EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 2018 Please submit on Gradescope. Start every question on a new page.

Size: px
Start display at page:

Download "EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 2018 Please submit on Gradescope. Start every question on a new page."

Transcription

1 EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 28 Please submit on Gradescope. Start every question on a new page.. Maximum Differential Entropy (a) Show that among all distributions supported in an interval [a,b], the uniform distribution maximizes differential entropy. (b) Let X be a continuous random variable with E[X 4 ] σ 4 and Y be ( a continuous ) random variable with a probability density function g(y) = c exp y4 where 4σ 4 c = ). Show that ( exp y4 4σ 4 dy h(x) h(y ) with equality if and only if X is distributed as Y. [Hint: you can use the fact that E[Y 4 ] = σ 4.] Solutions: Maximum Differential Entropy (a) Denote by u(x) the uniform distribution, with x [a, b], such that u(x) = b a if x [a, b], and otherwise. Let g(x) be any distribution supported in the interval [a, b]. Then, we have D(g u) () = g(x) log g(x) (2) u(x) = g(x) log ((b a)g(x)) (3) = log(b a) + g(x) log g(x) (4) = log(b a) H(X), (5) which implies H(X) log(b a). On the other hand, note that if x is uniformly distributed in the interval [a, b], we have which finishes the proof. H(X) = = u(x) log u(x) u(x) log(b a) = log(b a), Homework 4 Page of 9

2 (b) Since E[X 4 ] σ 4 = E[Y 4 ], we have [ D(f X g) = E log f ] X(X) g(x) = h(x) + E [ log g(x)] ] = h(x) + E [ log c + X4 4σ log e 4 h(x) + E [ log c + Y ] 4 4σ log e 4 = h(x) + E [ log g(y )] = h(x) + h(y ). Therefore, h(y ) h(x) + D(f X g) h(x). 2. Cascaded BSCs. Consider the two discrete memoryless channels (X, p (y x), Y) and (Y, p 2 (z y), Z). Let p (y x) and p 2 (z y) be binary symmetric channels with crossover probabilities λ and λ 2 respectively. X λ λ 2 λ λ 2 λ λ 2 λ λ 2 Y Z (a) What is the capacity C of p (y x)? (b) What is the capacity C 2 of p 2 (z y)? (c) We now cascade these channels. Thus p 3 (z x) = y p (y x)p 2 (z y). What is the capacity C 3 of p 3 (z x)? (d) Now let us actively intervene between channels and 2, rather than passively transmit y n. What is the capacity of channel followed by channel 2 if you are allowed to decode the output y n of channel and then reencode it as ỹ n for transmission over channel 2? (Think W x n (W ) y n ỹ n (y n ) z n Ŵ.) (e) What is the capacity of the cascade in part c) if the receiver can view both Y and Z? Homework 4 Page 2 of 9

3 Solution: Cascaded BSCs (a) C is just a capacity of a BSC(λ ). Thus, C = H(λ ). (b) Similarly, C 2 = H(λ 2 ). (c) First observe that the cascaded channel is also a BSC. Since the new BSC has a crossover probability of p 3 = λ ( λ 2 ) + ( λ )λ 2 = λ + λ 2 2λ λ 2, C 3 = H(λ + λ 2 2λ λ 2 ). Note that the new channel is noisier than the original two since by concavity of H(p), H(( λ )λ 2 + λ ( λ 2 )) λ 2 H( λ ) + ( λ 2 )H(λ ) = H(λ ) Similarly for H(λ 2 ). Thus, C 3 minc, C 2 }. (d) Since we are allowed to decode the intermediate outputs and reencode them prior to the second transmission, any rate less than both C and C 2 can be achievable and at the same time any rate greater than either C or C 2 will cause P ɛ (n) exponentially. Hence, the overall capacity is the minimum of two capacities, min(c, C 2 ) = min( H(λ ), H(λ 2 )). (e) Note that Z becomes irrelevant once we observe Y. Thus, the capacity of this channel is just C = H(λ ). Alternatively, X Y (Y, Z) forms a Markov chain so that I(X; Y ) I(X; Y, Z). On the other hand, I(X; Y ) I(X; Y, Z) since we can always ignore the observation Z. (Or X (Y, Z) Y also forms a Markov chain.) Hence, I(X; Y ) = I(X; Y, Z) and the capacity of this case is C. 3. Tensor Power Trick We have seen the proof of Kraft s inequality for uniquely decodable codes via the tensor power trick: we upper bound ( i 2 l i) k and then let k. This is a powerful tool in various problems (e.g., harmonic analysis) where some product structure is available. In this problem we look at another application in information theory. Let (X, Y ),, (X n, Y n ) (X, Y ) be i.i.d discrete random variables. For any ɛ >, define the following ɛ-typical sets: A (n) ɛ (X) = (x n, y n ) : } n log p(xn ) H(X) A (n) ɛ (Y ) = (x n, y n ) : } n log p(yn ) H(Y ) A (n) ɛ (X, Y ) = (x n, y n ) : } n log p(xn, y n ) H(X, Y ) and define A (n) ɛ = A (n) ɛ (X) A (n) ɛ (Y ) A ɛ (n) (X, Y ). Homework 4 Page 3 of 9

4 (a) Show that P((X n, Y n ) A (n) ɛ ) as n. (b) Show that for n large enough, we have ( ɛ)2 n(h(x,y ) ɛ) A (n) ɛ 2 n(h(x)+ɛ) n(h(y )+ɛ) 2 (c) Conclude from (b) that H(X, Y ) H(X) + H(Y ) by taking n and ɛ. This gives another proof of I(X; Y ) without using any convexity/concavity of mutual information and/or KL divergence. Solution: Tensor Power Trick (a) (From Lecture 9, courtesy scribers) We apply WLLN and convergence in probability on the three conditions of the jointly typical set. That is, there exists n, n 2, n 3 such that for all n > n, we have ( P ) n log p(xn ) H(X) ɛ < ɛ/3, and for all n > n 2, we have ( P ) n log p(yn ) H(Y ) ɛ < ɛ/3, and for all n > n 3, we have ( P ) n log p(xn, y n ) H(X, Y ) ɛ < ɛ/3. All three apply for n greater than the largest of n, n 2, n 3. Therefore the probability of the union the set of (x n, y n ) satisfying these inequalities must be less than ɛ, and for n sufficiently large, the probability of the set A (n) ɛ is greater than ɛ. (b) (Lower bound from Lecture 9, courtesy scribers) Upper Bound: First suppose we have S x X n and S y Y n. Then we have S x S y = (x n, y n ) : x n S x, y n S y } X n Y n and S x S y = S x S y. Now, define S x = x n : } n log p(xn ) H(X) S y = y n : } n log p(yn ) H(Y ) Homework 4 Page 4 of 9

5 Then by the AEP, we know that S x 2 n(h(x)+ɛ) and S y 2 n(h(y )+ɛ). Also observe that S x S y = A (n) ɛ (X) A (n) ɛ (Y ) and hence we have A (n) ɛ A (n) ɛ (X) A (n) ɛ (Y ) S x S y = S x S y Lower Bound: ( By Part, P (X n, Y n ) A (n) ɛ (X, Y ) Thus, for large n: (c) First take logarithm to get Dividing by n, 2 n(h(x)+ɛ) n(h(y )+ɛ) 2 ) n. ɛ P ((X n, Y n ) A (n) ɛ (X, Y )) (x n,y n ) A (n) ɛ n(h(x,y ) ɛ) 2 = 2 n(h(x,y ) ɛ) A (n) ɛ (X, Y ) = A (n) n(h(x,y ) ɛ) ɛ (X, Y ) ( ɛ)2 log( ɛ) + n(h(x, Y ) ɛ) n(h(x) + ɛ) + n(h(y ) + ɛ) log( ɛ) n Letting n for fixed ɛ, + (H(X, Y ) ɛ) (H(X) + ɛ) + (H(Y ) + ɛ) (H(X, Y ) ɛ) (H(X) + ɛ) + (H(Y ) + ɛ) This holds for all ɛ >, so let ɛ and get H(X, Y ) H(X) + H(Y ) 4. Channel with uniformly distributed noise. Consider an additive channel whose input alphabet X = 2,,,, 2}, and whose output Y = X + Z, where Z is uniformly distributed over the interval [, ]. Thus the input of the channel is a discrete random variable, while the output is continuous. Calculate the capacity C = max p(x) I(X; Y ) of this channel. Solution: Channel with uniformly distributed noise We can expand the mutual information I(X; Y ) = h(y ) h(y X) = h(y ) h(z) Homework 4 Page 5 of 9

6 and h(z) = log 2, since Z U(, ). The output Y is a sum a of a discrete and a continuous random variable, and if the probabilities of X are p 2, p,..., p 2, then the output distribution of Y has a uniform distribution with weight p 2 /2 for 3 Y 2, uniform with weight (p 2 + p )/2 for 2 Y, etc. Given that Y ranges from -3 to 3, the maximum entropy that it can have is an uniform over this range. This can be achieved if the distribution of X is (/3,, /3,,/3). Then h(y ) = log 6 and the capacity of this channel is C = log 6 log 2 = log 3 bits. Homework 4 Page 6 of 9

7 5. Exponential Noise Channel and Exponential Source Recall that X Exp(λ) is to say that X is a continuous non-negative random variable with density λe f X (x) = λx if x if x < or, equivalently, that X is a random variable with characteristic function ϕ X (t) = E [ e itx] = Recall also that in this case EX = /λ. (a) Find the differential entropy of X Exp(λ). it/λ. (b) Prove that Exp(λ) uniquely maximizes the differential entropy among all nonnegative random variables confined to EX /λ. Hint: Recall our proof of an analogous fact for the Gaussian distribution. Fix positive scalars a and b. Let X be the non-negative random variable of mean a formed by taking X = with probability b and, with probability a, drawing from a+b a+b an exponential distribution Exp(/(a + b)). Equivalently stated, X is the random variable with characteristic function ϕ X (t) = b a + b + Let N Exp(/b) and independent of X. a a + b it(a + b). (c) What is the distribution of X + N? Tip: simplest would be to compute the characteristic function of X + N by recalling the relation ϕ X+N (t) = ϕ X (t) ϕ N (t). (d) Find I(X; X + N). (e) Consider the problem of communication over the additive exponential noise channel Y = X +N, where N Exp(/b), independent of the channel input X, which is confined to being non-negative and satisfying the moment constraint EX a. Find C(a) = max I(X; X + N), where the maximization is over all non-negative X satisfying EX a. What is the capacity-achieving distribution? Hint: Using findings from previous parts, show that for any non-negative random variable X, independent of N, with EX a, we have I(X; X+N) I(X; X+N). Homework 4 Page 7 of 9

8 Solution: Exponential Noise Channel and Exponential Source (a) h(x) = = = = log λ. f X (x) log(f X (x))dx λe λx log(λe λx )dx λe λx log(λ) + λ xλe λx dx (b) Let the probability density of any such non-negative random variable be f X, while g X is the density of Exp(λ) as in Part () above, (c) (d) h(x) = = f X (x) log(f X (x))dx f X (x) log( f X(x) g X (x) )dx = D(f X g X ) log(λ) = log λ D(f X g X ) log λ, f X (x)dx + λ f X (x) log(λe λx )dx xf X (x)dx where the last inequality is due to the fact that D(f X g X ), equality holds if X = Exp(λ). ϕ X+N (t) = ϕ X (t) ϕ N (t) b = ( a + b + a a + b it(a + b) ) itb a + b itab itb 2 = it(a + b) (a + b)( itb) = it(a + b), which is the characteristic function of Exp(/a + b). Thus X + N is distributed as Exp(/a + b). I(X; X + N) = h(x + N) h(x + N X) N X = h(x + N) h(n) = + log(a + b) ( + log(b)) = log( + a b ) Homework 4 Page 8 of 9

9 (e) For any feasible X, note that X + N is a non-negative random variable and E[X +N] = E[X]+E[N] a+b, thus by the result of Part (2) above, h(x +N) + log(a + b). Hence, I(X; X + N) = h(x + N) h(x + N X) N X = h(x + N) h(n) ( ) + log(a + b) h(n) = + log(a + b) ( + log(b)) = log( + a b ) = I(X; X + N), Thus C(a) log(+ a b ). Equality in ( ) holds if X = X proving C(a) = log(+ a b ). Maximizing distribution is that of X. Homework 4 Page 9 of 9

EE376A - Information Theory Final, Monday March 14th 2016 Solutions. Please start answering each question on a new page of the answer booklet.

EE376A - Information Theory Final, Monday March 14th 2016 Solutions. Please start answering each question on a new page of the answer booklet. EE376A - Information Theory Final, Monday March 14th 216 Solutions Instructions: You have three hours, 3.3PM - 6.3PM The exam has 4 questions, totaling 12 points. Please start answering each question on

More information

EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm

EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm 1. Feedback does not increase the capacity. Consider a channel with feedback. We assume that all the recieved outputs are sent back immediately

More information

Electrical and Information Technology. Information Theory. Problems and Solutions. Contents. Problems... 1 Solutions...7

Electrical and Information Technology. Information Theory. Problems and Solutions. Contents. Problems... 1 Solutions...7 Electrical and Information Technology Information Theory Problems and Solutions Contents Problems.......... Solutions...........7 Problems 3. In Problem?? the binomial coefficent was estimated with Stirling

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions EE/Stat 376B Handout #5 Network Information Theory October, 14, 014 1. Problem.4 parts (b) and (c). Homework Set # Solutions (b) Consider h(x + Y ) h(x + Y Y ) = h(x Y ) = h(x). (c) Let ay = Y 1 + Y, where

More information

LECTURE 10. Last time: Lecture outline

LECTURE 10. Last time: Lecture outline LECTURE 10 Joint AEP Coding Theorem Last time: Error Exponents Lecture outline Strong Coding Theorem Reading: Gallager, Chapter 5. Review Joint AEP A ( ɛ n) (X) A ( ɛ n) (Y ) vs. A ( ɛ n) (X, Y ) 2 nh(x)

More information

Lecture 3: Channel Capacity

Lecture 3: Channel Capacity Lecture 3: Channel Capacity 1 Definitions Channel capacity is a measure of maximum information per channel usage one can get through a channel. This one of the fundamental concepts in information theory.

More information

Capacity of a channel Shannon s second theorem. Information Theory 1/33

Capacity of a channel Shannon s second theorem. Information Theory 1/33 Capacity of a channel Shannon s second theorem Information Theory 1/33 Outline 1. Memoryless channels, examples ; 2. Capacity ; 3. Symmetric channels ; 4. Channel Coding ; 5. Shannon s second theorem,

More information

Solutions to Homework Set #3 Channel and Source coding

Solutions to Homework Set #3 Channel and Source coding Solutions to Homework Set #3 Channel and Source coding. Rates (a) Channels coding Rate: Assuming you are sending 4 different messages using usages of a channel. What is the rate (in bits per channel use)

More information

Lecture 8: Channel and source-channel coding theorems; BEC & linear codes. 1 Intuitive justification for upper bound on channel capacity

Lecture 8: Channel and source-channel coding theorems; BEC & linear codes. 1 Intuitive justification for upper bound on channel capacity 5-859: Information Theory and Applications in TCS CMU: Spring 23 Lecture 8: Channel and source-channel coding theorems; BEC & linear codes February 7, 23 Lecturer: Venkatesan Guruswami Scribe: Dan Stahlke

More information

Lecture 8: Channel Capacity, Continuous Random Variables

Lecture 8: Channel Capacity, Continuous Random Variables EE376A/STATS376A Information Theory Lecture 8-02/0/208 Lecture 8: Channel Capacity, Continuous Random Variables Lecturer: Tsachy Weissman Scribe: Augustine Chemparathy, Adithya Ganesh, Philip Hwang Channel

More information

EE5139R: Problem Set 7 Assigned: 30/09/15, Due: 07/10/15

EE5139R: Problem Set 7 Assigned: 30/09/15, Due: 07/10/15 EE5139R: Problem Set 7 Assigned: 30/09/15, Due: 07/10/15 1. Cascade of Binary Symmetric Channels The conditional probability distribution py x for each of the BSCs may be expressed by the transition probability

More information

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University

Chapter 4. Data Transmission and Channel Capacity. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University Chapter 4 Data Transmission and Channel Capacity Po-Ning Chen, Professor Department of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 30050, R.O.C. Principle of Data Transmission

More information

Lecture 6: Gaussian Channels. Copyright G. Caire (Sample Lectures) 157

Lecture 6: Gaussian Channels. Copyright G. Caire (Sample Lectures) 157 Lecture 6: Gaussian Channels Copyright G. Caire (Sample Lectures) 157 Differential entropy (1) Definition 18. The (joint) differential entropy of a continuous random vector X n p X n(x) over R is: Z h(x

More information

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018

EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 Please submit the solutions on Gradescope. EE376A: Homework #3 Due by 11:59pm Saturday, February 10th, 2018 1. Optimal codeword lengths. Although the codeword lengths of an optimal variable length code

More information

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye Chapter 8: Differential entropy Chapter 8 outline Motivation Definitions Relation to discrete entropy Joint and conditional differential entropy Relative entropy and mutual information Properties AEP for

More information

Lecture 14 February 28

Lecture 14 February 28 EE/Stats 376A: Information Theory Winter 07 Lecture 4 February 8 Lecturer: David Tse Scribe: Sagnik M, Vivek B 4 Outline Gaussian channel and capacity Information measures for continuous random variables

More information

Network coding for multicast relation to compression and generalization of Slepian-Wolf

Network coding for multicast relation to compression and generalization of Slepian-Wolf Network coding for multicast relation to compression and generalization of Slepian-Wolf 1 Overview Review of Slepian-Wolf Distributed network compression Error exponents Source-channel separation issues

More information

Note that the new channel is noisier than the original two : and H(A I +A2-2A1A2) > H(A2) (why?). min(c,, C2 ) = min(1 - H(a t ), 1 - H(A 2 )).

Note that the new channel is noisier than the original two : and H(A I +A2-2A1A2) > H(A2) (why?). min(c,, C2 ) = min(1 - H(a t ), 1 - H(A 2 )). l I ~-16 / (a) (5 points) What is the capacity Cr of the channel X -> Y? What is C of the channel Y - Z? (b) (5 points) What is the capacity C 3 of the cascaded channel X -3 Z? (c) (5 points) A ow let.

More information

Solutions to Homework Set #4 Differential Entropy and Gaussian Channel

Solutions to Homework Set #4 Differential Entropy and Gaussian Channel Solutions to Homework Set #4 Differential Entropy and Gaussian Channel 1. Differential entropy. Evaluate the differential entropy h(x = f lnf for the following: (a Find the entropy of the exponential density

More information

National University of Singapore Department of Electrical & Computer Engineering. Examination for

National University of Singapore Department of Electrical & Computer Engineering. Examination for National University of Singapore Department of Electrical & Computer Engineering Examination for EE5139R Information Theory for Communication Systems (Semester I, 2014/15) November/December 2014 Time Allowed:

More information

Lecture 6 I. CHANNEL CODING. X n (m) P Y X

Lecture 6 I. CHANNEL CODING. X n (m) P Y X 6- Introduction to Information Theory Lecture 6 Lecturer: Haim Permuter Scribe: Yoav Eisenberg and Yakov Miron I. CHANNEL CODING We consider the following channel coding problem: m = {,2,..,2 nr} Encoder

More information

LECTURE 13. Last time: Lecture outline

LECTURE 13. Last time: Lecture outline LECTURE 13 Last time: Strong coding theorem Revisiting channel and codes Bound on probability of error Error exponent Lecture outline Fano s Lemma revisited Fano s inequality for codewords Converse to

More information

EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018

EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018 Please submit the solutions on Gradescope. Some definitions that may be useful: EE376A: Homework #2 Solutions Due by 11:59pm Thursday, February 1st, 2018 Definition 1: A sequence of random variables X

More information

ELEC546 Review of Information Theory

ELEC546 Review of Information Theory ELEC546 Review of Information Theory Vincent Lau 1/1/004 1 Review of Information Theory Entropy: Measure of uncertainty of a random variable X. The entropy of X, H(X), is given by: If X is a discrete random

More information

Lecture 15: Conditional and Joint Typicaility

Lecture 15: Conditional and Joint Typicaility EE376A Information Theory Lecture 1-02/26/2015 Lecture 15: Conditional and Joint Typicaility Lecturer: Kartik Venkat Scribe: Max Zimet, Brian Wai, Sepehr Nezami 1 Notation We always write a sequence of

More information

Lecture 5: Asymptotic Equipartition Property

Lecture 5: Asymptotic Equipartition Property Lecture 5: Asymptotic Equipartition Property Law of large number for product of random variables AEP and consequences Dr. Yao Xie, ECE587, Information Theory, Duke University Stock market Initial investment

More information

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture : Mutual Information Method Lecturer: Yihong Wu Scribe: Jaeho Lee, Mar, 06 Ed. Mar 9 Quick review: Assouad s lemma

More information

Shannon s noisy-channel theorem

Shannon s noisy-channel theorem Shannon s noisy-channel theorem Information theory Amon Elders Korteweg de Vries Institute for Mathematics University of Amsterdam. Tuesday, 26th of Januari Amon Elders (Korteweg de Vries Institute for

More information

Solutions to Homework Set #1 Sanov s Theorem, Rate distortion

Solutions to Homework Set #1 Sanov s Theorem, Rate distortion st Semester 00/ Solutions to Homework Set # Sanov s Theorem, Rate distortion. Sanov s theorem: Prove the simple version of Sanov s theorem for the binary random variables, i.e., let X,X,...,X n be a sequence

More information

Lecture 22: Final Review

Lecture 22: Final Review Lecture 22: Final Review Nuts and bolts Fundamental questions and limits Tools Practical algorithms Future topics Dr Yao Xie, ECE587, Information Theory, Duke University Basics Dr Yao Xie, ECE587, Information

More information

(each row defines a probability distribution). Given n-strings x X n, y Y n we can use the absence of memory in the channel to compute

(each row defines a probability distribution). Given n-strings x X n, y Y n we can use the absence of memory in the channel to compute ENEE 739C: Advanced Topics in Signal Processing: Coding Theory Instructor: Alexander Barg Lecture 6 (draft; 9/6/03. Error exponents for Discrete Memoryless Channels http://www.enee.umd.edu/ abarg/enee739c/course.html

More information

Shannon s Noisy-Channel Coding Theorem

Shannon s Noisy-Channel Coding Theorem Shannon s Noisy-Channel Coding Theorem Lucas Slot Sebastian Zur February 2015 Abstract In information theory, Shannon s Noisy-Channel Coding Theorem states that it is possible to communicate over a noisy

More information

Lecture 5: Channel Capacity. Copyright G. Caire (Sample Lectures) 122

Lecture 5: Channel Capacity. Copyright G. Caire (Sample Lectures) 122 Lecture 5: Channel Capacity Copyright G. Caire (Sample Lectures) 122 M Definitions and Problem Setup 2 X n Y n Encoder p(y x) Decoder ˆM Message Channel Estimate Definition 11. Discrete Memoryless Channel

More information

Homework Set #3 Rates definitions, Channel Coding, Source-Channel coding

Homework Set #3 Rates definitions, Channel Coding, Source-Channel coding Homework Set # Rates definitions, Channel Coding, Source-Channel coding. Rates (a) Channels coding Rate: Assuming you are sending 4 different messages using usages of a channel. What is the rate (in bits

More information

ECE Information theory Final

ECE Information theory Final ECE 776 - Information theory Final Q1 (1 point) We would like to compress a Gaussian source with zero mean and variance 1 We consider two strategies In the first, we quantize with a step size so that the

More information

Concentration Inequalities

Concentration Inequalities Chapter Concentration Inequalities I. Moment generating functions, the Chernoff method, and sub-gaussian and sub-exponential random variables a. Goal for this section: given a random variable X, how does

More information

Lecture 2: August 31

Lecture 2: August 31 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: August 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy

More information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information

4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information 4F5: Advanced Communications and Coding Handout 2: The Typical Set, Compression, Mutual Information Ramji Venkataramanan Signal Processing and Communications Lab Department of Engineering ramji.v@eng.cam.ac.uk

More information

Quiz 2 Date: Monday, November 21, 2016

Quiz 2 Date: Monday, November 21, 2016 10-704 Information Processing and Learning Fall 2016 Quiz 2 Date: Monday, November 21, 2016 Name: Andrew ID: Department: Guidelines: 1. PLEASE DO NOT TURN THIS PAGE UNTIL INSTRUCTED. 2. Write your name,

More information

x log x, which is strictly convex, and use Jensen s Inequality:

x log x, which is strictly convex, and use Jensen s Inequality: 2. Information measures: mutual information 2.1 Divergence: main inequality Theorem 2.1 (Information Inequality). D(P Q) 0 ; D(P Q) = 0 iff P = Q Proof. Let ϕ(x) x log x, which is strictly convex, and

More information

ECE Information theory Final (Fall 2008)

ECE Information theory Final (Fall 2008) ECE 776 - Information theory Final (Fall 2008) Q.1. (1 point) Consider the following bursty transmission scheme for a Gaussian channel with noise power N and average power constraint P (i.e., 1/n X n i=1

More information

Homework Set #2 Data Compression, Huffman code and AEP

Homework Set #2 Data Compression, Huffman code and AEP Homework Set #2 Data Compression, Huffman code and AEP 1. Huffman coding. Consider the random variable ( x1 x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0.11 0.04 0.04 0.03 0.02 (a Find a binary Huffman code

More information

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University

Chapter 3, 4 Random Variables ENCS Probability and Stochastic Processes. Concordia University Chapter 3, 4 Random Variables ENCS6161 - Probability and Stochastic Processes Concordia University ENCS6161 p.1/47 The Notion of a Random Variable A random variable X is a function that assigns a real

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

(Classical) Information Theory III: Noisy channel coding

(Classical) Information Theory III: Noisy channel coding (Classical) Information Theory III: Noisy channel coding Sibasish Ghosh The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. p. 1 Abstract What is the best possible way

More information

Principles of Communications

Principles of Communications Principles of Communications Weiyao Lin Shanghai Jiao Tong University Chapter 10: Information Theory Textbook: Chapter 12 Communication Systems Engineering: Ch 6.1, Ch 9.1~ 9. 92 2009/2010 Meixia Tao @

More information

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16

EE5319R: Problem Set 3 Assigned: 24/08/16, Due: 31/08/16 EE539R: Problem Set 3 Assigned: 24/08/6, Due: 3/08/6. Cover and Thomas: Problem 2.30 (Maimum Entropy): Solution: We are required to maimize H(P X ) over all distributions P X on the non-negative integers

More information

18.175: Lecture 15 Characteristic functions and central limit theorem

18.175: Lecture 15 Characteristic functions and central limit theorem 18.175: Lecture 15 Characteristic functions and central limit theorem Scott Sheffield MIT Outline Characteristic functions Outline Characteristic functions Characteristic functions Let X be a random variable.

More information

Shannon s Noisy-Channel Coding Theorem

Shannon s Noisy-Channel Coding Theorem Shannon s Noisy-Channel Coding Theorem Lucas Slot Sebastian Zur February 13, 2015 Lucas Slot, Sebastian Zur Shannon s Noisy-Channel Coding Theorem February 13, 2015 1 / 29 Outline 1 Definitions and Terminology

More information

Chapter 4: Continuous channel and its capacity

Chapter 4: Continuous channel and its capacity meghdadi@ensil.unilim.fr Reference : Elements of Information Theory by Cover and Thomas Continuous random variable Gaussian multivariate random variable AWGN Band limited channel Parallel channels Flat

More information

ECE 534 Information Theory - Midterm 2

ECE 534 Information Theory - Midterm 2 ECE 534 Information Theory - Midterm Nov.4, 009. 3:30-4:45 in LH03. You will be given the full class time: 75 minutes. Use it wisely! Many of the roblems have short answers; try to find shortcuts. You

More information

EE376A - Information Theory Midterm, Tuesday February 10th. Please start answering each question on a new page of the answer booklet.

EE376A - Information Theory Midterm, Tuesday February 10th. Please start answering each question on a new page of the answer booklet. EE376A - Information Theory Midterm, Tuesday February 10th Instructions: You have two hours, 7PM - 9PM The exam has 3 questions, totaling 100 points. Please start answering each question on a new page

More information

Homework 1 Due: Thursday 2/5/2015. Instructions: Turn in your homework in class on Thursday 2/5/2015

Homework 1 Due: Thursday 2/5/2015. Instructions: Turn in your homework in class on Thursday 2/5/2015 10-704 Homework 1 Due: Thursday 2/5/2015 Instructions: Turn in your homework in class on Thursday 2/5/2015 1. Information Theory Basics and Inequalities C&T 2.47, 2.29 (a) A deck of n cards in order 1,

More information

Solutions to Homework Set #3 (Prepared by Yu Xiang) Let the random variable Y be the time to get the n-th packet. Find the pdf of Y.

Solutions to Homework Set #3 (Prepared by Yu Xiang) Let the random variable Y be the time to get the n-th packet. Find the pdf of Y. Solutions to Homework Set #3 (Prepared by Yu Xiang). Time until the n-th arrival. Let the random variable N(t) be the number of packets arriving during time (0,t]. Suppose N(t) is Poisson with pmf p N

More information

X 1 : X Table 1: Y = X X 2

X 1 : X Table 1: Y = X X 2 ECE 534: Elements of Information Theory, Fall 200 Homework 3 Solutions (ALL DUE to Kenneth S. Palacio Baus) December, 200. Problem 5.20. Multiple access (a) Find the capacity region for the multiple-access

More information

Chapter 2: Random Variables

Chapter 2: Random Variables ECE54: Stochastic Signals and Systems Fall 28 Lecture 2 - September 3, 28 Dr. Salim El Rouayheb Scribe: Peiwen Tian, Lu Liu, Ghadir Ayache Chapter 2: Random Variables Example. Tossing a fair coin twice:

More information

3F1: Signals and Systems INFORMATION THEORY Examples Paper Solutions

3F1: Signals and Systems INFORMATION THEORY Examples Paper Solutions Engineering Tripos Part IIA THIRD YEAR 3F: Signals and Systems INFORMATION THEORY Examples Paper Solutions. Let the joint probability mass function of two binary random variables X and Y be given in the

More information

Lecture 11: Continuous-valued signals and differential entropy

Lecture 11: Continuous-valued signals and differential entropy Lecture 11: Continuous-valued signals and differential entropy Biology 429 Carl Bergstrom September 20, 2008 Sources: Parts of today s lecture follow Chapter 8 from Cover and Thomas (2007). Some components

More information

Lecture 17: Differential Entropy

Lecture 17: Differential Entropy Lecture 17: Differential Entropy Differential entropy AEP for differential entropy Quantization Maximum differential entropy Estimation counterpart of Fano s inequality Dr. Yao Xie, ECE587, Information

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

Chapter I: Fundamental Information Theory

Chapter I: Fundamental Information Theory ECE-S622/T62 Notes Chapter I: Fundamental Information Theory Ruifeng Zhang Dept. of Electrical & Computer Eng. Drexel University. Information Source Information is the outcome of some physical processes.

More information

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem

LECTURE 15. Last time: Feedback channel: setting up the problem. Lecture outline. Joint source and channel coding theorem LECTURE 15 Last time: Feedback channel: setting up the problem Perfect feedback Feedback capacity Data compression Lecture outline Joint source and channel coding theorem Converse Robustness Brain teaser

More information

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017)

UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, Practice Final Examination (Winter 2017) UCSD ECE250 Handout #27 Prof. Young-Han Kim Friday, June 8, 208 Practice Final Examination (Winter 207) There are 6 problems, each problem with multiple parts. Your answer should be as clear and readable

More information

SDS 321: Introduction to Probability and Statistics

SDS 321: Introduction to Probability and Statistics SDS 321: Introduction to Probability and Statistics Lecture 17: Continuous random variables: conditional PDF Purnamrita Sarkar Department of Statistics and Data Science The University of Texas at Austin

More information

1.1 Review of Probability Theory

1.1 Review of Probability Theory 1.1 Review of Probability Theory Angela Peace Biomathemtics II MATH 5355 Spring 2017 Lecture notes follow: Allen, Linda JS. An introduction to stochastic processes with applications to biology. CRC Press,

More information

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 Lecture 14: Information Theoretic Methods Lecturer: Jiaming Xu Scribe: Hilda Ibriga, Adarsh Barik, December 02, 2016 Outline f-divergence

More information

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1 Kraft s inequality An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if N 2 l i 1 Proof: Suppose that we have a tree code. Let l max = max{l 1,...,

More information

UCSD ECE 153 Handout #20 Prof. Young-Han Kim Thursday, April 24, Solutions to Homework Set #3 (Prepared by TA Fatemeh Arbabjolfaei)

UCSD ECE 153 Handout #20 Prof. Young-Han Kim Thursday, April 24, Solutions to Homework Set #3 (Prepared by TA Fatemeh Arbabjolfaei) UCSD ECE 53 Handout #0 Prof. Young-Han Kim Thursday, April 4, 04 Solutions to Homework Set #3 (Prepared by TA Fatemeh Arbabjolfaei). Time until the n-th arrival. Let the random variable N(t) be the number

More information

(Classical) Information Theory II: Source coding

(Classical) Information Theory II: Source coding (Classical) Information Theory II: Source coding Sibasish Ghosh The Institute of Mathematical Sciences CIT Campus, Taramani, Chennai 600 113, India. p. 1 Abstract The information content of a random variable

More information

Revision of Lecture 5

Revision of Lecture 5 Revision of Lecture 5 Information transferring across channels Channel characteristics and binary symmetric channel Average mutual information Average mutual information tells us what happens to information

More information

Lecture 10: Broadcast Channel and Superposition Coding

Lecture 10: Broadcast Channel and Superposition Coding Lecture 10: Broadcast Channel and Superposition Coding Scribed by: Zhe Yao 1 Broadcast channel M 0M 1M P{y 1 y x} M M 01 1 M M 0 The capacity of the broadcast channel depends only on the marginal conditional

More information

Capacity of AWGN channels

Capacity of AWGN channels Chapter 3 Capacity of AWGN channels In this chapter we prove that the capacity of an AWGN channel with bandwidth W and signal-tonoise ratio SNR is W log 2 (1+SNR) bits per second (b/s). The proof that

More information

Chapter 2: Entropy and Mutual Information. University of Illinois at Chicago ECE 534, Natasha Devroye

Chapter 2: Entropy and Mutual Information. University of Illinois at Chicago ECE 534, Natasha Devroye Chapter 2: Entropy and Mutual Information Chapter 2 outline Definitions Entropy Joint entropy, conditional entropy Relative entropy, mutual information Chain rules Jensen s inequality Log-sum inequality

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Transmission of Information Spring 2006

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science Transmission of Information Spring 2006 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.44 Transmission of Information Spring 2006 Homework 2 Solution name username April 4, 2006 Reading: Chapter

More information

Exercises with solutions (Set D)

Exercises with solutions (Set D) Exercises with solutions Set D. A fair die is rolled at the same time as a fair coin is tossed. Let A be the number on the upper surface of the die and let B describe the outcome of the coin toss, where

More information

Lecture 5 Channel Coding over Continuous Channels

Lecture 5 Channel Coding over Continuous Channels Lecture 5 Channel Coding over Continuous Channels I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw November 14, 2014 1 / 34 I-Hsiang Wang NIT Lecture 5 From

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information

Appendix B Information theory from first principles

Appendix B Information theory from first principles Appendix B Information theory from first principles This appendix discusses the information theory behind the capacity expressions used in the book. Section 8.3.4 is the only part of the book that supposes

More information

Chapter 6. Continuous Sources and Channels. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University

Chapter 6. Continuous Sources and Channels. Po-Ning Chen, Professor. Department of Communications Engineering. National Chiao Tung University Chapter 6 Continuous Sources and Channels Po-Ning Chen, Professor Department of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 300, R.O.C. Continuous Sources and Channels I:

More information

Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information

Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information 204 IEEE International Symposium on Information Theory Capacity of the Discrete Memoryless Energy Harvesting Channel with Side Information Omur Ozel, Kaya Tutuncuoglu 2, Sennur Ulukus, and Aylin Yener

More information

Notes 3: Stochastic channels and noisy coding theorem bound. 1 Model of information communication and noisy channel

Notes 3: Stochastic channels and noisy coding theorem bound. 1 Model of information communication and noisy channel Introduction to Coding Theory CMU: Spring 2010 Notes 3: Stochastic channels and noisy coding theorem bound January 2010 Lecturer: Venkatesan Guruswami Scribe: Venkatesan Guruswami We now turn to the basic

More information

Exercise 1. = P(y a 1)P(a 1 )

Exercise 1. = P(y a 1)P(a 1 ) Chapter 7 Channel Capacity Exercise 1 A source produces independent, equally probable symbols from an alphabet {a 1, a 2 } at a rate of one symbol every 3 seconds. These symbols are transmitted over a

More information

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14 Math 325 Intro. Probability & Statistics Summer Homework 5: Due 7/3/. Let X and Y be continuous random variables with joint/marginal p.d.f. s f(x, y) 2, x y, f (x) 2( x), x, f 2 (y) 2y, y. Find the conditional

More information

Solutions to Set #2 Data Compression, Huffman code and AEP

Solutions to Set #2 Data Compression, Huffman code and AEP Solutions to Set #2 Data Compression, Huffman code and AEP. Huffman coding. Consider the random variable ( ) x x X = 2 x 3 x 4 x 5 x 6 x 7 0.50 0.26 0. 0.04 0.04 0.03 0.02 (a) Find a binary Huffman code

More information

Information Theory. Lecture 10. Network Information Theory (CT15); a focus on channel capacity results

Information Theory. Lecture 10. Network Information Theory (CT15); a focus on channel capacity results Information Theory Lecture 10 Network Information Theory (CT15); a focus on channel capacity results The (two-user) multiple access channel (15.3) The (two-user) broadcast channel (15.6) The relay channel

More information

EE 376A: Information Theory Lecture Notes. Prof. Tsachy Weissman TA: Idoia Ochoa, Kedar Tatwawadi

EE 376A: Information Theory Lecture Notes. Prof. Tsachy Weissman TA: Idoia Ochoa, Kedar Tatwawadi EE 376A: Information Theory Lecture Notes Prof. Tsachy Weissman TA: Idoia Ochoa, Kedar Tatwawadi January 6, 206 Contents Introduction. Lossless Compression.....................................2 Channel

More information

Hands-On Learning Theory Fall 2016, Lecture 3

Hands-On Learning Theory Fall 2016, Lecture 3 Hands-On Learning Theory Fall 016, Lecture 3 Jean Honorio jhonorio@purdue.edu 1 Information Theory First, we provide some information theory background. Definition 3.1 (Entropy). The entropy of a discrete

More information

Lecture 2. Capacity of the Gaussian channel

Lecture 2. Capacity of the Gaussian channel Spring, 207 5237S, Wireless Communications II 2. Lecture 2 Capacity of the Gaussian channel Review on basic concepts in inf. theory ( Cover&Thomas: Elements of Inf. Theory, Tse&Viswanath: Appendix B) AWGN

More information

10-704: Information Processing and Learning Fall Lecture 9: Sept 28

10-704: Information Processing and Learning Fall Lecture 9: Sept 28 10-704: Information Processing and Learning Fall 2016 Lecturer: Siheng Chen Lecture 9: Sept 28 Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy

More information

1 Introduction to information theory

1 Introduction to information theory 1 Introduction to information theory 1.1 Introduction In this chapter we present some of the basic concepts of information theory. The situations we have in mind involve the exchange of information through

More information

Noisy-Channel Coding

Noisy-Channel Coding Copyright Cambridge University Press 2003. On-screen viewing permitted. Printing not permitted. http://www.cambridge.org/05264298 Part II Noisy-Channel Coding Copyright Cambridge University Press 2003.

More information

Information Theory Primer:

Information Theory Primer: Information Theory Primer: Entropy, KL Divergence, Mutual Information, Jensen s inequality Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

2 Functions of random variables

2 Functions of random variables 2 Functions of random variables A basic statistical model for sample data is a collection of random variables X 1,..., X n. The data are summarised in terms of certain sample statistics, calculated as

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 15: Information Theory (cont d) Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt March 29 th, 2015 1 Example: Channel Capacity of BSC o Let then: o For

More information

Chapter 9 Fundamental Limits in Information Theory

Chapter 9 Fundamental Limits in Information Theory Chapter 9 Fundamental Limits in Information Theory Information Theory is the fundamental theory behind information manipulation, including data compression and data transmission. 9.1 Introduction o For

More information

Lecture 8: Shannon s Noise Models

Lecture 8: Shannon s Noise Models Error Correcting Codes: Combinatorics, Algorithms and Applications (Fall 2007) Lecture 8: Shannon s Noise Models September 14, 2007 Lecturer: Atri Rudra Scribe: Sandipan Kundu& Atri Rudra Till now we have

More information

CHAPTER 3. P (B j A i ) P (B j ) =log 2. j=1

CHAPTER 3. P (B j A i ) P (B j ) =log 2. j=1 CHAPTER 3 Problem 3. : Also : Hence : I(B j ; A i ) = log P (B j A i ) P (B j ) 4 P (B j )= P (B j,a i )= i= 3 P (A i )= P (B j,a i )= j= =log P (B j,a i ) P (B j )P (A i ).3, j=.7, j=.4, j=3.3, i=.7,

More information

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16

EE5139R: Problem Set 4 Assigned: 31/08/16, Due: 07/09/16 EE539R: Problem Set 4 Assigned: 3/08/6, Due: 07/09/6. Cover and Thomas: Problem 3.5 Sets defined by probabilities: Define the set C n (t = {x n : P X n(x n 2 nt } (a We have = P X n(x n P X n(x n 2 nt

More information

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable

Lecture Notes 1 Probability and Random Variables. Conditional Probability and Independence. Functions of a Random Variable Lecture Notes 1 Probability and Random Variables Probability Spaces Conditional Probability and Independence Random Variables Functions of a Random Variable Generation of a Random Variable Jointly Distributed

More information