Lecture 5: Asymptotic Equipartition Property

Size: px
Start display at page:

Download "Lecture 5: Asymptotic Equipartition Property"

Transcription

1 Lecture 5: Asymptotic Equipartition Property Law of large number for product of random variables AEP and consequences Dr. Yao Xie, ECE587, Information Theory, Duke University

2 Stock market Initial investment Y 0, daily return ratio r i, in t-th day, your money is Y t = Y 0 r 1... r t. Now if returns ratio r i are i.i.d., with r i = { 4, w.p. 1/2 0, w.p. 1/2. So you think the expected return ratio is Er i = 2, and then EY t = E(Y 0 r 1... r t ) = Y 0 (Er i ) t = Y 0 2 t? Dr. Yao Xie, ECE587, Information Theory, Duke University 1

3 Is optimized really optimal? With Y 0 = 1, actual return Y t goes like Optimize expected return is not optimal? Fundamental reason: products does not behave the same as addition Dr. Yao Xie, ECE587, Information Theory, Duke University 2

4 (Weak) Law of large number Theorem. For independent, identically distributed (i.i.d.) random variables X i, X n = 1 n n X i EX, i=1 in probability. Convergence in probability if for every ϵ > 0, P { X n X > ϵ} 0. Proof by Markov inequality. So this means P { X n EX ϵ} 1, n. Dr. Yao Xie, ECE587, Information Theory, Duke University 3

5 In mean square if as n Other types of convergence E(X n X) 2 0 With probability 1 (almost surely) if as n In distribution if as n { } P lim X n = X = 1 n lim n F n F, where F n and F are the cumulative distribution function of X n and X. Dr. Yao Xie, ECE587, Information Theory, Duke University 4

6 Product of random variables How does this behave? n n i=1 X i Geometric mean n n i=1 X i arithmetic mean 1 n n i=1 X i Examples: Volume V of a random box, each dimension X i, V = X 1... X n Stock return Y t = Y 0 r 1... r t Joint distribution of i.i.d. RVs: p(x 1,..., x n ) = n i=1 p(x i) Dr. Yao Xie, ECE587, Information Theory, Duke University 5

7 Law of large number for product of random variables We can write Hence So from LLN n n i=1 X i = e log X i n n X i = en 1 ni=1 log X i i=1 X i e E(log X) e log EX = EX. Dr. Yao Xie, ECE587, Information Theory, Duke University 6

8 Stock example: E log r i = 1 2 log log 0 = E(Y t ) Y 0 e E log r i = 0, t. Example { a, w.p. 1/2 X = b, w.p. 1/2. n E n X i ab a + b 2 i=1 Dr. Yao Xie, ECE587, Information Theory, Duke University 7

9 Asymptotic equipartition property (AEP) LLN states that 1 n n X i EX i=1 AEP states that most sequences 1 n log 1 p(x 1, X 2,..., X n ) H(X) p(x 1, X 2,..., X n ) 2 nh(x) Analyze using LLN for product of random variables Dr. Yao Xie, ECE587, Information Theory, Duke University 8

10 AEP lies in the heart of information theory. Proof for lossless source coding Proof for channel capacity and more... Dr. Yao Xie, ECE587, Information Theory, Duke University 9

11 AEP Theorem. If X 1, X 2,... are i.i.d. p(x), then 1 n log p(x 1, X 2,..., X n ) H(X), in probability. Proof: 1 n log p(x 1, X 2,, X n ) = 1 n n log p(x i ) i=1 E log p(x) = H(X). There are several consequences. Dr. Yao Xie, ECE587, Information Theory, Duke University 10

12 Typical set A typical set A (n) ϵ contains all sequences (x 1, x 2,..., x n ) X n with the property 2 n(h(x)+ϵ) p(x 1, x 2,..., x n ) 2 n(h(x) ϵ). Dr. Yao Xie, ECE587, Information Theory, Duke University 11

13 Not all sequences are created equal Coin tossing example: X {0, 1}, p(1) = 0.8 p(1, 0, 1, 1, 0, 1) = p X i (1 p) 5 X i = p 4 (1 p) 2 = p(0, 0, 0, 0, 0, 0) = p X i (1 p) 5 X i = p 4 (1 p) 2 = In this example, if (x 1,..., x n ) A (n) ϵ, H(X) ϵ 1 n log p(x 1,..., X n ) H(X) + ϵ. This means a binary sequence is in typical set is the frequency of heads is approximately k/n Dr. Yao Xie, ECE587, Information Theory, Duke University 12

14 Dr. Yao Xie, ECE587, Information Theory, Duke University 13

15 p = 0.6, n = 25, k = number of 1 s k ( n k ) ( n k ) p k (1 p) n k 1 n log p(xn ) Dr. Yao Xie, ECE587, Information Theory, Duke University 14

16 Consequences of AEP Theorem. 1. If (x 1, x 2,..., x n ) A (n) ϵ, then for n sufficiently large: H(X) ϵ 1 n log p(x 1, x 2,..., x n ) H(X) + ϵ 2. P {A (n) ϵ } 1 ϵ. 3. A (n) ϵ 2 n(h(x)+ϵ). 4. A (n) ϵ (1 ϵ)2 n(h(x) ϵ). Dr. Yao Xie, ECE587, Information Theory, Duke University 15

17 If (x 1, x 2,..., x n ) A ϵ (n), then Property 1 H(X) ϵ 1 n log p(x 1, x 2,..., x n ) H(X) + ϵ. Proof from definition: (x 1, x 2,..., x n ) A (n) ϵ, if 2 n(h(x)+ϵ) p(x 1, x 2,..., x n ) 2 n(h(x) ϵ). The number of bits used to describe sequences in typical set is approximately nh(x). Dr. Yao Xie, ECE587, Information Theory, Duke University 16

18 Property 2 P {A ϵ (n) } 1 ϵ for n sufficiently large. Proof: From AEP: because 1 n log p(x 1,..., X n ) H(X) in probability, this means for a given ϵ > 0, when n is sufficiently large p{ 1 n log p(x 1,..., X n ) H(X) ϵ } 1 ϵ. }{{} A (n) ϵ High probability: sequences in typical set are most typical. These sequences almost all have same probability - equipartition. Dr. Yao Xie, ECE587, Information Theory, Duke University 17

19 Property 3 and 4: size of typical set Proof: (1 ϵ)2 n(h(x) ϵ) A (n) ϵ 2 n(h(x)+ϵ) 1 = (x 1,...,x n ) (x 1,...,x n ) A (n) ϵ (x 1,...,x n ) A (n) ϵ p(x 1,..., x n ) = A (n) ϵ 2 n(h(x)+ϵ). p(x 1,..., x n ) p(x 1,..., x n )2 n(h(x)+ϵ) Dr. Yao Xie, ECE587, Information Theory, Duke University 18

20 On the other hand, P {A (n) ϵ } 1 ϵ for n, so 1 ϵ < (x 1,...,x n ) A (n) ϵ A (n) ϵ 2 n(h(x) ϵ). p(x 1,..., x n ) Size of typical set depends on H(X). When p = 1/2 in coin tossing example, H(X) = 1, 2 nh(x) = 2 n : all sequences are typical sequences. Dr. Yao Xie, ECE587, Information Theory, Duke University 19

21 Typical set diagram This enables us to divide all sequences into two sets Typical set: high probability to occur, sample entropy is close to true entropy so we will focus on analyzing sequences in typical set Non-typical set: small probability, can ignore in general n : n elements Non-typical set Typical set A (n) : 2 n(h + ) elements Dr. Yao Xie, ECE587, Information Theory, Duke University 20

22 Data compression scheme from AEP Let X 1, X 2,..., X n be i.i.d. RV drawn from p(x) We wish to find short descriptions for such sequences of RVs Dr. Yao Xie, ECE587, Information Theory, Duke University 21

23 Divide all sequences in X n into two sets Non-typical set Description: n log + 2 bits Typical set Description: n(h + ) + 2 bits Dr. Yao Xie, ECE587, Information Theory, Duke University 22

24 Use one bit to indicate which set Typical set A (n) ϵ use prefix 1 Since there are no more than 2 n(h(x)+ϵ) sequences, indexing requires no more than (H(X) + ϵ) + 1 (plus one extra bit) Non-typical set use prefix 0 Since there are at most X n sequences, indexing requires no more than n log X + 1 Notation: x n = (x 1,..., x n ), l(x n ) = length of codeword for x n We can prove E [ ] 1 n l(xn ) H(X) + ϵ Dr. Yao Xie, ECE587, Information Theory, Duke University 23

25 Summary of AEP Almost everything is almost equally probable. Reasons that AEP has H(X) 1 n log p(xn ) H(X), in probability n(h(x) ± ϵ) suffices to describe that random sequence on average 2 H(X) is the effective alphabet size Typical set is the smallest set with probability near 1 Size of typical set 2 nh(x) The distance of elements in the set nearly uniform Dr. Yao Xie, ECE587, Information Theory, Duke University 24

26 Next Time AEP is about the property of independent sequences What about the dependence processes? Answer is entropy rate - next time. Dr. Yao Xie, ECE587, Information Theory, Duke University 25

Lecture 22: Final Review

Lecture 22: Final Review Lecture 22: Final Review Nuts and bolts Fundamental questions and limits Tools Practical algorithms Future topics Dr Yao Xie, ECE587, Information Theory, Duke University Basics Dr Yao Xie, ECE587, Information

More information

Lecture 17: Differential Entropy

Lecture 17: Differential Entropy Lecture 17: Differential Entropy Differential entropy AEP for differential entropy Quantization Maximum differential entropy Estimation counterpart of Fano s inequality Dr. Yao Xie, ECE587, Information

More information

Communications Theory and Engineering

Communications Theory and Engineering Communications Theory and Engineering Master's Degree in Electronic Engineering Sapienza University of Rome A.A. 2018-2019 AEP Asymptotic Equipartition Property AEP In information theory, the analog of

More information

Lecture 6: Entropy Rate

Lecture 6: Entropy Rate Lecture 6: Entropy Rate Entropy rate H(X) Random walk on graph Dr. Yao Xie, ECE587, Information Theory, Duke University Coin tossing versus poker Toss a fair coin and see and sequence Head, Tail, Tail,

More information

(Classical) Information Theory II: Source coding

(Classical) Information Theory II: Source coding (Classical) Information Theory II: Source coding Sibasish Ghosh The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. p. 1 Abstract The information content of a random variable

More information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information 4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

More information

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions EE/Stat 376B Handout #5 Network Information Theory October, 14, 014 1. Problem.4 parts (b) and (c). Homework Set # Solutions (b) Consider h(x + Y ) h(x + Y Y ) = h(x Y ) = h(x). (c) Let ay = Y 1 + Y, where

More information

10-704: Information Processing and Learning Fall Lecture 9: Sept 28

10-704: Information Processing and Learning Fall Lecture 9: Sept 28 10-704: Information Processing and Learning Fall 2016 Lecturer: Siheng Chen Lecture 9: Sept 28 Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy

More information

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria Source Coding Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Asymptotic Equipartition Property Optimal Codes (Huffman Coding) Universal

More information

Lecture 1. Introduction

Lecture 1. Introduction Lecture 1. Introduction What is the course about? Logistics Questionnaire Dr. Yao Xie, ECE587, Information Theory, Duke University What is information? Dr. Yao Xie, ECE587, Information Theory, Duke University

More information

EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018

EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018 Please submit the solutions on Gradescope. Some definitions that may be useful: EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018 Definition 1: A sequence of random variables X

More information

Chapter 3: Asymptotic Equipartition Property

Chapter 3: Asymptotic Equipartition Property Chapter 3: Asymptotic Equipartition Property Chapter 3 outline Strong vs. Weak Typicality Convergence Asymptotic Equipartition Property Theorem High-probability sets and the typical set Consequences of

More information

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 Please submit the solutions on Gradescope. EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 1. Optimal codeword lengths. Although the codeword lengths of an optimal variable length code

More information

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye Chapter 8: Differential entropy Chapter 8 outline Motivation Definitions Relation to discrete entropy Joint and conditional differential entropy Relative entropy and mutual information Properties AEP for

More information

Homework Set #2 Data Compression, Huffman code and AEP

Homework Set #2 Data Compression, Huffman code and AEP Homework Set #2 Data Compression, Huffman code and AEP 1. Huffman coding. Consider the random variable ( x1 x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0.11 0.04 0.04 0.03 0.02 (a Find a binary Huffman code

More information

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code Chapter 3 Source Coding 3. An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code 3. An Introduction to Source Coding Entropy (in bits per symbol) implies in average

More information

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1 Kraft s inequality An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if N 2 l i 1 Proof: Suppose that we have a tree code. Let l max = max{l 1,...,

More information

COMM901 Source Coding and Compression. Quiz 1

COMM901 Source Coding and Compression. Quiz 1 German University in Cairo - GUC Faculty of Information Engineering & Technology - IET Department of Communication Engineering Winter Semester 2013/2014 Students Name: Students ID: COMM901 Source Coding

More information

Lecture 3: Channel Capacity

Lecture 3: Channel Capacity Lecture 3: Channel Capacity 1 Definitions Channel capacity is a measure of maximum information per channel usage one can get through a channel. This one of the fundamental concepts in information theory.

More information

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem LECTURE 15 Last time: Feedback channel: setting up the problem Perfect feedback Feedback capacity Data compression Lecture outline Joint source and channel coding theorem Converse Robustness Brain teaser

More information

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16 EE539R: Problem Set 3 Assigned: 24/08/6, Due: 3/08/6. Cover and Thomas: Problem 2.30 (Maimum Entropy): Solution: We are required to maimize H(P X ) over all distributions P X on the non-negative integers

More information

Exercises with solutions (Set B)

Exercises with solutions (Set B) Exercises with solutions (Set B) 3. A fair coin is tossed an infinite number of times. Let Y n be a random variable, with n Z, that describes the outcome of the n-th coin toss. If the outcome of the n-th

More information

Solutions to Set #2 Data Compression, Huffman code and AEP

Solutions to Set #2 Data Compression, Huffman code and AEP Solutions to Set #2 Data Compression, Huffman code and AEP. Huffman coding. Consider the random variable ( ) x x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0. 0.04 0.04 0.03 0.02 (a) Find a binary Huffman code

More information

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code Chapter 2 Date Compression: Source Coding 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code 2.1 An Introduction to Source Coding Source coding can be seen as an efficient way

More information

Lecture 18: Gaussian Channel

Lecture 18: Gaussian Channel Lecture 18: Gaussian Channel Gaussian channel Gaussian channel capacity Dr. Yao Xie, ECE587, Information Theory, Duke University Mona Lisa in AWGN Mona Lisa Noisy Mona Lisa 100 100 200 200 300 300 400

More information

LECTURE 13. Last time: Lecture outline

LECTURE 13. Last time: Lecture outline LECTURE 13 Last time: Strong coding theorem Revisiting channel and codes Bound on probability of error Error exponent Lecture outline Fano s Lemma revisited Fano s inequality for codewords Converse to

More information

EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 2018 Please submit on Gradescope. Start every question on a new page.

EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 2018 Please submit on Gradescope. Start every question on a new page. EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 28 Please submit on Gradescope. Start every question on a new page.. Maximum Differential Entropy (a) Show that among all distributions supported

More information

EE5585 Data Compression May 2, Lecture 27

EE5585 Data Compression May 2, Lecture 27 EE5585 Data Compression May 2, 2013 Lecture 27 Instructor: Arya Mazumdar Scribe: Fangying Zhang Distributed Data Compression/Source Coding In the previous class we used a H-W table as a simple example,

More information

Horse Racing Redux. Background

Horse Racing Redux. Background and Networks Lecture 17: Gambling with Paul Tune http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/ Part I Gambling with School of Mathematical

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for MARKOV CHAINS A finite state Markov chain is a sequence S 0,S 1,... of discrete cv s from a finite alphabet S where q 0 (s) is a pmf on S 0 and for n 1, Q(s s ) = Pr(S n =s S n 1 =s ) = Pr(S n =s S n 1

More information

Exercises with solutions (Set D)

Exercises with solutions (Set D) Exercises with solutions Set D. A fair die is rolled at the same time as a fair coin is tossed. Let A be the number on the upper surface of the die and let B describe the outcome of the coin toss, where

More information

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST Information Theory Lecture 5 Entropy rate and Markov sources STEFAN HÖST Universal Source Coding Huffman coding is optimal, what is the problem? In the previous coding schemes (Huffman and Shannon-Fano)it

More information

Lecture 11: Continuous-valued signals and differential entropy

Lecture 11: Continuous-valued signals and differential entropy Lecture 11: Continuous-valued signals and differential entropy Biology 429 Carl Bergstrom September 20, 2008 Sources: Parts of today s lecture follow Chapter 8 from Cover and Thomas (2007). Some components

More information

Chapter 2: Source coding

Chapter 2: Source coding Chapter 2: meghdadi@ensil.unilim.fr University of Limoges Chapter 2: Entropy of Markov Source Chapter 2: Entropy of Markov Source Markov model for information sources Given the present, the future is independent

More information

Introduction to information theory and coding

Introduction to information theory and coding Introduction to information theory and coding Louis WEHENKEL Set of slides No 4 Source modeling and source coding Stochastic processes and models for information sources First Shannon theorem : data compression

More information

ELEC546 Review of Information Theory

ELEC546 Review of Information Theory ELEC546 Review of Information Theory Vincent Lau 1/1/004 1 Review of Information Theory Entropy: Measure of uncertainty of a random variable X. The entropy of X, H(X), is given by: If X is a discrete random

More information

Lecture 6 I. CHANNEL CODING. X n (m) P Y X

Lecture 6 I. CHANNEL CODING. X n (m) P Y X 6- Introduction to Information Theory Lecture 6 Lecturer: Haim Permuter Scribe: Yoav Eisenberg and Yakov Miron I. CHANNEL CODING We consider the following channel coding problem: m = {,2,..,2 nr} Encoder

More information

Information Theory. David Rosenberg. June 15, New York University. David Rosenberg (New York University) DS-GA 1003 June 15, / 18

Information Theory. David Rosenberg. June 15, New York University. David Rosenberg (New York University) DS-GA 1003 June 15, / 18 Information Theory David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 18 A Measure of Information? Consider a discrete random variable

More information

Computing and Communications 2. Information Theory -Entropy

Computing and Communications 2. Information Theory -Entropy 1896 1920 1987 2006 Computing and Communications 2. Information Theory -Entropy Ying Cui Department of Electronic Engineering Shanghai Jiao Tong University, China 2017, Autumn 1 Outline Entropy Joint entropy

More information

Chapter 5: Data Compression

Chapter 5: Data Compression Chapter 5: Data Compression Definition. A source code C for a random variable X is a mapping from the range of X to the set of finite length strings of symbols from a D-ary alphabet. ˆX: source alphabet,

More information

Capacity of a channel Shannon s second theorem. Information Theory 1/33

Capacity of a channel Shannon s second theorem. Information Theory 1/33 Capacity of a channel Shannon s second theorem Information Theory 1/33 Outline 1. Memoryless channels, examples ; 2. Capacity ; 3. Symmetric channels ; 4. Channel Coding ; 5. Shannon s second theorem,

More information

Lecture 4 Channel Coding

Lecture 4 Channel Coding Capacity and the Weak Converse Lecture 4 Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 15, 2014 1 / 16 I-Hsiang Wang NIT Lecture 4 Capacity

More information

Lecture 16. Error-free variable length schemes (contd.): Shannon-Fano-Elias code, Huffman code

Lecture 16. Error-free variable length schemes (contd.): Shannon-Fano-Elias code, Huffman code Lecture 16 Agenda for the lecture Error-free variable length schemes (contd.): Shannon-Fano-Elias code, Huffman code Variable-length source codes with error 16.1 Error-free coding schemes 16.1.1 The Shannon-Fano-Elias

More information

Multimedia Communications. Mathematical Preliminaries for Lossless Compression

Multimedia Communications. Mathematical Preliminaries for Lossless Compression Multimedia Communications Mathematical Preliminaries for Lossless Compression What we will see in this chapter Definition of information and entropy Modeling a data source Definition of coding and when

More information

Information Theory. M1 Informatique (parcours recherche et innovation) Aline Roumy. January INRIA Rennes 1/ 73

Information Theory. M1 Informatique (parcours recherche et innovation) Aline Roumy. January INRIA Rennes 1/ 73 1/ 73 Information Theory M1 Informatique (parcours recherche et innovation) Aline Roumy INRIA Rennes January 2018 Outline 2/ 73 1 Non mathematical introduction 2 Mathematical introduction: definitions

More information

Entropy as a measure of surprise

Entropy as a measure of surprise Entropy as a measure of surprise Lecture 5: Sam Roweis September 26, 25 What does information do? It removes uncertainty. Information Conveyed = Uncertainty Removed = Surprise Yielded. How should we quantify

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Transmission of Information Spring 2006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Transmission of Information Spring 2006 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.44 Transmission of Information Spring 2006 Homework 2 Solution name username April 4, 2006 Reading: Chapter

More information

ECE 587 / STA 563: Lecture 5 Lossless Compression

ECE 587 / STA 563: Lecture 5 Lossless Compression ECE 587 / STA 563: Lecture 5 Lossless Compression Information Theory Duke University, Fall 2017 Author: Galen Reeves Last Modified: October 18, 2017 Outline of lecture: 5.1 Introduction to Lossless Source

More information

EE376A - Information Theory Final, Monday March 14th 2016 Solutions. Please start answering each question on a new page of the answer booklet.

EE376A - Information Theory Final, Monday March 14th 2016 Solutions. Please start answering each question on a new page of the answer booklet. EE376A - Information Theory Final, Monday March 14th 216 Solutions Instructions: You have three hours, 3.3PM - 6.3PM The exam has 4 questions, totaling 12 points. Please start answering each question on

More information

LECTURE 10. Last time: Lecture outline

LECTURE 10. Last time: Lecture outline LECTURE 10 Joint AEP Coding Theorem Last time: Error Exponents Lecture outline Strong Coding Theorem Reading: Gallager, Chapter 5. Review Joint AEP A ( ɛ n) (X) A ( ɛ n) (Y ) vs. A ( ɛ n) (X, Y ) 2 nh(x)

More information

ECE 587 / STA 563: Lecture 5 Lossless Compression

ECE 587 / STA 563: Lecture 5 Lossless Compression ECE 587 / STA 563: Lecture 5 Lossless Compression Information Theory Duke University, Fall 28 Author: Galen Reeves Last Modified: September 27, 28 Outline of lecture: 5. Introduction to Lossless Source

More information

Information Theory: Entropy, Markov Chains, and Huffman Coding

Information Theory: Entropy, Markov Chains, and Huffman Coding The University of Notre Dame A senior thesis submitted to the Department of Mathematics and the Glynn Family Honors Program Information Theory: Entropy, Markov Chains, and Huffman Coding Patrick LeBlanc

More information

X 1 : X Table 1: Y = X X 2

X 1 : X Table 1: Y = X X 2 ECE 534: Elements of Information Theory, Fall 200 Homework 3 Solutions (ALL DUE to Kenneth S. Palacio Baus) December, 200. Problem 5.20. Multiple access (a) Find the capacity region for the multiple-access

More information

Coding of memoryless sources 1/35

Coding of memoryless sources 1/35 Coding of memoryless sources 1/35 Outline 1. Morse coding ; 2. Definitions : encoding, encoding efficiency ; 3. fixed length codes, encoding integers ; 4. prefix condition ; 5. Kraft and Mac Millan theorems

More information

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have EECS 229A Spring 2007 * * Solutions to Homework 3 1. Problem 4.11 on pg. 93 of the text. Stationary processes (a) By stationarity and the chain rule for entropy, we have H(X 0 ) + H(X n X 0 ) = H(X 0,

More information

The binary entropy function

The binary entropy function ECE 7680 Lecture 2 Definitions and Basic Facts Objective: To learn a bunch of definitions about entropy and information measures that will be useful through the quarter, and to present some simple but

More information

10-704: Information Processing and Learning Spring Lecture 8: Feb 5

10-704: Information Processing and Learning Spring Lecture 8: Feb 5 10-704: Information Processing and Learning Spring 2015 Lecture 8: Feb 5 Lecturer: Aarti Singh Scribe: Siheng Chen Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

lossless, optimal compressor

lossless, optimal compressor 6. Variable-length Lossless Compression The principal engineering goal of compression is to represent a given sequence a, a 2,..., a n produced by a source as a sequence of bits of minimal possible length.

More information

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16 EE539R: Problem Set 4 Assigned: 3/08/6, Due: 07/09/6. Cover and Thomas: Problem 3.5 Sets defined by probabilities: Define the set C n (t = {x n : P X n(x n 2 nt } (a We have = P X n(x n P X n(x n 2 nt

More information

Universal Loseless Compression: Context Tree Weighting(CTW)

Universal Loseless Compression: Context Tree Weighting(CTW) Universal Loseless Compression: Context Tree Weighting(CTW) Dept. Electrical Engineering, Stanford University Dec 9, 2014 Universal Coding with Model Classes Traditional Shannon theory assume a (probabilistic)

More information

Information Theory and Networks

Information Theory and Networks Information Theory and Networks Lecture 17: Gambling with Side Information Paul Tune http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/ School

More information

Outline of the Lecture. Background and Motivation. Basics of Information Theory: 1. Introduction. Markku Juntti. Course Overview

Outline of the Lecture. Background and Motivation. Basics of Information Theory: 1. Introduction. Markku Juntti. Course Overview : Markku Juntti Overview The basic ideas and concepts of information theory are introduced. Some historical notes are made and the overview of the course is given. Source The material is mainly based on

More information

Entropies & Information Theory

Entropies & Information Theory Entropies & Information Theory LECTURE I Nilanjana Datta University of Cambridge,U.K. See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223 Quantum Information Theory Born out of Classical Information

More information

Lecture Notes 3 Convergence (Chapter 5)

Lecture Notes 3 Convergence (Chapter 5) Lecture Notes 3 Convergence (Chapter 5) 1 Convergence of Random Variables Let X 1, X 2,... be a sequence of random variables and let X be another random variable. Let F n denote the cdf of X n and let

More information

The Communication Complexity of Correlation. Prahladh Harsha Rahul Jain David McAllester Jaikumar Radhakrishnan

The Communication Complexity of Correlation. Prahladh Harsha Rahul Jain David McAllester Jaikumar Radhakrishnan The Communication Complexity of Correlation Prahladh Harsha Rahul Jain David McAllester Jaikumar Radhakrishnan Transmitting Correlated Variables (X, Y) pair of correlated random variables Transmitting

More information

Lecture 15: Conditional and Joint Typicaility

Lecture 15: Conditional and Joint Typicaility EE376A Information Theory Lecture 1-02/26/2015 Lecture 15: Conditional and Joint Typicaility Lecturer: Kartik Venkat Scribe: Max Zimet, Brian Wai, Sepehr Nezami 1 Notation We always write a sequence of

More information

COMPSCI 650 Applied Information Theory Jan 21, Lecture 2

COMPSCI 650 Applied Information Theory Jan 21, Lecture 2 COMPSCI 650 Applied Information Theory Jan 21, 2016 Lecture 2 Instructor: Arya Mazumdar Scribe: Gayane Vardoyan, Jong-Chyi Su 1 Entropy Definition: Entropy is a measure of uncertainty of a random variable.

More information

Shannon s Noisy-Channel Coding Theorem

Shannon s Noisy-Channel Coding Theorem Shannon s Noisy-Channel Coding Theorem Lucas Slot Sebastian Zur February 13, 2015 Lucas Slot, Sebastian Zur Shannon s Noisy-Channel Coding Theorem February 13, 2015 1 / 29 Outline 1 Definitions and Terminology

More information

Shannon s noisy-channel theorem

Shannon s noisy-channel theorem Shannon s noisy-channel theorem Information theory Amon Elders Korteweg de Vries Institute for Mathematics University of Amsterdam. Tuesday, 26th of Januari Amon Elders (Korteweg de Vries Institute for

More information

An introduction to basic information theory. Hampus Wessman

An introduction to basic information theory. Hampus Wessman An introduction to basic information theory Hampus Wessman Abstract We give a short and simple introduction to basic information theory, by stripping away all the non-essentials. Theoretical bounds on

More information

Lecture 8: Channel and source-channel coding theorems; BEC & linear codes. 1 Intuitive justification for upper bound on channel capacity

Lecture 8: Channel and source-channel coding theorems; BEC & linear codes. 1 Intuitive justification for upper bound on channel capacity 5-859: Information Theory and Applications in TCS CMU: Spring 23 Lecture 8: Channel and source-channel coding theorems; BEC & linear codes February 7, 23 Lecturer: Venkatesan Guruswami Scribe: Dan Stahlke

More information

Ch. 8 Math Preliminaries for Lossy Coding. 8.4 Info Theory Revisited

Ch. 8 Math Preliminaries for Lossy Coding. 8.4 Info Theory Revisited Ch. 8 Math Preliminaries for Lossy Coding 8.4 Info Theory Revisited 1 Info Theory Goals for Lossy Coding Again just as for the lossless case Info Theory provides: Basis for Algorithms & Bounds on Performance

More information

Lecture 5 - Information theory

Lecture 5 - Information theory Lecture 5 - Information theory Jan Bouda FI MU May 18, 2012 Jan Bouda (FI MU) Lecture 5 - Information theory May 18, 2012 1 / 42 Part I Uncertainty and entropy Jan Bouda (FI MU) Lecture 5 - Information

More information

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy Coding and Information Theory Chris Williams, School of Informatics, University of Edinburgh Overview What is information theory? Entropy Coding Information Theory Shannon (1948): Information theory is

More information

Network coding for multicast relation to compression and generalization of Slepian-Wolf

Network coding for multicast relation to compression and generalization of Slepian-Wolf Network coding for multicast relation to compression and generalization of Slepian-Wolf 1 Overview Review of Slepian-Wolf Distributed network compression Error exponents Source-channel separation issues

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information

Lecture 1 : Data Compression and Entropy

Lecture 1 : Data Compression and Entropy CPS290: Algorithmic Foundations of Data Science January 8, 207 Lecture : Data Compression and Entropy Lecturer: Kamesh Munagala Scribe: Kamesh Munagala In this lecture, we will study a simple model for

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

An Introduction to Laws of Large Numbers

An Introduction to Laws of Large Numbers An to Laws of John CVGMI Group Contents 1 Contents 1 2 Contents 1 2 3 Contents 1 2 3 4 Intuition We re working with random variables. What could we observe? {X n } n=1 Intuition We re working with random

More information

Chaos, Complexity, and Inference (36-462)

Chaos, Complexity, and Inference (36-462) Chaos, Complexity, and Inference (36-462) Lecture 7: Information Theory Cosma Shalizi 3 February 2009 Entropy and Information Measuring randomness and dependence in bits The connection to statistics Long-run

More information

Expectations and Variance

Expectations and Variance 4. Model parameters and their estimates 4.1 Expected Value and Conditional Expected Value 4. The Variance 4.3 Population vs Sample Quantities 4.4 Mean and Variance of a Linear Combination 4.5 The Covariance

More information

Lecture 14 February 28

Lecture 14 February 28 EE/Stats 376A: Information Theory Winter 07 Lecture 4 February 8 Lecturer: David Tse Scribe: Sagnik M, Vivek B 4 Outline Gaussian channel and capacity Information measures for continuous random variables

More information

Lecture 11: Quantum Information III - Source Coding

Lecture 11: Quantum Information III - Source Coding CSCI5370 Quantum Computing November 25, 203 Lecture : Quantum Information III - Source Coding Lecturer: Shengyu Zhang Scribe: Hing Yin Tsang. Holevo s bound Suppose Alice has an information source X that

More information

EE 376A: Information Theory Lecture Notes. Prof. Tsachy Weissman TA: Idoia Ochoa, Kedar Tatwawadi

EE 376A: Information Theory Lecture Notes. Prof. Tsachy Weissman TA: Idoia Ochoa, Kedar Tatwawadi EE 376A: Information Theory Lecture Notes Prof. Tsachy Weissman TA: Idoia Ochoa, Kedar Tatwawadi January 6, 206 Contents Introduction. Lossless Compression.....................................2 Channel

More information

SIGNAL COMPRESSION Lecture Shannon-Fano-Elias Codes and Arithmetic Coding

SIGNAL COMPRESSION Lecture Shannon-Fano-Elias Codes and Arithmetic Coding SIGNAL COMPRESSION Lecture 3 4.9.2007 Shannon-Fano-Elias Codes and Arithmetic Coding 1 Shannon-Fano-Elias Coding We discuss how to encode the symbols {a 1, a 2,..., a m }, knowing their probabilities,

More information

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN

Lecture Notes 5 Convergence and Limit Theorems. Convergence with Probability 1. Convergence in Mean Square. Convergence in Probability, WLLN Lecture Notes 5 Convergence and Limit Theorems Motivation Convergence with Probability Convergence in Mean Square Convergence in Probability, WLLN Convergence in Distribution, CLT EE 278: Convergence and

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2013, 29 November 2013 Memoryless Sources Arithmetic Coding Sources with Memory Markov Example 2 / 21 Encoding the output

More information

Lecture 20: Quantization and Rate-Distortion

Lecture 20: Quantization and Rate-Distortion Lecture 20: Quantization and Rate-Distortion Quantization Introduction to rate-distortion theorem Dr. Yao Xie, ECE587, Information Theory, Duke University Approimating continuous signals... Dr. Yao Xie,

More information

Capacity of AWGN channels

Capacity of AWGN channels Chapter 3 Capacity of AWGN channels In this chapter we prove that the capacity of an AWGN channel with bandwidth W and signal-tonoise ratio SNR is W log 2 (1+SNR) bits per second (b/s). The proof that

More information

Lecture 10: Broadcast Channel and Superposition Coding

Lecture 10: Broadcast Channel and Superposition Coding Lecture 10: Broadcast Channel and Superposition Coding Scribed by: Zhe Yao 1 Broadcast channel M 0M 1M P{y 1 y x} M M 01 1 M M 0 The capacity of the broadcast channel depends only on the marginal conditional

More information

CSCI 2570 Introduction to Nanocomputing

CSCI 2570 Introduction to Nanocomputing CSCI 2570 Introduction to Nanocomputing Information Theory John E Savage What is Information Theory Introduced by Claude Shannon. See Wikipedia Two foci: a) data compression and b) reliable communication

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2011, 28 November 2011 Memoryless Sources Arithmetic Coding Sources with Memory 2 / 19 Summary of last lecture Prefix-free

More information

6.1 Occupancy Problem

6.1 Occupancy Problem 15-859(M): Randomized Algorithms Lecturer: Anupam Gupta Topic: Occupancy Problems and Hashing Date: Sep 9 Scribe: Runting Shi 6.1 Occupancy Problem Bins and Balls Throw n balls into n bins at random. 1.

More information

CS 630 Basic Probability and Information Theory. Tim Campbell

CS 630 Basic Probability and Information Theory. Tim Campbell CS 630 Basic Probability and Information Theory Tim Campbell 21 January 2003 Probability Theory Probability Theory is the study of how best to predict outcomes of events. An experiment (or trial or event)

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

Chapter 9 Fundamental Limits in Information Theory

Chapter 9 Fundamental Limits in Information Theory Chapter 9 Fundamental Limits in Information Theory Information Theory is the fundamental theory behind information manipulation, including data compression and data transmission. 9.1 Introduction o For

More information

Variable-to-Fixed Length Homophonic Coding with a Modified Shannon-Fano-Elias Code

Variable-to-Fixed Length Homophonic Coding with a Modified Shannon-Fano-Elias Code Variable-to-Fixed Length Homophonic Coding with a Modified Shannon-Fano-Elias Code Junya Honda Hirosuke Yamamoto Department of Complexity Science and Engineering The University of Tokyo, Kashiwa-shi Chiba

More information

ELEMENTS O F INFORMATION THEORY

ELEMENTS O F INFORMATION THEORY ELEMENTS O F INFORMATION THEORY THOMAS M. COVER JOY A. THOMAS Preface to the Second Edition Preface to the First Edition Acknowledgments for the Second Edition Acknowledgments for the First Edition x

More information