MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Transmission of Information Spring 2006

Size: px
Start display at page:

Download "MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Transmission of Information Spring 2006"

Transcription

1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.44 Transmission of Information Spring 2006 Homework 2 Solution name username April 4, 2006 Reading: Chapter 3 to 5 of Cover. Initial conditions [prob 7 on p75 of Cover]. Show, for a Markov chain, that H(X 0 X n ) H(X 0 X n ) Thus initial condition X 0 becomes more difficult to recover as the future X n unfolds 2. AEP [modified prob 5 on p58 of Cover]. Let X,X 2,... be independent identically distributed random variables drawn according to the probability mass function p(x), x {, 2,..., m}. Thus p(x, x 2,..., x n ) = n i= p(x i). We know that n log p(x,..., X n ) H(X) in probability. Let q(x,..., x n ) = n i= q(x i), where q is another probability mass function on {, 2,..., m}. (a) Evaluate lim n log q(x,..., X n ), where X, X 2,... are i.i.d. p(x). (b) Now evaluate the limit of the log likelihood ratio n when X, X 2,... are i.i.d. p(x). Thus the odds favoring q are exponentially small when p is true. Give and interpret the scenario when the log likelihood ratio is infinite. log q(x,...,xn) p(x,...,x n) 3. Random box size [prob 6 on p58 of Cover]. An n-dimensional rectangular box with sides X, X 2, X 3,..., X n is to be constructed. The volume is V n = n i= X i. The edge length l of an n-cube with the same volume of the random box is l = V n Let X, X 2,... be i.i.d. uniform random variables over the unit interval [0, ]. Find lim n V n n and compare to (EV n ) n. Clearly, the expected edge length does not capture the idea of the volume of the box. n.

2 6.44 Spring The AEP and source coding [prob 3 on p57 in Cover]. optional A discrete memoryless source emits a sequence of statistically independent binary digits with probabilities p() = and p(0) = The digits are taken 00 at a time and a binary codeword is provided for every sequence of 00 digits containing three or fewer ones. (a) Asumming that all codewords are the same length, find the minimum length required to provide codewords for all sequences with three or fewer ones. (b) Calculate the probability of observing a source sequence for which no codeword has been assigned. (c) Use Chebyshev s inequality to bound the probability of observing a source sequence for which no codeword has been assigned. Compare this bound with the actual probability computed in part b. 5. Proof of Theorem 3.3. [modified prob 7 on p58 of Cover]. Let X, X 2,..., X n be i.i.d. p(x). Let B (n) X n such that Pr(B (n) ) >. [0, ). (a) Given any two sets A, B such that Pr(A) > and Pr(B) > 2, show that Pr(A B) > 2. Hence, Pr(A (n) B (n) ) >. (b) Using the above result, show that ( ) ( [0, ))( B > 0)( N N)( n > N) n log (n) > H Hence, ( [0, )) ( { min B (n) : B (n) } ) X n, Pr(B (n).= ) > A (n) as 0 6. Entropy rates of Markov Chain [prob 5 on p74 of Cover]. optional (a) Find the entropy rate of the two-state Markov chain with transition matrix [ ] p0 p P = 0 p 0 p 0

3 6.44 Spring (b) What values of p 0, p 0 maximize the rate of part a? (c) Find the entropy rate of the two-state Markov chain with transition matrix [ ] p p P = 0 (d) Find the maximum value of the entropy rate of the Markov chain of part c. We expect that the maximizing value of p should be less than /2, since the 0 state permits more information to be generated than the state. (e) Let N(t) be the number of allowable state sequences of length t for the Markov chain of part c. Find N(t) and calculate H 0 := lim log N(t) t t [Hint: Find a linear recurrence that expresses N(t) in terms of N(t ) and N(t 2).] Why is H 0 an upper bound on the entropy rate of the Markov chain? Compare H 0 with the maximum entropy found in part d. (f) How could we optimally encode an arbitrary random source with the allowable state sequences assuming that AEP holds? What is the minimum and expected codeword length per source symbol in terms of the source entropy rate H and the quantity H 0? 7. The entropy rate of a dog looking for a bone [prob 4 on p75 of Cover]. A dog walks on the integers, possibly reversing direction at each step with probability p = 0.. Let X 0 = 0. The first step is equally likely to be positive or negative. A typical walk might look like this: (X 0, X,... ) = (0,, 2, 3, 4, 3, 2,, 0,,... ) (a) Find H(X n ) where X n := (X, X 2,..., X n ).

4 6.44 Spring (b) Find the entropy rate of this browsing dog. (c) What is the expected number of steps the dog takes before reversing direction? 8. General AEP. Consider the stochastic process {X i } i Z +. (a) Independent sequence. Suppose that X i s are independent (not necessarily identically distributed) with Var[log p(x i )] bounded above by some constant α. i. Express the expectation H n := E[ n log p(xn )] in terms of the entropies H(X i ). ii. Argue that AEP holds if the limit H := lim n H n exists. Construct an example where the limit H does not exist (i.e. specify the sequence {H n } in terms of n such that the average does not converge). iii. Consider X i s to be deterministically 0 if i k N { 2 2k,..., 2 2k+ }, and i.i.d. Bernoulli random variables with probability /2 otherwise. Give H if it exists. If not, briefly explains why. (b) difficult Hidden Markov. Let {S i } i Z + be the stationary 2-state Markov process with transition probabilities p 0 = 2p 0 = 0.5. If S i = 0, X i s are independent Bernoulli distributed random variables with probability /2. Otherwise, X i will be deterministically 0.5. Calculate the entropy rate of {X i } [Hint: apply chain rule on H(X n, S n ) and see if any term is 0.] (c) Briefly explain whether the following statement is true/false. i. The optimal compression scheme that minimizes the expected codeword length for a general stochastic process is not known if the process does not have AEP.

5 6.44 Spring ii. (See the historical notes on p59 of Cover.) The most general process for which AEP holds is continuous stationary ergodic process and the type of convergence is almost sure convergence. (d) difficult and optional Random length. Let {L i } i Z + be a set of i.i.d. geometric random variables with probability /2. X j is Bernoulli random variable with probability /L k for j [ + k i= L i, k i= L i] where k Z +. Briefly explain what is wrong with the following calculation of the entropy rate of {X i } assuming that AEP holds for this process. Consider L m. As m, there will be almost surely a fraction 2 l of L i s taking values of l. Then, there will be almost surely a fraction l2 l Pl>0 l2 l of X i s being Bernoulli(/l) random variables. Hence, we can obtain the entropy rate as follows, l>0 H(X ) = l2 l H[/l] l>0 l2 l = l2 l H[/l] l>0 9. Information divergence Let {X i } i Z + be a set of i.i.d. random variables with probability distribution Q, which is unknown. We would like to compress {X i } by defining the hypothesized typical set A (n) based on the estimate P x n of Q after observing the n-sequence x n. (a) Suppose X i s are Bernoulli random variable, where the actual generating distribution Q := Bernoulli(q), the hypothesized distribution based on x n is P x n := Bernoulli(p := i x i/n), and the typical set defined using P x n is A (n) := { x n : n log P x n(xn ) H[p] } i. Show that x n A (n) P n i= xi ii. If p /2, show that as 0, n Pr(A (n) p log p p ) := Q(A (n) ) =. 2 D[p q]n Briefly explain whether this result holds for p = /2. (b) difficult and optional Strong typicality. Consider a general distribution Q on a finite support set X. Let N(α; x n ) be the number of α X in the sample sequence x n. We

6 6.44 Spring define the distribution P x n : α X N(α;xn ) n to be the type (or empirical distribution) of x n. We define A (n) to be the strong typical set based on P x n as follows, { A (n) := x n : α X, P x n (α) P x n (α) < } X As a side note, the strong typical set has all the desired property of the (weak) typical set. With this stronger version, the following parts will generalize the interpretation of information divergence beyond the Bernoulli distribution, and avoid the problem raised in part ii i. Define P n := { P : x n X n P = P x n } to be the class of all types. Show that ( ) n + X P n = n X (n + ) ii. Define T P := { x n X n : P x n = P } to be the class of type P P n. Show that P x n (T Px n ) = max P P n P x n (T P ) P n iii. Show using the previous result that T Px n = P x n (T Px n )2 nh[p x n ]. = 2 nh[p x n ] iv. Finally, show that Q(T Px n ) =. 2 nd[p x n Q] and so Pr(A (n) ) := Q(A (n) ) =. 2 nd[p x n Q] as 0.

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16 EE539R: Problem Set 4 Assigned: 3/08/6, Due: 07/09/6. Cover and Thomas: Problem 3.5 Sets defined by probabilities: Define the set C n (t = {x n : P X n(x n 2 nt } (a We have = P X n(x n P X n(x n 2 nt

More information

Homework Set #2 Data Compression, Huffman code and AEP

Homework Set #2 Data Compression, Huffman code and AEP Homework Set #2 Data Compression, Huffman code and AEP 1. Huffman coding. Consider the random variable ( x1 x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0.11 0.04 0.04 0.03 0.02 (a Find a binary Huffman code

More information

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST Information Theory Lecture 5 Entropy rate and Markov sources STEFAN HÖST Universal Source Coding Huffman coding is optimal, what is the problem? In the previous coding schemes (Huffman and Shannon-Fano)it

More information

Solutions to Set #2 Data Compression, Huffman code and AEP

Solutions to Set #2 Data Compression, Huffman code and AEP Solutions to Set #2 Data Compression, Huffman code and AEP. Huffman coding. Consider the random variable ( ) x x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0. 0.04 0.04 0.03 0.02 (a) Find a binary Huffman code

More information

National University of Singapore Department of Electrical & Computer Engineering. Examination for

National University of Singapore Department of Electrical & Computer Engineering. Examination for National University of Singapore Department of Electrical & Computer Engineering Examination for EE5139R Information Theory for Communication Systems (Semester I, 2014/15) November/December 2014 Time Allowed:

More information

Communications Theory and Engineering

Communications Theory and Engineering Communications Theory and Engineering Master's Degree in Electronic Engineering Sapienza University of Rome A.A. 2018-2019 AEP Asymptotic Equipartition Property AEP In information theory, the analog of

More information

EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018

EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018 Please submit the solutions on Gradescope. Some definitions that may be useful: EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018 Definition 1: A sequence of random variables X

More information

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University Chapter 4 Data Transmission and Channel Capacity Po-Ning Chen, Professor Department of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 30050, R.O.C. Principle of Data Transmission

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2013, 29 November 2013 Memoryless Sources Arithmetic Coding Sources with Memory Markov Example 2 / 21 Encoding the output

More information

Lecture 5: Asymptotic Equipartition Property

Lecture 5: Asymptotic Equipartition Property Lecture 5: Asymptotic Equipartition Property Law of large number for product of random variables AEP and consequences Dr. Yao Xie, ECE587, Information Theory, Duke University Stock market Initial investment

More information

Solutions to Homework Set #1 Sanov s Theorem, Rate distortion

Solutions to Homework Set #1 Sanov s Theorem, Rate distortion st Semester 00/ Solutions to Homework Set # Sanov s Theorem, Rate distortion. Sanov s theorem: Prove the simple version of Sanov s theorem for the binary random variables, i.e., let X,X,...,X n be a sequence

More information

(Classical) Information Theory II: Source coding

(Classical) Information Theory II: Source coding (Classical) Information Theory II: Source coding Sibasish Ghosh The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. p. 1 Abstract The information content of a random variable

More information

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem LECTURE 15 Last time: Feedback channel: setting up the problem Perfect feedback Feedback capacity Data compression Lecture outline Joint source and channel coding theorem Converse Robustness Brain teaser

More information

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1 Kraft s inequality An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if N 2 l i 1 Proof: Suppose that we have a tree code. Let l max = max{l 1,...,

More information

Information measures in simple coding problems

Information measures in simple coding problems Part I Information measures in simple coding problems in this web service in this web service Source coding and hypothesis testing; information measures A(discrete)source is a sequence {X i } i= of random

More information

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria

Source Coding. Master Universitario en Ingeniería de Telecomunicación. I. Santamaría Universidad de Cantabria Source Coding Master Universitario en Ingeniería de Telecomunicación I. Santamaría Universidad de Cantabria Contents Introduction Asymptotic Equipartition Property Optimal Codes (Huffman Coding) Universal

More information

APC486/ELE486: Transmission and Compression of Information. Bounds on the Expected Length of Code Words

APC486/ELE486: Transmission and Compression of Information. Bounds on the Expected Length of Code Words APC486/ELE486: Transmission and Compression of Information Bounds on the Expected Length of Code Words Scribe: Kiran Vodrahalli September 8, 204 Notations In these notes, denotes a finite set, called the

More information

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16 EE539R: Problem Set 3 Assigned: 24/08/6, Due: 3/08/6. Cover and Thomas: Problem 2.30 (Maimum Entropy): Solution: We are required to maimize H(P X ) over all distributions P X on the non-negative integers

More information

Lecture 22: Final Review

Lecture 22: Final Review Lecture 22: Final Review Nuts and bolts Fundamental questions and limits Tools Practical algorithms Future topics Dr Yao Xie, ECE587, Information Theory, Duke University Basics Dr Yao Xie, ECE587, Information

More information

Lecture 11: Polar codes construction

Lecture 11: Polar codes construction 15-859: Information Theory and Applications in TCS CMU: Spring 2013 Lecturer: Venkatesan Guruswami Lecture 11: Polar codes construction February 26, 2013 Scribe: Dan Stahlke 1 Polar codes: recap of last

More information

1 Ex. 1 Verify that the function H(p 1,..., p n ) = k p k log 2 p k satisfies all 8 axioms on H.

1 Ex. 1 Verify that the function H(p 1,..., p n ) = k p k log 2 p k satisfies all 8 axioms on H. Problem sheet Ex. Verify that the function H(p,..., p n ) = k p k log p k satisfies all 8 axioms on H. Ex. (Not to be handed in). looking at the notes). List as many of the 8 axioms as you can, (without

More information

INFORMATION THEORY AND STATISTICS

INFORMATION THEORY AND STATISTICS CHAPTER INFORMATION THEORY AND STATISTICS We now explore the relationship between information theory and statistics. We begin by describing the method of types, which is a powerful technique in large deviation

More information

Context tree models for source coding

Context tree models for source coding Context tree models for source coding Toward Non-parametric Information Theory Licence de droits d usage Outline Lossless Source Coding = density estimation with log-loss Source Coding and Universal Coding

More information

COMM901 Source Coding and Compression. Quiz 1

COMM901 Source Coding and Compression. Quiz 1 German University in Cairo - GUC Faculty of Information Engineering & Technology - IET Department of Communication Engineering Winter Semester 2013/2014 Students Name: Students ID: COMM901 Source Coding

More information

Homework 1 Due: Thursday 2/5/2015. Instructions: Turn in your homework in class on Thursday 2/5/2015

Homework 1 Due: Thursday 2/5/2015. Instructions: Turn in your homework in class on Thursday 2/5/2015 10-704 Homework 1 Due: Thursday 2/5/2015 Instructions: Turn in your homework in class on Thursday 2/5/2015 1. Information Theory Basics and Inequalities C&T 2.47, 2.29 (a) A deck of n cards in order 1,

More information

10-704: Information Processing and Learning Spring Lecture 8: Feb 5

10-704: Information Processing and Learning Spring Lecture 8: Feb 5 10-704: Information Processing and Learning Spring 2015 Lecture 8: Feb 5 Lecturer: Aarti Singh Scribe: Siheng Chen Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

More information

10-704: Information Processing and Learning Fall Lecture 9: Sept 28

10-704: Information Processing and Learning Fall Lecture 9: Sept 28 10-704: Information Processing and Learning Fall 2016 Lecturer: Siheng Chen Lecture 9: Sept 28 Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy

More information

Stochastic process. X, a series of random variables indexed by t

Stochastic process. X, a series of random variables indexed by t Stochastic process X, a series of random variables indexed by t X={X(t), t 0} is a continuous time stochastic process X={X(t), t=0,1, } is a discrete time stochastic process X(t) is the state at time t,

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

(each row defines a probability distribution). Given n-strings x X n, y Y n we can use the absence of memory in the channel to compute

(each row defines a probability distribution). Given n-strings x X n, y Y n we can use the absence of memory in the channel to compute ENEE 739C: Advanced Topics in Signal Processing: Coding Theory Instructor: Alexander Barg Lecture 6 (draft; 9/6/03. Error exponents for Discrete Memoryless Channels http://www.enee.umd.edu/ abarg/enee739c/course.html

More information

EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 2018 Please submit on Gradescope. Start every question on a new page.

EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 2018 Please submit on Gradescope. Start every question on a new page. EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 28 Please submit on Gradescope. Start every question on a new page.. Maximum Differential Entropy (a) Show that among all distributions supported

More information

. Find E(V ) and var(v ).

. Find E(V ) and var(v ). Math 6382/6383: Probability Models and Mathematical Statistics Sample Preliminary Exam Questions 1. A person tosses a fair coin until she obtains 2 heads in a row. She then tosses a fair die the same number

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information

ECE Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE)

ECE Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE) ECE 74 - Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE) 1. A Huffman code finds the optimal codeword to assign to a given block of source symbols. (a) Show that cannot be a Huffman

More information

CSE 312 Final Review: Section AA

CSE 312 Final Review: Section AA CSE 312 TAs December 8, 2011 General Information General Information Comprehensive Midterm General Information Comprehensive Midterm Heavily weighted toward material after the midterm Pre-Midterm Material

More information

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 Please submit the solutions on Gradescope. EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 1. Optimal codeword lengths. Although the codeword lengths of an optimal variable length code

More information

Information Theory in Intelligent Decision Making

Information Theory in Intelligent Decision Making Information Theory in Intelligent Decision Making Adaptive Systems and Algorithms Research Groups School of Computer Science University of Hertfordshire, United Kingdom June 7, 2015 Information Theory

More information

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for

MARKOV CHAINS A finite state Markov chain is a sequence of discrete cv s from a finite alphabet where is a pmf on and for MARKOV CHAINS A finite state Markov chain is a sequence S 0,S 1,... of discrete cv s from a finite alphabet S where q 0 (s) is a pmf on S 0 and for n 1, Q(s s ) = Pr(S n =s S n 1 =s ) = Pr(S n =s S n 1

More information

Network coding for multicast relation to compression and generalization of Slepian-Wolf

Network coding for multicast relation to compression and generalization of Slepian-Wolf Network coding for multicast relation to compression and generalization of Slepian-Wolf 1 Overview Review of Slepian-Wolf Distributed network compression Error exponents Source-channel separation issues

More information

10-704: Information Processing and Learning Fall Lecture 10: Oct 3

10-704: Information Processing and Learning Fall Lecture 10: Oct 3 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 0: Oct 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

Bioinformatics: Biology X

Bioinformatics: Biology X Bud Mishra Room 1002, 715 Broadway, Courant Institute, NYU, New York, USA Model Building/Checking, Reverse Engineering, Causality Outline 1 Bayesian Interpretation of Probabilities 2 Where (or of what)

More information

CS 229r Information Theory in Computer Science Feb 12, Lecture 5

CS 229r Information Theory in Computer Science Feb 12, Lecture 5 CS 229r Information Theory in Computer Science Feb 12, 2019 Lecture 5 Instructor: Madhu Sudan Scribe: Pranay Tankala 1 Overview A universal compression algorithm is a single compression algorithm applicable

More information

Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity

Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity Complex Systems Methods 2. Conditional mutual information, entropy rate and algorithmic complexity Eckehard Olbrich MPI MiS Leipzig Potsdam WS 2007/08 Olbrich (Leipzig) 26.10.2007 1 / 18 Overview 1 Summary

More information

Lecture 2: August 31

Lecture 2: August 31 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: August 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy

More information

Memory in Classical Information Theory: A Brief History

Memory in Classical Information Theory: A Brief History Beyond iid in information theory 8- January, 203 Memory in Classical Information Theory: A Brief History sergio verdu princeton university entropy rate Shannon, 948 entropy rate: memoryless process H(X)

More information

Lecture 3 : Algorithms for source coding. September 30, 2016

Lecture 3 : Algorithms for source coding. September 30, 2016 Lecture 3 : Algorithms for source coding September 30, 2016 Outline 1. Huffman code ; proof of optimality ; 2. Coding with intervals : Shannon-Fano-Elias code and Shannon code ; 3. Arithmetic coding. 1/39

More information

Lecture 1: Introduction, Entropy and ML estimation

Lecture 1: Introduction, Entropy and ML estimation 0-704: Information Processing and Learning Spring 202 Lecture : Introduction, Entropy and ML estimation Lecturer: Aarti Singh Scribes: Min Xu Disclaimer: These notes have not been subjected to the usual

More information

Introduction to information theory and coding

Introduction to information theory and coding Introduction to information theory and coding Louis WEHENKEL Set of slides No 4 Source modeling and source coding Stochastic processes and models for information sources First Shannon theorem : data compression

More information

3F1: Signals and Systems INFORMATION THEORY Examples Paper Solutions

3F1: Signals and Systems INFORMATION THEORY Examples Paper Solutions Engineering Tripos Part IIA THIRD YEAR 3F: Signals and Systems INFORMATION THEORY Examples Paper Solutions. Let the joint probability mass function of two binary random variables X and Y be given in the

More information

MARKOV PROCESSES. Valerio Di Valerio

MARKOV PROCESSES. Valerio Di Valerio MARKOV PROCESSES Valerio Di Valerio Stochastic Process Definition: a stochastic process is a collection of random variables {X(t)} indexed by time t T Each X(t) X is a random variable that satisfy some

More information

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have

EECS 229A Spring 2007 * * (a) By stationarity and the chain rule for entropy, we have EECS 229A Spring 2007 * * Solutions to Homework 3 1. Problem 4.11 on pg. 93 of the text. Stationary processes (a) By stationarity and the chain rule for entropy, we have H(X 0 ) + H(X n X 0 ) = H(X 0,

More information

QB LECTURE #4: Motif Finding

QB LECTURE #4: Motif Finding QB LECTURE #4: Motif Finding Adam Siepel Nov. 20, 2015 2 Plan for Today Probability models for binding sites Scoring and detecting binding sites De novo motif finding 3 Transcription Initiation Chromatin

More information

Quiz 1 Date: Monday, October 17, 2016

Quiz 1 Date: Monday, October 17, 2016 10-704 Information Processing and Learning Fall 016 Quiz 1 Date: Monday, October 17, 016 Name: Andrew ID: Department: Guidelines: 1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED.. Write your name, Andrew

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2011, 28 November 2011 Memoryless Sources Arithmetic Coding Sources with Memory 2 / 19 Summary of last lecture Prefix-free

More information

Lecture 3: Channel Capacity

Lecture 3: Channel Capacity Lecture 3: Channel Capacity 1 Definitions Channel capacity is a measure of maximum information per channel usage one can get through a channel. This one of the fundamental concepts in information theory.

More information

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 Lecture 14: Information Theoretic Methods Lecturer: Jiaming Xu Scribe: Hilda Ibriga, Adarsh Barik, December 02, 2016 Outline f-divergence

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

EE5585 Data Compression May 2, Lecture 27

EE5585 Data Compression May 2, Lecture 27 EE5585 Data Compression May 2, 2013 Lecture 27 Instructor: Arya Mazumdar Scribe: Fangying Zhang Distributed Data Compression/Source Coding In the previous class we used a H-W table as a simple example,

More information

Coding for Discrete Source

Coding for Discrete Source EGR 544 Communication Theory 3. Coding for Discrete Sources Z. Aliyazicioglu Electrical and Computer Engineering Department Cal Poly Pomona Coding for Discrete Source Coding Represent source data effectively

More information

Midterm Exam Information Theory Fall Midterm Exam. Time: 09:10 12:10 11/23, 2016

Midterm Exam Information Theory Fall Midterm Exam. Time: 09:10 12:10 11/23, 2016 Midterm Exam Time: 09:10 12:10 11/23, 2016 Name: Student ID: Policy: (Read before You Start to Work) The exam is closed book. However, you are allowed to bring TWO A4-size cheat sheet (single-sheet, two-sided).

More information

Solutions to Problem Set 5

Solutions to Problem Set 5 UC Berkeley, CS 74: Combinatorics and Discrete Probability (Fall 00 Solutions to Problem Set (MU 60 A family of subsets F of {,,, n} is called an antichain if there is no pair of sets A and B in F satisfying

More information

Coding for Digital Communication and Beyond Fall 2013 Anant Sahai MT 1

Coding for Digital Communication and Beyond Fall 2013 Anant Sahai MT 1 EECS 121 Coding for Digital Communication and Beyond Fall 2013 Anant Sahai MT 1 PRINT your student ID: PRINT AND SIGN your name:, (last) (first) (signature) PRINT your Unix account login: ee121- Prob.

More information

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015

MATH 564/STAT 555 Applied Stochastic Processes Homework 2, September 18, 2015 Due September 30, 2015 ID NAME SCORE MATH 56/STAT 555 Applied Stochastic Processes Homework 2, September 8, 205 Due September 30, 205 The generating function of a sequence a n n 0 is defined as As : a ns n for all s 0 for which

More information

Consistency of the maximum likelihood estimator for general hidden Markov models

Consistency of the maximum likelihood estimator for general hidden Markov models Consistency of the maximum likelihood estimator for general hidden Markov models Jimmy Olsson Centre for Mathematical Sciences Lund University Nordstat 2012 Umeå, Sweden Collaborators Hidden Markov models

More information

Capacity of a channel Shannon s second theorem. Information Theory 1/33

Capacity of a channel Shannon s second theorem. Information Theory 1/33 Capacity of a channel Shannon s second theorem Information Theory 1/33 Outline 1. Memoryless channels, examples ; 2. Capacity ; 3. Symmetric channels ; 4. Channel Coding ; 5. Shannon s second theorem,

More information

Capacity of AWGN channels

Capacity of AWGN channels Chapter 3 Capacity of AWGN channels In this chapter we prove that the capacity of an AWGN channel with bandwidth W and signal-tonoise ratio SNR is W log 2 (1+SNR) bits per second (b/s). The proof that

More information

Chapter 3: Asymptotic Equipartition Property

Chapter 3: Asymptotic Equipartition Property Chapter 3: Asymptotic Equipartition Property Chapter 3 outline Strong vs. Weak Typicality Convergence Asymptotic Equipartition Property Theorem High-probability sets and the typical set Consequences of

More information

Eleventh Problem Assignment

Eleventh Problem Assignment EECS April, 27 PROBLEM (2 points) The outcomes of successive flips of a particular coin are dependent and are found to be described fully by the conditional probabilities P(H n+ H n ) = P(T n+ T n ) =

More information

ECE 587 / STA 563: Lecture 5 Lossless Compression

ECE 587 / STA 563: Lecture 5 Lossless Compression ECE 587 / STA 563: Lecture 5 Lossless Compression Information Theory Duke University, Fall 2017 Author: Galen Reeves Last Modified: October 18, 2017 Outline of lecture: 5.1 Introduction to Lossless Source

More information

Information Theory and Networks

Information Theory and Networks Information Theory and Networks Lecture 17: Gambling with Side Information Paul Tune http://www.maths.adelaide.edu.au/matthew.roughan/ Lecture_notes/InformationTheory/ School

More information

Coding of memoryless sources 1/35

Coding of memoryless sources 1/35 Coding of memoryless sources 1/35 Outline 1. Morse coding ; 2. Definitions : encoding, encoding efficiency ; 3. fixed length codes, encoding integers ; 4. prefix condition ; 5. Kraft and Mac Millan theorems

More information

ECE 587 / STA 563: Lecture 5 Lossless Compression

ECE 587 / STA 563: Lecture 5 Lossless Compression ECE 587 / STA 563: Lecture 5 Lossless Compression Information Theory Duke University, Fall 28 Author: Galen Reeves Last Modified: September 27, 28 Outline of lecture: 5. Introduction to Lossless Source

More information

18.175: Lecture 30 Markov chains

18.175: Lecture 30 Markov chains 18.175: Lecture 30 Markov chains Scott Sheffield MIT Outline Review what you know about finite state Markov chains Finite state ergodicity and stationarity More general setup Outline Review what you know

More information

ELEC546 Review of Information Theory

ELEC546 Review of Information Theory ELEC546 Review of Information Theory Vincent Lau 1/1/004 1 Review of Information Theory Entropy: Measure of uncertainty of a random variable X. The entropy of X, H(X), is given by: If X is a discrete random

More information

Coding on Countably Infinite Alphabets

Coding on Countably Infinite Alphabets Coding on Countably Infinite Alphabets Non-parametric Information Theory Licence de droits d usage Outline Lossless Coding on infinite alphabets Source Coding Universal Coding Infinite Alphabets Enveloppe

More information

ECS 332: Principles of Communications 2012/1. HW 4 Due: Sep 7

ECS 332: Principles of Communications 2012/1. HW 4 Due: Sep 7 ECS 332: Principles of Communications 2012/1 HW 4 Due: Sep 7 Lecturer: Prapun Suksompong, Ph.D. Instructions (a) ONE part of a question will be graded (5 pt). Of course, you do not know which part will

More information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information 4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

More information

Entropies & Information Theory

Entropies & Information Theory Entropies & Information Theory LECTURE I Nilanjana Datta University of Cambridge,U.K. See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223 Quantum Information Theory Born out of Classical Information

More information

Electrical and Information Technology. Information Theory. Problems and Solutions. Contents. Problems... 1 Solutions...7

Electrical and Information Technology. Information Theory. Problems and Solutions. Contents. Problems... 1 Solutions...7 Electrical and Information Technology Information Theory Problems and Solutions Contents Problems.......... Solutions...........7 Problems 3. In Problem?? the binomial coefficent was estimated with Stirling

More information

COMPSCI 240: Reasoning Under Uncertainty

COMPSCI 240: Reasoning Under Uncertainty COMPSCI 240: Reasoning Under Uncertainty Andrew Lan and Nic Herndon University of Massachusetts at Amherst Spring 2019 Lecture 20: Central limit theorem & The strong law of large numbers Markov and Chebyshev

More information

1 Introduction to information theory

1 Introduction to information theory 1 Introduction to information theory 1.1 Introduction In this chapter we present some of the basic concepts of information theory. The situations we have in mind involve the exchange of information through

More information

Lecture 6: Entropy Rate

Lecture 6: Entropy Rate Lecture 6: Entropy Rate Entropy rate H(X) Random walk on graph Dr. Yao Xie, ECE587, Information Theory, Duke University Coin tossing versus poker Toss a fair coin and see and sequence Head, Tail, Tail,

More information

Information Theory: Entropy, Markov Chains, and Huffman Coding

Information Theory: Entropy, Markov Chains, and Huffman Coding The University of Notre Dame A senior thesis submitted to the Department of Mathematics and the Glynn Family Honors Program Information Theory: Entropy, Markov Chains, and Huffman Coding Patrick LeBlanc

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

Bit-Stuffing Algorithms for Crosstalk Avoidance in High-Speed Switching

Bit-Stuffing Algorithms for Crosstalk Avoidance in High-Speed Switching Bit-Stuffing Algorithms for Crosstalk Avoidance in High-Speed Switching Cheng-Shang Chang, Jay Cheng, Tien-Ke Huang, Xuan-Chao Huang, Duan-Shin Lee, and Chao-Yi Chen Institute of Communications Engineering

More information

Midterm 2 Review. CS70 Summer Lecture 6D. David Dinh 28 July UC Berkeley

Midterm 2 Review. CS70 Summer Lecture 6D. David Dinh 28 July UC Berkeley Midterm 2 Review CS70 Summer 2016 - Lecture 6D David Dinh 28 July 2016 UC Berkeley Midterm 2: Format 8 questions, 190 points, 110 minutes (same as MT1). Two pages (one double-sided sheet) of handwritten

More information

Large Deviations Performance of Knuth-Yao algorithm for Random Number Generation

Large Deviations Performance of Knuth-Yao algorithm for Random Number Generation Large Deviations Performance of Knuth-Yao algorithm for Random Number Generation Akisato KIMURA akisato@ss.titech.ac.jp Tomohiko UYEMATSU uematsu@ss.titech.ac.jp April 2, 999 No. AK-TR-999-02 Abstract

More information

Introduction to Information Theory. Uncertainty. Entropy. Surprisal. Joint entropy. Conditional entropy. Mutual information.

Introduction to Information Theory. Uncertainty. Entropy. Surprisal. Joint entropy. Conditional entropy. Mutual information. L65 Dept. of Linguistics, Indiana University Fall 205 Information theory answers two fundamental questions in communication theory: What is the ultimate data compression? What is the transmission rate

More information

Week 5: Markov chains Random access in communication networks Solutions

Week 5: Markov chains Random access in communication networks Solutions Week 5: Markov chains Random access in communication networks Solutions A Markov chain model. The model described in the homework defines the following probabilities: P [a terminal receives a packet in

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 28 Information theory answers two fundamental questions in communication theory: What is the ultimate data compression? What is the transmission

More information

Exercises with solutions (Set B)

Exercises with solutions (Set B) Exercises with solutions (Set B) 3. A fair coin is tossed an infinite number of times. Let Y n be a random variable, with n Z, that describes the outcome of the n-th coin toss. If the outcome of the n-th

More information

Disjointness and Additivity

Disjointness and Additivity Midterm 2: Format Midterm 2 Review CS70 Summer 2016 - Lecture 6D David Dinh 28 July 2016 UC Berkeley 8 questions, 190 points, 110 minutes (same as MT1). Two pages (one double-sided sheet) of handwritten

More information

LIMITING PROBABILITY TRANSITION MATRIX OF A CONDENSED FIBONACCI TREE

LIMITING PROBABILITY TRANSITION MATRIX OF A CONDENSED FIBONACCI TREE International Journal of Applied Mathematics Volume 31 No. 18, 41-49 ISSN: 1311-178 (printed version); ISSN: 1314-86 (on-line version) doi: http://dx.doi.org/1.173/ijam.v31i.6 LIMITING PROBABILITY TRANSITION

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

Review. DS GA 1002 Statistical and Mathematical Models. Carlos Fernandez-Granda

Review. DS GA 1002 Statistical and Mathematical Models.   Carlos Fernandez-Granda Review DS GA 1002 Statistical and Mathematical Models http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall16 Carlos Fernandez-Granda Probability and statistics Probability: Framework for dealing with

More information

Intermittent Communication

Intermittent Communication Intermittent Communication Mostafa Khoshnevisan, Student Member, IEEE, and J. Nicholas Laneman, Senior Member, IEEE arxiv:32.42v2 [cs.it] 7 Mar 207 Abstract We formulate a model for intermittent communication

More information

Information Theory. David Rosenberg. June 15, New York University. David Rosenberg (New York University) DS-GA 1003 June 15, / 18

Information Theory. David Rosenberg. June 15, New York University. David Rosenberg (New York University) DS-GA 1003 June 15, / 18 Information Theory David Rosenberg New York University June 15, 2015 David Rosenberg (New York University) DS-GA 1003 June 15, 2015 1 / 18 A Measure of Information? Consider a discrete random variable

More information

Basic Principles of Lossless Coding. Universal Lossless coding. Lempel-Ziv Coding. 2. Exploit dependences between successive symbols.

Basic Principles of Lossless Coding. Universal Lossless coding. Lempel-Ziv Coding. 2. Exploit dependences between successive symbols. Universal Lossless coding Lempel-Ziv Coding Basic principles of lossless compression Historical review Variable-length-to-block coding Lempel-Ziv coding 1 Basic Principles of Lossless Coding 1. Exploit

More information

Solutions to Homework Set #3 Channel and Source coding

Solutions to Homework Set #3 Channel and Source coding Solutions to Homework Set #3 Channel and Source coding. Rates (a) Channels coding Rate: Assuming you are sending 4 different messages using usages of a channel. What is the rate (in bits per channel use)

More information