncertainty Quantification

Algorithms for Uncertainty Quantification Algorithms for Uncertainty Quantification Tobias Neckel, Ionuț-Gabriel Farcaș Lehrstuhl Informatik V Summer Semester 2017 Lecture 2: Repetition of probability theory and statistics Example: coin flip Example

More information

Lecture 2: Repetition of probability theory and statistics

Lecture 2: Repetition of probability theory and statistics Algorithms for Uncertainty Quantification SS8, IN2345 Tobias Neckel Scientific Computing in Computer Science TUM Lecture 2: Repetition of probability theory and statistics Concept of Building Block: Prerequisites:

More information

Vector Derivatives and the Gradient

Vector Derivatives and the Gradient ECE 275AB Lecture 10 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego p. 1/1 Lecture 10 ECE 275A Vector Derivatives and the Gradient ECE 275AB Lecture 10 Fall 2008 V1.1 c K. Kreutz-Delgado, UC San Diego

More information

Review: mostly probability and some statistics

Review: mostly probability and some statistics Review: mostly probability and some statistics C2 1 Content robability (should know already) Axioms and properties Conditional probability and independence Law of Total probability and Bayes theorem Random

More information

Introduction to Probability Theory

Introduction to Probability Theory Introduction to Probability Theory Ping Yu Department of Economics University of Hong Kong Ping Yu (HKU) Probability 1 / 39 Foundations 1 Foundations 2 Random Variables 3 Expectation 4 Multivariate Random

More information

Application of Information Theory, Lecture 7. Relative Entropy. Handout Mode. Iftach Haitner. Tel Aviv University.

Application of Information Theory, Lecture 7. Relative Entropy. Handout Mode. Iftach Haitner. Tel Aviv University. Application of Information Theory, Lecture 7 Relative Entropy Handout Mode Iftach Haitner Tel Aviv University. December 1, 2015 Iftach Haitner (TAU) Application of Information Theory, Lecture 7 December

More information

Topics in Probability and Statistics

Topics in Probability and Statistics Topics in Probability and tatistics A Fundamental Construction uppose {, P } is a sample space (with probability P), and suppose X : R is a random variable. The distribution of X is the probability P X

More information

(Classical) Information Theory II: Source coding

(Classical) Information Theory II: Source coding (Classical) Information Theory II: Source coding Sibasish Ghosh The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. p. 1 Abstract The information content of a random variable

More information

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem LECTURE 15 Last time: Feedback channel: setting up the problem Perfect feedback Feedback capacity Data compression Lecture outline Joint source and channel coding theorem Converse Robustness Brain teaser

More information

1 Basic Information Theory

1 Basic Information Theory ECE 6980 An Algorithmic and Information-Theoretic Toolbo for Massive Data Instructor: Jayadev Acharya Lecture #4 Scribe: Xiao Xu 6th September, 206 Please send errors to 243@cornell.edu and acharya@cornell.edu

More information

1 Probability and Random Variables

1 Probability and Random Variables 1 Probability and Random Variables The models that you have seen thus far are deterministic models. For any time t, there is a unique solution X(t). On the other hand, stochastic models will result in

More information

Entropy, Relative Entropy and Mutual Information Exercises

Entropy, Relative Entropy and Mutual Information Exercises Entrop, Relative Entrop and Mutual Information Exercises Exercise 2.: Coin Flips. A fair coin is flipped until the first head occurs. Let X denote the number of flips required. (a) Find the entrop H(X)

More information

Slide11 Haykin Chapter 10: Information-Theoretic Models

Slide11 Haykin Chapter 10: Information-Theoretic Models Slide11 Haykin Chapter 10: Information-Theoretic Models CPSC 636-600 Instructor: Yoonsuck Choe Spring 2015 ICA section is heavily derived from Aapo Hyvärinen s ICA tutorial: http://www.cis.hut.fi/aapo/papers/ijcnn99_tutorialweb/.

More information

Lecture 11: Quantum Information III - Source Coding

Lecture 11: Quantum Information III - Source Coding CSCI5370 Quantum Computing November 25, 203 Lecture : Quantum Information III - Source Coding Lecturer: Shengyu Zhang Scribe: Hing Yin Tsang. Holevo s bound Suppose Alice has an information source X that

More information

CHAPTER 4 MATHEMATICAL EXPECTATION. 4.1 Mean of a Random Variable

CHAPTER 4 MATHEMATICAL EXPECTATION. 4.1 Mean of a Random Variable CHAPTER 4 MATHEMATICAL EXPECTATION 4.1 Mean of a Random Variable The expected value, or mathematical expectation E(X) of a random variable X is the long-run average value of X that would emerge after a

More information

The Gaussian distribution

The Gaussian distribution The Gaussian distribution Probability density function: A continuous probability density function, px), satisfies the following properties:. The probability that x is between two points a and b b P a

More information

STA205 Probability: Week 8 R. Wolpert

STA205 Probability: Week 8 R. Wolpert INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as n of the fraction of n repeated, similar, and

More information

Lecture 2: August 31

Lecture 2: August 31 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: August 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

Lecture 14 February 28

Lecture 14 February 28 EE/Stats 376A: Information Theory Winter 07 Lecture 4 February 8 Lecturer: David Tse Scribe: Sagnik M, Vivek B 4 Outline Gaussian channel and capacity Information measures for continuous random variables

More information