Homework 2: Solution

Size: px
Start display at page:

Download "Homework 2: Solution"

Transcription

1 0-704: Information Processing and Learning Sring 0 Lecturer: Aarti Singh Homework : Solution Acknowledgement: The TA graciously thanks Rafael Stern for roviding most of these solutions.. Problem Hence, Dq = q log q dx Similarly, h i q = E[r i X] = r i xqdx. Thus: Dq = + log q h i q = r i x Finally h 0 q = qdx and hence, h 0 =. Since D q is convex and the equality restrictions are linear, we wish to solve a convex otimization roblem. The Lagrangian of this roblem is: Solving for Lq, λ i = 0, obtain: Calling λ 0 = λ 0, obtain: Lq, λ i = Dq + + logq log + λ 0 + m λ i h i q i=0 m λ i r i x = 0 i= Taking λ 0 such that qdx =, obtain: q = e λ 0 + m i= λiri q = e m i= λiri x e m i= λiri Assume there exist unique values for each λ i such that the equality constraints are satisfied. In this case, q, λ clearly satisfy stationarity and rimal feasibility. Since there are no inequality conditions, dual -

2 - Lecture : Solution feasibility and comlementary slackness are also satisfied. Hence, the KKT conditions are satisfied and q minimizes Dq.. Problem By results from class, we need only find constants λ 0, λ, λ such that the distribution x = exλ 0 + λ x + λ x satisfy the moment constraints. We insect the Gaussian df with first moment µ and second moment µ φx = µ ex x π = x ex π + x µ And we conclude immediately that λ = and λ = the distribution. and λ 0 is whatever constant required to normalize.3 Problem 3 Recall that, by HW b: HP,..., P n = HP i P i,..., P i= HP i The right side is comletely determined by the marginals and corresonds exactly to the joint distribution of indeendent variables. Hence, the result is roven. i=.4 Problem Let rx be the entroy rate of a stocastic rocess X. Recall that: by HW b: HX,..., X n rx = lim n n HX,..., X n = HX + HX i X i,..., X By the Markovian roerty, X i is conditionally indeendent of X i,..., X given X i. Hence: i=

3 Lecture : Solution -3 HX i X i,..., X = HX i X i i= i= Since the Markov chain is homogeneous and stationary, for all i, HX i X i = HX X. Thus: Finally, HX + n HX X rx = lim = HX X n n HX X = i P X = i j P X = j X = i log P X = j X = i Call P i the i th row of P. Observe that: Hence, by stationarity: j P X = j X = i log P X = j X = i = HP i HX X = i P X = ihp i = i µihp i = µ HP i i Observe that rx = HX X HX. If we take the variables to be i.i.d. HX X = HX. Finally, HX is maximized taking the uniform distribution on the suort of the Markov chain. Hence, the rx is maximized taking P as having all rows equal to S, were S is the suort of the Markov chain The invariant measure is obtained solving for µ = µ0 and µ0 + µ =, which lead to µ0 = + and µ = +. From the last item, the entroy rate of the Markov chain is HP µ i i. Observe that P is degenerate and, therefore, HP = 0. Hence, rx = + log + log. Setting dr d = 0, obtain: dr d = log + log + log + log = + + = log log + log log = 0 =

4 -4 Lecture : Solution 3 + = 0 Obtain: = 3± 5. Since 0 and rx = 0 for = 0 and =, by Weiestrass s theorem: = 3 5 maximizes the entroy rate of this Markov chain. On one hand, Reducing increases the weight HX X = 0 contributes to the entroy, which hels increase the entroy. On the other hand, reducing decreases the value of HX X = 0. The otimum value is the sweet sot between these tendencies. 5. IX; Y = HX HX Y. In class we roved that HX = 0.5 logπe. Hence, it suffices to find HX Y. Recall that X Y is a normal random variable with variance ρ ρ = ρ, which does not deend on Y. Hence HX Y = 0.5 logπe ρ if ρ <. Thus, IX; Y = HX HX Y = 0.5 log ρ This value is minimized when ρ = 0. In this case, the variables are indeendent and, therefore, there is no mutual information. When ρ = or ρ =, X is comletely determined by Y, and therefore HX Y = 0. Hence, in this case, IX; Y = HX and is the maximum value obtainable..5 Problem 5 IX; Y = HX HX Y. In class we roved that HX = 0.5 logπe. Hence, it suffices to find HX Y. Recall that X Y is a normal random variable with variance ρ ρ = ρ, which does not deend on Y. Hence HX Y = 0.5 logπe ρ if ρ <. Thus, IX; Y = HX HX Y = 0.5 log ρ This value is minimized when ρ = 0. In this case, the variables are indeendent and, therefore, there is no mutual information. When ρ = or ρ =, X is comletely determined by Y, and IX, Y =.6 Problem 6 HY X = x x y y x logy x Hence, HY X = xlogy x + Similarly, h i q = E[r i XY ] = x r ixx y yy x. Thus: h i = r i xxy Finally h 0,x = y y x and hence, h 0,x = I x. Since HY X is convex and the equality restrictions are linear, we wish to solve a convex otimization roblem. The Lagrangian of this roblem is:

5 Lecture : Solution -5 L, λ = xlogy x + + i λ i r i xxy + x λ 0,x I x Call x λ 0,xI x = fx and obtain: L, λ = xlogy x + + i λ i r i xxy + fx Solving for L, λ = 0: i y x = ex λ ir i xxy + fx x = x Call gx = fx x x : y x = ex i yλ i r i x + gx Since 0 x + x = : y x = ex i yλ ir i x + ex i yλ ir i x Note that we can cancel out the gx from the numerator and the denominator. Observe that clearly satisfies stationarity. Hence, if there exist λ i s such that satisfies the constraints, it also satisfies rimal feasiblity. Finally, since the solution follows the inequalities but did not use them as a constraint, dual feasibility and comlementary slackness are also satisfies. Hence, since the KKT conditions are satisfied, maximizes HY X.

Exercises with solutions (Set D)

Exercises with solutions (Set D) Exercises with solutions Set D. A fair die is rolled at the same time as a fair coin is tossed. Let A be the number on the upper surface of the die and let B describe the outcome of the coin toss, where

More information

ECE 4400:693 - Information Theory

ECE 4400:693 - Information Theory ECE 4400:693 - Information Theory Dr. Nghi Tran Lecture 8: Differential Entropy Dr. Nghi Tran (ECE-University of Akron) ECE 4400:693 Lecture 1 / 43 Outline 1 Review: Entropy of discrete RVs 2 Differential

More information

EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm

EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm EE/Stats 376A: Homework 7 Solutions Due on Friday March 17, 5 pm 1. Feedback does not increase the capacity. Consider a channel with feedback. We assume that all the recieved outputs are sent back immediately

More information

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14

Math 3215 Intro. Probability & Statistics Summer 14. Homework 5: Due 7/3/14 Math 325 Intro. Probability & Statistics Summer Homework 5: Due 7/3/. Let X and Y be continuous random variables with joint/marginal p.d.f. s f(x, y) 2, x y, f (x) 2( x), x, f 2 (y) 2y, y. Find the conditional

More information

Lecture 8: Channel Capacity, Continuous Random Variables

Lecture 8: Channel Capacity, Continuous Random Variables EE376A/STATS376A Information Theory Lecture 8-02/0/208 Lecture 8: Channel Capacity, Continuous Random Variables Lecturer: Tsachy Weissman Scribe: Augustine Chemparathy, Adithya Ganesh, Philip Hwang Channel

More information

10-704: Information Processing and Learning Spring Lecture 8: Feb 5

10-704: Information Processing and Learning Spring Lecture 8: Feb 5 10-704: Information Processing and Learning Spring 2015 Lecture 8: Feb 5 Lecturer: Aarti Singh Scribe: Siheng Chen Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

More information

LECTURE 2. Convexity and related notions. Last time: mutual information: definitions and properties. Lecture outline

LECTURE 2. Convexity and related notions. Last time: mutual information: definitions and properties. Lecture outline LECTURE 2 Convexity and related notions Last time: Goals and mechanics of the class notation entropy: definitions and properties mutual information: definitions and properties Lecture outline Convexity

More information

Hands-On Learning Theory Fall 2016, Lecture 3

Hands-On Learning Theory Fall 2016, Lecture 3 Hands-On Learning Theory Fall 016, Lecture 3 Jean Honorio jhonorio@purdue.edu 1 Information Theory First, we provide some information theory background. Definition 3.1 (Entropy). The entropy of a discrete

More information

Lecture 17: Differential Entropy

Lecture 17: Differential Entropy Lecture 17: Differential Entropy Differential entropy AEP for differential entropy Quantization Maximum differential entropy Estimation counterpart of Fano s inequality Dr. Yao Xie, ECE587, Information

More information

Convex Optimization methods for Computing Channel Capacity

Convex Optimization methods for Computing Channel Capacity Convex Otimization methods for Comuting Channel Caacity Abhishek Sinha Laboratory for Information and Decision Systems (LIDS), MIT sinhaa@mit.edu May 15, 2014 We consider a classical comutational roblem

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 2018 Please submit on Gradescope. Start every question on a new page.

EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 2018 Please submit on Gradescope. Start every question on a new page. EE376A: Homeworks #4 Solutions Due on Thursday, February 22, 28 Please submit on Gradescope. Start every question on a new page.. Maximum Differential Entropy (a) Show that among all distributions supported

More information

Improved Capacity Bounds for the Binary Energy Harvesting Channel

Improved Capacity Bounds for the Binary Energy Harvesting Channel Imroved Caacity Bounds for the Binary Energy Harvesting Channel Kaya Tutuncuoglu 1, Omur Ozel 2, Aylin Yener 1, and Sennur Ulukus 2 1 Deartment of Electrical Engineering, The Pennsylvania State University,

More information

Lecture 6. 2 Recurrence/transience, harmonic functions and martingales

Lecture 6. 2 Recurrence/transience, harmonic functions and martingales Lecture 6 Classification of states We have shown that all states of an irreducible countable state Markov chain must of the same tye. This gives rise to the following classification. Definition. [Classification

More information

Homework 1 Due: Thursday 2/5/2015. Instructions: Turn in your homework in class on Thursday 2/5/2015

Homework 1 Due: Thursday 2/5/2015. Instructions: Turn in your homework in class on Thursday 2/5/2015 10-704 Homework 1 Due: Thursday 2/5/2015 Instructions: Turn in your homework in class on Thursday 2/5/2015 1. Information Theory Basics and Inequalities C&T 2.47, 2.29 (a) A deck of n cards in order 1,

More information

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye

Chapter 8: Differential entropy. University of Illinois at Chicago ECE 534, Natasha Devroye Chapter 8: Differential entropy Chapter 8 outline Motivation Definitions Relation to discrete entropy Joint and conditional differential entropy Relative entropy and mutual information Properties AEP for

More information

EE/Stats 376A: Information theory Winter Lecture 5 Jan 24. Lecturer: David Tse Scribe: Michael X, Nima H, Geng Z, Anton J, Vivek B.

EE/Stats 376A: Information theory Winter Lecture 5 Jan 24. Lecturer: David Tse Scribe: Michael X, Nima H, Geng Z, Anton J, Vivek B. EE/Stats 376A: Information theory Winter 207 Lecture 5 Jan 24 Lecturer: David Tse Scribe: Michael X, Nima H, Geng Z, Anton J, Vivek B. 5. Outline Markov chains and stationary distributions Prefix codes

More information

ECE 534 Information Theory - Midterm 2

ECE 534 Information Theory - Midterm 2 ECE 534 Information Theory - Midterm Nov.4, 009. 3:30-4:45 in LH03. You will be given the full class time: 75 minutes. Use it wisely! Many of the roblems have short answers; try to find shortcuts. You

More information

Lecture 6: Gaussian Channels. Copyright G. Caire (Sample Lectures) 157

Lecture 6: Gaussian Channels. Copyright G. Caire (Sample Lectures) 157 Lecture 6: Gaussian Channels Copyright G. Caire (Sample Lectures) 157 Differential entropy (1) Definition 18. The (joint) differential entropy of a continuous random vector X n p X n(x) over R is: Z h(x

More information

Application of Information Theory, Lecture 7. Relative Entropy. Handout Mode. Iftach Haitner. Tel Aviv University.

Application of Information Theory, Lecture 7. Relative Entropy. Handout Mode. Iftach Haitner. Tel Aviv University. Application of Information Theory, Lecture 7 Relative Entropy Handout Mode Iftach Haitner Tel Aviv University. December 1, 2015 Iftach Haitner (TAU) Application of Information Theory, Lecture 7 December

More information

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006

Quiz Discussion. IE417: Nonlinear Programming: Lecture 12. Motivation. Why do we care? Jeff Linderoth. 16th March 2006 Quiz Discussion IE417: Nonlinear Programming: Lecture 12 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University 16th March 2006 Motivation Why do we care? We are interested in

More information

Information Theory Primer:

Information Theory Primer: Information Theory Primer: Entropy, KL Divergence, Mutual Information, Jensen s inequality Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro,

More information

Lecture 22: Final Review

Lecture 22: Final Review Lecture 22: Final Review Nuts and bolts Fundamental questions and limits Tools Practical algorithms Future topics Dr Yao Xie, ECE587, Information Theory, Duke University Basics Dr Yao Xie, ECE587, Information

More information

Continuous Random Variables

Continuous Random Variables 1 / 24 Continuous Random Variables Saravanan Vijayakumaran sarva@ee.iitb.ac.in Department of Electrical Engineering Indian Institute of Technology Bombay February 27, 2013 2 / 24 Continuous Random Variables

More information

CS 630 Basic Probability and Information Theory. Tim Campbell

CS 630 Basic Probability and Information Theory. Tim Campbell CS 630 Basic Probability and Information Theory Tim Campbell 21 January 2003 Probability Theory Probability Theory is the study of how best to predict outcomes of events. An experiment (or trial or event)

More information

1 Joint and marginal distributions

1 Joint and marginal distributions DECEMBER 7, 204 LECTURE 2 JOINT (BIVARIATE) DISTRIBUTIONS, MARGINAL DISTRIBUTIONS, INDEPENDENCE So far we have considered one random variable at a time. However, in economics we are typically interested

More information

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 CS229T/STATS231: Statistical Learning Theory Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 1 Overview This lecture mainly covers Recall the statistical theory of GANs

More information

Lecture 5 - Information theory

Lecture 5 - Information theory Lecture 5 - Information theory Jan Bouda FI MU May 18, 2012 Jan Bouda (FI MU) Lecture 5 - Information theory May 18, 2012 1 / 42 Part I Uncertainty and entropy Jan Bouda (FI MU) Lecture 5 - Information

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

National Sun Yat-Sen University CSE Course: Information Theory. Maximum Entropy and Spectral Estimation

National Sun Yat-Sen University CSE Course: Information Theory. Maximum Entropy and Spectral Estimation Maximum Entropy and Spectral Estimation 1 Introduction What is the distribution of velocities in the gas at a given temperature? It is the Maxwell-Boltzmann distribution. The maximum entropy distribution

More information

4. Score normalization technical details We now discuss the technical details of the score normalization method.

4. Score normalization technical details We now discuss the technical details of the score normalization method. SMT SCORING SYSTEM This document describes the scoring system for the Stanford Math Tournament We begin by giving an overview of the changes to scoring and a non-technical descrition of the scoring rules

More information

General Random Variables

General Random Variables Chater General Random Variables. Law of a Random Variable Thus far we have considered onl random variables whose domain and range are discrete. We now consider a general random variable X! defined on the

More information

Concentration Inequalities

Concentration Inequalities Chapter Concentration Inequalities I. Moment generating functions, the Chernoff method, and sub-gaussian and sub-exponential random variables a. Goal for this section: given a random variable X, how does

More information

Lecture 18: Optimization Programming

Lecture 18: Optimization Programming Fall, 2016 Outline Unconstrained Optimization 1 Unconstrained Optimization 2 Equality-constrained Optimization Inequality-constrained Optimization Mixture-constrained Optimization 3 Quadratic Programming

More information

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem

Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Lecture 3: Lagrangian duality and algorithms for the Lagrangian dual problem Michael Patriksson 0-0 The Relaxation Theorem 1 Problem: find f := infimum f(x), x subject to x S, (1a) (1b) where f : R n R

More information

Math 421, Homework #9 Solutions

Math 421, Homework #9 Solutions Math 41, Homework #9 Solutions (1) (a) A set E R n is said to be path connected if for any pair of points x E and y E there exists a continuous function γ : [0, 1] R n satisfying γ(0) = x, γ(1) = y, and

More information

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016

MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 MGMT 69000: Topics in High-dimensional Data Analysis Falll 2016 Lecture 14: Information Theoretic Methods Lecturer: Jiaming Xu Scribe: Hilda Ibriga, Adarsh Barik, December 02, 2016 Outline f-divergence

More information

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given.

HW1 solutions. 1. α Ef(x) β, where Ef(x) is the expected value of f(x), i.e., Ef(x) = n. i=1 p if(a i ). (The function f : R R is given. HW1 solutions Exercise 1 (Some sets of probability distributions.) Let x be a real-valued random variable with Prob(x = a i ) = p i, i = 1,..., n, where a 1 < a 2 < < a n. Of course p R n lies in the standard

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST

Information Theory. Lecture 5 Entropy rate and Markov sources STEFAN HÖST Information Theory Lecture 5 Entropy rate and Markov sources STEFAN HÖST Universal Source Coding Huffman coding is optimal, what is the problem? In the previous coding schemes (Huffman and Shannon-Fano)it

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

Probability Background

Probability Background Probability Background Namrata Vaswani, Iowa State University August 24, 2015 Probability recap 1: EE 322 notes Quick test of concepts: Given random variables X 1, X 2,... X n. Compute the PDF of the second

More information

Support Vector Machines

Support Vector Machines Support Vector Machines Support vector machines (SVMs) are one of the central concepts in all of machine learning. They are simply a combination of two ideas: linear classification via maximum (or optimal

More information

ICS-E4030 Kernel Methods in Machine Learning

ICS-E4030 Kernel Methods in Machine Learning ICS-E4030 Kernel Methods in Machine Learning Lecture 3: Convex optimization and duality Juho Rousu 28. September, 2016 Juho Rousu 28. September, 2016 1 / 38 Convex optimization Convex optimisation This

More information

The binary entropy function

The binary entropy function ECE 7680 Lecture 2 Definitions and Basic Facts Objective: To learn a bunch of definitions about entropy and information measures that will be useful through the quarter, and to present some simple but

More information

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions

EE/Stat 376B Handout #5 Network Information Theory October, 14, Homework Set #2 Solutions EE/Stat 376B Handout #5 Network Information Theory October, 14, 014 1. Problem.4 parts (b) and (c). Homework Set # Solutions (b) Consider h(x + Y ) h(x + Y Y ) = h(x Y ) = h(x). (c) Let ay = Y 1 + Y, where

More information

x log x, which is strictly convex, and use Jensen s Inequality:

x log x, which is strictly convex, and use Jensen s Inequality: 2. Information measures: mutual information 2.1 Divergence: main inequality Theorem 2.1 (Information Inequality). D(P Q) 0 ; D(P Q) = 0 iff P = Q Proof. Let ϕ(x) x log x, which is strictly convex, and

More information

Solutions to Homework Set #4 Differential Entropy and Gaussian Channel

Solutions to Homework Set #4 Differential Entropy and Gaussian Channel Solutions to Homework Set #4 Differential Entropy and Gaussian Channel 1. Differential entropy. Evaluate the differential entropy h(x = f lnf for the following: (a Find the entropy of the exponential density

More information

A Gentle Introduction to Stein s Method for Normal Approximation I

A Gentle Introduction to Stein s Method for Normal Approximation I A Gentle Introduction to Stein s Method for Normal Approximation I Larry Goldstein University of Southern California Introduction to Stein s Method for Normal Approximation 1. Much activity since Stein

More information

Announcements - Homework

Announcements - Homework Announcements - Homework Homework 1 is graded, please collect at end of lecture Homework 2 due today Homework 3 out soon (watch email) Ques 1 midterm review HW1 score distribution 40 HW1 total score 35

More information

Examination paper for TMA4180 Optimization I

Examination paper for TMA4180 Optimization I Department of Mathematical Sciences Examination paper for TMA4180 Optimization I Academic contact during examination: Phone: Examination date: 26th May 2016 Examination time (from to): 09:00 13:00 Permitted

More information

Lecture 21: Convergence of transformations and generating a random variable

Lecture 21: Convergence of transformations and generating a random variable Lecture 21: Convergence of transformations and generating a random variable If Z n converges to Z in some sense, we often need to check whether h(z n ) converges to h(z ) in the same sense. Continuous

More information

Quantitative Biology II Lecture 4: Variational Methods

Quantitative Biology II Lecture 4: Variational Methods 10 th March 2015 Quantitative Biology II Lecture 4: Variational Methods Gurinder Singh Mickey Atwal Center for Quantitative Biology Cold Spring Harbor Laboratory Image credit: Mike West Summary Approximate

More information

Support vector machines

Support vector machines Support vector machines Guillaume Obozinski Ecole des Ponts - ParisTech SOCN course 2014 SVM, kernel methods and multiclass 1/23 Outline 1 Constrained optimization, Lagrangian duality and KKT 2 Support

More information

Recita,on: Loss, Regulariza,on, and Dual*

Recita,on: Loss, Regulariza,on, and Dual* 10-701 Recita,on: Loss, Regulariza,on, and Dual* Jay- Yoon Lee 02/26/2015 *Adopted figures from 10725 lecture slides and from the book Elements of Sta,s,cal Learning Loss and Regulariza,on Op,miza,on problem

More information

Multiple Random Variables

Multiple Random Variables Multiple Random Variables This Version: July 30, 2015 Multiple Random Variables 2 Now we consider models with more than one r.v. These are called multivariate models For instance: height and weight An

More information

Shannon meets Wiener II: On MMSE estimation in successive decoding schemes

Shannon meets Wiener II: On MMSE estimation in successive decoding schemes Shannon meets Wiener II: On MMSE estimation in successive decoding schemes G. David Forney, Jr. MIT Cambridge, MA 0239 USA forneyd@comcast.net Abstract We continue to discuss why MMSE estimation arises

More information

Machine Learning. Support Vector Machines. Manfred Huber

Machine Learning. Support Vector Machines. Manfred Huber Machine Learning Support Vector Machines Manfred Huber 2015 1 Support Vector Machines Both logistic regression and linear discriminant analysis learn a linear discriminant function to separate the data

More information

Advanced Econometrics II (Part 1)

Advanced Econometrics II (Part 1) Advanced Econometrics II (Part 1) Dr. Mehdi Hosseinkouchack Goethe University Frankfurt Summer 2016 osseinkouchack (Goethe University Frankfurt) Review Slides Summer 2016 1 / 22 Distribution For simlicity,

More information

PROOF OF ZADOR-GERSHO THEOREM

PROOF OF ZADOR-GERSHO THEOREM ZADOR-GERSHO THEOREM FOR VARIABLE-RATE VQ For a stationary source and large R, the least distortion of k-dim'l VQ with nth-order entropy coding and rate R or less is δ(k,n,r) m k * σ 2 η kn 2-2R = Z(k,n,R)

More information

EE376A - Information Theory Final, Monday March 14th 2016 Solutions. Please start answering each question on a new page of the answer booklet.

EE376A - Information Theory Final, Monday March 14th 2016 Solutions. Please start answering each question on a new page of the answer booklet. EE376A - Information Theory Final, Monday March 14th 216 Solutions Instructions: You have three hours, 3.3PM - 6.3PM The exam has 4 questions, totaling 12 points. Please start answering each question on

More information

Lectures 9 and 10: Constrained optimization problems and their optimality conditions

Lectures 9 and 10: Constrained optimization problems and their optimality conditions Lectures 9 and 10: Constrained optimization problems and their optimality conditions Coralia Cartis, Mathematical Institute, University of Oxford C6.2/B2: Continuous Optimization Lectures 9 and 10: Constrained

More information

CVaR and Examples of Deviation Risk Measures

CVaR and Examples of Deviation Risk Measures CVaR and Examples of Deviation Risk Measures Jakub Černý Department of Probability and Mathematical Statistics Stochastic Modelling in Economics and Finance November 10, 2014 1 / 25 Contents CVaR - Dual

More information

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is

Math 416 Lecture 3. The average or mean or expected value of x 1, x 2, x 3,..., x n is Math 416 Lecture 3 Expected values The average or mean or expected value of x 1, x 2, x 3,..., x n is x 1 x 2... x n n x 1 1 n x 2 1 n... x n 1 n 1 n x i p x i where p x i 1 n is the probability of x i

More information

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test.

Math 211 Business Calculus TEST 3. Question 1. Section 2.2. Second Derivative Test. Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. p. 1/?? Math 211 Business Calculus TEST 3 Question 1. Section 2.2. Second Derivative Test. Question 2. Section 2.3. Graph

More information

Lecture 21: Quantum Communication

Lecture 21: Quantum Communication CS 880: Quantum Information Processing 0/6/00 Lecture : Quantum Communication Instructor: Dieter van Melkebeek Scribe: Mark Wellons Last lecture, we introduced the EPR airs which we will use in this lecture

More information

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections 4.5 and * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 4.5 and 5.1-5.5 * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems from the textbook

More information

Lecture 10: Linear programming duality and sensitivity 0-0

Lecture 10: Linear programming duality and sensitivity 0-0 Lecture 10: Linear programming duality and sensitivity 0-0 The canonical primal dual pair 1 A R m n, b R m, and c R n maximize z = c T x (1) subject to Ax b, x 0 n and minimize w = b T y (2) subject to

More information

Optimal Design of Truss Structures Using a Neutrosophic Number Optimization Model under an Indeterminate Environment

Optimal Design of Truss Structures Using a Neutrosophic Number Optimization Model under an Indeterminate Environment Neutrosohic Sets and Systems Vol 14 016 93 University of New Mexico Otimal Design of Truss Structures Using a Neutrosohic Number Otimization Model under an Indeterminate Environment Wenzhong Jiang & Jun

More information

Notes on duality in second order and -order cone otimization E. D. Andersen Λ, C. Roos y, and T. Terlaky z Aril 6, 000 Abstract Recently, the so-calle

Notes on duality in second order and -order cone otimization E. D. Andersen Λ, C. Roos y, and T. Terlaky z Aril 6, 000 Abstract Recently, the so-calle McMaster University Advanced Otimization Laboratory Title: Notes on duality in second order and -order cone otimization Author: Erling D. Andersen, Cornelis Roos and Tamás Terlaky AdvOl-Reort No. 000/8

More information

Chapter 5 continued. Chapter 5 sections

Chapter 5 continued. Chapter 5 sections Chapter 5 sections Discrete univariate distributions: 5.2 Bernoulli and Binomial distributions Just skim 5.3 Hypergeometric distributions 5.4 Poisson distributions Just skim 5.5 Negative Binomial distributions

More information

Proving the central limit theorem

Proving the central limit theorem SOR3012: Stochastic Processes Proving the central limit theorem Gareth Tribello March 3, 2019 1 Purpose In the lectures and exercises we have learnt about the law of large numbers and the central limit

More information

On the Square-free Numbers in Shifted Primes Zerui Tan The High School Attached to The Hunan Normal University November 29, 204 Abstract For a fixed o

On the Square-free Numbers in Shifted Primes Zerui Tan The High School Attached to The Hunan Normal University November 29, 204 Abstract For a fixed o On the Square-free Numbers in Shifted Primes Zerui Tan The High School Attached to The Hunan Normal University, China Advisor : Yongxing Cheng November 29, 204 Page - 504 On the Square-free Numbers in

More information

Lecture 2. Capacity of the Gaussian channel

Lecture 2. Capacity of the Gaussian channel Spring, 207 5237S, Wireless Communications II 2. Lecture 2 Capacity of the Gaussian channel Review on basic concepts in inf. theory ( Cover&Thomas: Elements of Inf. Theory, Tse&Viswanath: Appendix B) AWGN

More information

UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, Homework Set #6 Due: Thursday, May 22, 2011

UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, Homework Set #6 Due: Thursday, May 22, 2011 UCSD ECE153 Handout #30 Prof. Young-Han Kim Thursday, May 15, 2014 Homework Set #6 Due: Thursday, May 22, 2011 1. Linear estimator. Consider a channel with the observation Y = XZ, where the signal X and

More information

Support Vector Machines, Kernel SVM

Support Vector Machines, Kernel SVM Support Vector Machines, Kernel SVM Professor Ameet Talwalkar Professor Ameet Talwalkar CS260 Machine Learning Algorithms February 27, 2017 1 / 40 Outline 1 Administration 2 Review of last lecture 3 SVM

More information

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725

Karush-Kuhn-Tucker Conditions. Lecturer: Ryan Tibshirani Convex Optimization /36-725 Karush-Kuhn-Tucker Conditions Lecturer: Ryan Tibshirani Convex Optimization 10-725/36-725 1 Given a minimization problem Last time: duality min x subject to f(x) h i (x) 0, i = 1,... m l j (x) = 0, j =

More information

UCSD ECE153 Handout #34 Prof. Young-Han Kim Tuesday, May 27, Solutions to Homework Set #6 (Prepared by TA Fatemeh Arbabjolfaei)

UCSD ECE153 Handout #34 Prof. Young-Han Kim Tuesday, May 27, Solutions to Homework Set #6 (Prepared by TA Fatemeh Arbabjolfaei) UCSD ECE53 Handout #34 Prof Young-Han Kim Tuesday, May 7, 04 Solutions to Homework Set #6 (Prepared by TA Fatemeh Arbabjolfaei) Linear estimator Consider a channel with the observation Y XZ, where the

More information

3.8 Functions of a Random Variable

3.8 Functions of a Random Variable STAT 421 Lecture Notes 76 3.8 Functions of a Random Variable This section introduces a new and important topic: determining the distribution of a function of a random variable. We suppose that there is

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

An Introduction to Information Theory: Notes

An Introduction to Information Theory: Notes An Introduction to Information Theory: Notes Jon Shlens jonshlens@ucsd.edu 03 February 003 Preliminaries. Goals. Define basic set-u of information theory. Derive why entroy is the measure of information

More information

STA205 Probability: Week 8 R. Wolpert

STA205 Probability: Week 8 R. Wolpert INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as n of the fraction of n repeated, similar, and

More information

Review: mostly probability and some statistics

Review: mostly probability and some statistics Review: mostly probability and some statistics C2 1 Content robability (should know already) Axioms and properties Conditional probability and independence Law of Total probability and Bayes theorem Random

More information

Constrained optimization

Constrained optimization Constrained optimization In general, the formulation of constrained optimization is as follows minj(w), subject to H i (w) = 0, i = 1,..., k. where J is the cost function and H i are the constraints. Lagrange

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information

Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write

Lecture 3: Expected Value. These integrals are taken over all of Ω. If we wish to integrate over a measurable subset A Ω, we will write Lecture 3: Expected Value 1.) Definitions. If X 0 is a random variable on (Ω, F, P), then we define its expected value to be EX = XdP. Notice that this quantity may be. For general X, we say that EX exists

More information

arxiv: v2 [math.na] 6 Apr 2016

arxiv: v2 [math.na] 6 Apr 2016 Existence and otimality of strong stability reserving linear multiste methods: a duality-based aroach arxiv:504.03930v [math.na] 6 Ar 06 Adrián Németh January 9, 08 Abstract David I. Ketcheson We rove

More information

STA 6857 Autocorrelation and Cross-Correlation & Stationary Time Series ( 1.4, 1.5)

STA 6857 Autocorrelation and Cross-Correlation & Stationary Time Series ( 1.4, 1.5) STA 6857 Autocorrelation and Cross-Correlation & Stationary Time Series ( 1.4, 1.5) Outline 1 Announcements 2 Autocorrelation and Cross-Correlation 3 Stationary Time Series 4 Homework 1c Arthur Berg STA

More information

Optimality Conditions for Constrained Optimization

Optimality Conditions for Constrained Optimization 72 CHAPTER 7 Optimality Conditions for Constrained Optimization 1. First Order Conditions In this section we consider first order optimality conditions for the constrained problem P : minimize f 0 (x)

More information

MULTIVARIATE PROBABILITY DISTRIBUTIONS

MULTIVARIATE PROBABILITY DISTRIBUTIONS MULTIVARIATE PROBABILITY DISTRIBUTIONS. PRELIMINARIES.. Example. Consider an experiment that consists of tossing a die and a coin at the same time. We can consider a number of random variables defined

More information

B8.1 Martingales Through Measure Theory. Concept of independence

B8.1 Martingales Through Measure Theory. Concept of independence B8.1 Martingales Through Measure Theory Concet of indeendence Motivated by the notion of indeendent events in relims robability, we have generalized the concet of indeendence to families of σ-algebras.

More information

Conditional Distributions

Conditional Distributions Conditional Distributions The goal is to provide a general definition of the conditional distribution of Y given X, when (X, Y ) are jointly distributed. Let F be a distribution function on R. Let G(,

More information

Lecture 2: August 31

Lecture 2: August 31 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: August 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy

More information

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27

Probability Review. Yutian Li. January 18, Stanford University. Yutian Li (Stanford University) Probability Review January 18, / 27 Probability Review Yutian Li Stanford University January 18, 2018 Yutian Li (Stanford University) Probability Review January 18, 2018 1 / 27 Outline 1 Elements of probability 2 Random variables 3 Multiple

More information

X = X X n, + X 2

X = X X n, + X 2 CS 70 Discrete Mathematics for CS Fall 2003 Wagner Lecture 22 Variance Question: At each time step, I flip a fair coin. If it comes up Heads, I walk one step to the right; if it comes up Tails, I walk

More information

Lecture 1 October 9, 2013

Lecture 1 October 9, 2013 Probabilistic Graphical Models Fall 2013 Lecture 1 October 9, 2013 Lecturer: Guillaume Obozinski Scribe: Huu Dien Khue Le, Robin Bénesse The web page of the course: http://www.di.ens.fr/~fbach/courses/fall2013/

More information

Solving Dual Problems

Solving Dual Problems Lecture 20 Solving Dual Problems We consider a constrained problem where, in addition to the constraint set X, there are also inequality and linear equality constraints. Specifically the minimization problem

More information

CSCI5654 (Linear Programming, Fall 2013) Lecture-8. Lecture 8 Slide# 1

CSCI5654 (Linear Programming, Fall 2013) Lecture-8. Lecture 8 Slide# 1 CSCI5654 (Linear Programming, Fall 2013) Lecture-8 Lecture 8 Slide# 1 Today s Lecture 1. Recap of dual variables and strong duality. 2. Complementary Slackness Theorem. 3. Interpretation of dual variables.

More information

Section 27. The Central Limit Theorem. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University

Section 27. The Central Limit Theorem. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University Section 27 The Central Limit Theorem Po-Ning Chen, Professor Institute of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 3000, R.O.C. Identically distributed summands 27- Central

More information

Lecture 10: Broadcast Channel and Superposition Coding

Lecture 10: Broadcast Channel and Superposition Coding Lecture 10: Broadcast Channel and Superposition Coding Scribed by: Zhe Yao 1 Broadcast channel M 0M 1M P{y 1 y x} M M 01 1 M M 0 The capacity of the broadcast channel depends only on the marginal conditional

More information