Calculating Thin Film Stack Properties

Size: px
Start display at page:

Download "Calculating Thin Film Stack Properties"

Transcription

1 Lecture 5: Thin Films Outline 1 Thin Films 2 Calculating Thin Film Stack Properties 3 Fabry-Perot Tunable Filter 4 Anti-Reflection Coatings 5 Interference Filters Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 1

2 Introduction thin film: layer with thickness λ extends in 2 other dimensions λ reflection, refraction at all interfaces L layers of thin films: thin film stack layer thickness d i λ interference between reflected and refracted waves infinite number of multiple reflections and refractions must be considered assumption: substrate (index n s ), incident medium (index n m ) have infinite thickness :! 0 90º n m n L, d L n 3, d 3 n 2, d 2 n 1, d 1 n s Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 2

3 Thin Films and Polarization some polarizers (plate, cube) based on thin-film coatings can dramatically reduce polarizing effects of optical components all aluminum mirrors have aluminum oxide thin film Calculating Thin-Film Stack Properties many layers consider all interferences between reflected and refracted rays of each interface complexity of calculation significantly reduced by matrix approach signs and conventions are not conistent in literature only isotropic materials here Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 3

4 Plane Waves and Thin-Film Stacks plane wave E = E 0 e i( k x ωt) layers numbered from 1 to L with complex index of refraction ñ j, geometrical thickness d j substrate has refractive index ñ s! 0 90º n m incident medium has index ñ m angle of incidence in incident medium: θ 0 Snell s law: : n L, d L n 3, d 3 n 2, d 2 n 1, d 1 n s ñ m sin θ 0 = ñ L sin θ L =... = ñ 1 sin θ 1 = ñ s sin θ s θ j for every layer j Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 4

5 p/tm Wave: Electric Field at Interface E i E r E i E i E r Er H i H r E i E r ñ m θ 0 θ 0 θ 0 θ 0 ñ 1 θ 1 E t θ 1 E t E t H t E t p/tm wave: electric fields are in (parallel to) plane of incidence E i,r,t : complex amplitudes of E i,r,t of incident, reflected, transmitted electric fields E i,r,t : components tangential to interface of complex amplitudes of E i,r,t of incident, reflected, transmitted electric fields E i = E i cos θ 0, E r = E r cos θ 0, E t = E t cos θ 1 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 5

6 p/tm Wave: Electric Field at Interface (continued) E i E i E r Er E i E r θ 0 θ 0 θ 1 E t E t E t continuous electric field tangential to interface: E i E r = E t E i cos θ 0 E r cos θ 0 = E t cos θ 1 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 6

7 p/tm Wave: Electric Field at Interface (continued) E i E r H i H r ñ m θ 0 θ 0 ñ 1 θ 1 E t H t continuous electric field tangential to interface E i cos θ 0 E r cos θ 0 = E t cos θ 1 electric field direction fully determined by angle of incidence sufficient to look at complex scalar quantities instead of full 3-D vector since the electric field is perpendicular to the wave vector and in the plane of incidence Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 7

8 p/tm Wave: Magnetic Field at Interface E i E r H i H r ñ m θ 0 θ 0 ñ 1 θ 1 E t H t non-magnetic material (µ = 1): H = ñ k k E k, E perpendicular, cross-product becomes multiplication (complex) magnitudes of E i,r,t and H i,r,t related by H i,r = ñ m E i,r, H t = ñ 1 E t tangential component of H continuous: H i + H r = H t H i,r,t is already tangential to interface: H i,r,t = H i,r,t Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 8

9 p/tm Wave: Magnetic Field at Interface (continued) E i E r H i H r θ 0 θ 0 ñ m ñ 1 θ 1 E t H t tangential component of H continuous: H i + H r = H t expressed in electric field ñ m E i + ñ m E r = ñ 1 E t Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 9

10 Matrix Formalism: Tangential Components in one Medium single interface in thin-film stack, combine all waves into wave that travels towards substrate (+ superscript) wave that travels away from substrate ( superscript) H i E i ñ m ñ 1 θ 0 θ 0 θ 1 E r E t H r at interface a, tangential components of complex electric and magnetic field amplitudes in medium 1 given by E a = E + 1a E 1a H a = ñ 1 ( E + cos θ 1a + E ) 1a 1 negative sign for outwards traveling electric field component a b - H t! 0 + n 1, d 1 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 10

11 Matrix Formalism: Electric Field Propagation field amplitudes in medium 1 at (other) interface b from wave propagation with common phase factor d 1 : geometrical thickness of layer phase factor for forward propagating wave: δ = 2π λ ñ1d 1 cos θ 1 a b -! 0 + n 1, d 1 backwards propagating wave: same phase factor with negative sign Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 11

12 Plane Wave Path Length for Oblique Incidence! D A!! C d n B consider theoretical reflections in single medium need to correct for plane wave propagation path length for reflected light : AB + BC AD 2d cos θ 2d tan θ sin θ = 2d 1 sin2 θ cos θ = 2d cos θ Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 12

13 Matrix Formalism! 0 at interface b in medium 1 E + 1b = E + 1a (cos δ + i sin δ) a - E 1b = E 1a (cos δ i sin δ) + n H + 1b = H + 1, d 1 1a (cos δ + i sin δ) b H 1b = H 1a (cos δ i sin δ) ) from before E a,b = E + 1a,b E 1a,b, H a,b = ñ1 cos θ 1 (E + 1a,b + E 1a,b propagation of tangential components from a to b ( ) ( ) cos θ Eb cos δ 1 ( ) i sin δ ñ = 1 Ea H ñ b i 1 cos θ 1 sin δ cos δ H a Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 13

14 s/te waves: Electric and Magnetic Fields at Interface E i E r H i H r ñ m θ 0 θ 0 ñ 1 θ 1 E t H t tangential electric field component continuous: E i + E r = E t tangential magnetic field component continuous H i cos θ 0 H r cos θ 0 = H t cos θ 1 and using relation between H and E ñ m cos θ 0 E i ñ m cos θ 0 E r = ñ 1 cos θ 1 E t Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 14

15 s-polarized Waves in one Medium! 0 H i E i ñ m ñ 1 E r H r θ 0 θ 0 a - + n 1, d 1 θ 1 b E t H t at boundary a: E a = E + 1a + E 1a H a = (E + 1a E 1a )ñ 1 cos θ 1 propagation of tangential components from a to b ( ) ( ) 1 ( Eb cos δ i sin δ = ñ 1 cos θ Ea 1 iñ 1 cos θ 1 sin δ cos δ H b H a ) Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 15

16 Summary of Matrix Method for each layer j calculate: θ j using Snell s law: n m sin θ 0 = n j sin θ j s-polarization: η j = n j cos θ j p-polarization: η j = n j cos θ j phase delays: δ j = 2π λ n jd j cos θ j characteristic matrix: M j = ( cos i δj η j sin δ j iη j sin δ j cos δ j ) Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 16

17 Summary of Matrix Method (continued) total characteristic matrix M is product of all characteristic matrices M = M L M L 1...M 2 M 1 fields in incident medium given by ( ) ( ) Em 1 = M H m η s complex reflection and transmission coefficients r = η me m H m η m E m + H m, t = 2η m η m E m + H m Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 17

18 Materials and Manufacturing Materials and Refractive Indices Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 18

19 VLT Coating Chamber Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 19

20 VLT Coating Chamber with Magnetogron Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 20

21 Evaporation evaporation of solid material through high electric current (e.g. classic Al mirror coatings) sputtering: plasma glow discharge ejects material from solid substance Deposition uncontrolled ballistic flights, mechanical shields to homogenize beam ion-assisted deposition Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 21

22 Ion-Beam Deposition Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 22

23 Fabry-Perot Filter Tunable Filter invented by Fabry and Perot in 1899 interference between partially transmitting plates containing medium with index of refraction n angle of incidence in material θ, distance d path difference between successive beams: = 2nd cos θ Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 23

24 Fabry Perot continued path difference between successive beams: = 2nd cos θ phase difference: δ = 2π /λ = 4πnd cos θ/λ incoming wave: e iωt intensity transmission at surface: T intensity reflectivity at surface: R outgoing wave is the coherent sum of all beams write this as Ae iωt = Te iωt + TRe i(ωt+δ) + TR 2 e i(ωt+2δ) +... A = T (1 + Re iδ + R 2 e i2δ +... = T 1 Re iδ Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 24

25 Fabry Perot continued emerging amplitude A = emerging intensity is therefore I = AA = with I max = T 2 /(1 R) 2 T 1 Re iδ T 2 1 2R cos δ + R 2 = T 2 (1 R) 2 + 4R sin 2 δ 2 I = I max R (1 R) 2 sin 2 δ 2 Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 25

26 Fabry Perot Properties transmission is periodic distance between transmission peaks, free spectral range FSR = λ 2 0 2nd cos θ Full-Width at Half Maximum (FWHM) λ λ = FSR/F I = I max R (1 R) 2 sin 2 δ 2 finesse F F = π R 1 R Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 26

27 Anti-Reflection Coatings Reflection Off Uncoated Substrate reflectivity of bare substrate: ( nm n s R = n m + n s ) 2 fused silica at 600 nm: n s = 1.46 R = extra-dense flint glass at 600 nm: n s = 1.75 R = silicon at 600 nm: n s = 3.96 R = 0.6 loss in transparency ghost reflections Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 27

28 Analytical treatment of single layer assume single-layer coating determine optimum thickness and index of material amplitude reflection from coating/air interface A 1 = n 1 1 n amplitude reflection from coating/substrate interface A 1 = n s n 1 n s + n 1 amplitudes subtract for 180 degree phase difference coating should have optical path length λ/4 thick best cancellation for n 1 = n s Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 28

29 Uncoated Fused Silica Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 29

30 MgF 2 Coating on Fused Silica Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016 Lecture 5: Thin Films 30

31 Multi-Layer Coatings on Fused Silica Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 31

32 AR Coating Types Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 32

33 Highly Reflective Coatings Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 33

34 Interference Filters Overview many layers can achieve many things band-pass, long-pass, short-pass, dichroic filters colored glass substrates often used in addition to coatings sensitivie to angle of incidence evaporated coatings are very temperature sensitive Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 34

35 Types of Interference Filters Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 35

36 Bandpass Interference Filter Terminology Bandpass: range of wavelengths passed by filter Blocking: degree of attenuation outside of passband Center Wavelength (CWL): wavelength at midpoint of passband FWHM Number of cavities: Fabry-Perot-like thin-film arrangement Full-width Half-Maximum (FWHM): width of bandpass at one-half of peak transmission Peak Transmission in %: maximum transmission in passband Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 36

37 Cavities basic design element: Fabry-Perot cavity cavity: λ/2 spacer and reflective multi-layer coatings on either side stacks of cavities provide much better performance Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 37

38 Multiple Cavity Performance Christoph U. Keller, Leiden University, ATI 2016 Lecture 5: Thin Films 38

Calculating Thin Film Stack Properties. Polarization Properties of Thin Films

Calculating Thin Film Stack Properties. Polarization Properties of Thin Films Lecture 6: Thin Films Outline 1 Thin Films 2 Calculating Thin Film Stack Properties 3 Polarization Properties of Thin Films 4 Anti-Reflection Coatings 5 Interference Filters Christoph U. Keller, Utrecht

More information

Lecture 2: Thin Films. Thin Films. Calculating Thin Film Stack Properties. Jones Matrices for Thin Film Stacks. Mueller Matrices for Thin Film Stacks

Lecture 2: Thin Films. Thin Films. Calculating Thin Film Stack Properties. Jones Matrices for Thin Film Stacks. Mueller Matrices for Thin Film Stacks Lecture 2: Thin Films Outline Thin Films 2 Calculating Thin Film Stack Properties 3 Jones Matrices for Thin Film Stacks 4 Mueller Matrices for Thin Film Stacks 5 Mueller Matrix for Dielectrica 6 Mueller

More information

Lecture 7: Optical Spectroscopy. Astrophysical Spectroscopy. Broadband Filters. Fabry-Perot Filters. Interference Filters. Prism Spectrograph

Lecture 7: Optical Spectroscopy. Astrophysical Spectroscopy. Broadband Filters. Fabry-Perot Filters. Interference Filters. Prism Spectrograph Lecture 7: Optical Spectroscopy Outline 1 Astrophysical Spectroscopy 2 Broadband Filters 3 Fabry-Perot Filters 4 Interference Filters 5 Prism Spectrograph 6 Grating Spectrograph 7 Fourier Transform Spectrometer

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Leiden University,

More information

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline Lecture 5: Polarization Outline 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl ATI 2016,

More information

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces Lecture 5: Crystal Optics Outline 1 Homogeneous, Anisotropic Media 2 Crystals 3 Plane Waves in Anisotropic Media 4 Wave Propagation in Uniaxial Media 5 Reflection and Transmission at Interfaces Christoph

More information

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection Lecture 4: Polarization Outline 1 Polarized Light in the Universe 2 Brewster Angle and Total Internal Reflection 3 Descriptions of Polarized Light 4 Polarizers 5 Retarders Christoph U. Keller, Utrecht

More information

Electromagnetic Waves Across Interfaces

Electromagnetic Waves Across Interfaces Lecture 1: Foundations of Optics Outline 1 Electromagnetic Waves 2 Material Properties 3 Electromagnetic Waves Across Interfaces 4 Fresnel Equations 5 Brewster Angle 6 Total Internal Reflection Christoph

More information

34. Even more Interference Effects

34. Even more Interference Effects 34. Even more Interference Effects The Fabry-Perot interferometer Thin-film interference Anti-reflection coatings Single- and multi-layer Advanced topic: Photonic crystals Natural and artificial periodic

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 26 Chapter 33 sec. 1-4 Fall 2017 Semester Professor Koltick Interference of Light Interference phenomena are a consequence of the wave-like nature of light Electric

More information

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence Lecture 4: Anisotropic Media Outline Dichroism Optical Activity 3 Faraday Effect in Transparent Media 4 Stress Birefringence 5 Form Birefringence 6 Electro-Optics Dichroism some materials exhibit different

More information

N M O 0 1 Q P. (26.2)

N M O 0 1 Q P. (26.2) Astronomy 03/403, all 999 6 Lecture, December 999 6 A single vacuum-dielectric interface Practical optical systems always involve lots of vacuum-dielectric interfaces, so we should use the formalism above

More information

September 14, Monday 4. Tools for Solar Observations-II

September 14, Monday 4. Tools for Solar Observations-II September 14, Monday 4. Tools for Solar Observations-II Spectrographs. Measurements of the line shift. Spectrograph Most solar spectrographs use reflection gratings. a(sinα+sinβ) grating constant Blazed

More information

OPTICAL Optical properties of multilayer systems by computer modeling

OPTICAL Optical properties of multilayer systems by computer modeling Workshop on "Physics for Renewable Energy" October 17-29, 2005 301/1679-15 "Optical Properties of Multilayer Systems by Computer Modeling" E. Centurioni CNR/IMM AREA Science Park - Bologna Italy OPTICAL

More information

Today in Physics 218: stratified linear media I

Today in Physics 218: stratified linear media I Today in Physics 28: stratified linear media I Interference in layers of linear media Transmission and reflection in stratified linear media, viewed as a boundary-value problem Matrix formulation of the

More information

Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light

Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light Polarimetry in the E-ELT era Fundamentals of Polarized Light 1 Polarized Light in the Universe 2 Descriptions of Polarized Light 3 Polarizers 4 Retarders Christoph U. Keller, Leiden University, keller@strw.leidenuniv.nl

More information

ECE 484 Semiconductor Lasers

ECE 484 Semiconductor Lasers ECE 484 Semiconductor Lasers Dr. Lukas Chrostowski Department of Electrical and Computer Engineering University of British Columbia January, 2013 Module Learning Objectives: Understand the importance of

More information

Some Topics in Optics

Some Topics in Optics Some Topics in Optics The HeNe LASER The index of refraction and dispersion Interference The Michelson Interferometer Diffraction Wavemeter Fabry-Pérot Etalon and Interferometer The Helium Neon LASER A

More information

Numerical modeling of thin film optical filters

Numerical modeling of thin film optical filters Numerical modeling of thin film optical filters Daniela Topasna and Gregory A Topasna Department of Physics and Astronomy Virginia ilitary Institute Lexington VA ASTRACT Thin films are an important and

More information

Optical Physics of Rifle Scopes

Optical Physics of Rifle Scopes Optical Physics of Rifle Scopes A Senior Project By Ryan Perry Advisor, Dr. Glen Gillen Department of Physics, California Polytechnic University SLO June 8, 207 Approval Page Title: Optical Analysis of

More information

Lecture Outline. Scattering From a Dielectric Slab Anti Reflection Layer Bragg Gratings 8/9/2018. EE 4347 Applied Electromagnetics.

Lecture Outline. Scattering From a Dielectric Slab Anti Reflection Layer Bragg Gratings 8/9/2018. EE 4347 Applied Electromagnetics. Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (95) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 3k Multiple Scattering Multiple These Scattering notes may contain

More information

and the radiation from source 2 has the form. The vector r points from the origin to the point P. What will the net electric field be at point P?

and the radiation from source 2 has the form. The vector r points from the origin to the point P. What will the net electric field be at point P? Physics 3 Interference and Interferometry Page 1 of 6 Interference Imagine that we have two or more waves that interact at a single point. At that point, we are concerned with the interaction of those

More information

REFLECTION AND REFRACTION

REFLECTION AND REFRACTION S-108-2110 OPTICS 1/6 REFLECTION AND REFRACTION Student Labwork S-108-2110 OPTICS 2/6 Table of contents 1. Theory...3 2. Performing the measurements...4 2.1. Total internal reflection...4 2.2. Brewster

More information

The science of light. P. Ewart

The science of light. P. Ewart The science of light P. Ewart Oxford Physics: Second Year, Optics Parallel reflecting surfaces t images source Extended source path difference xcos 2t=x Fringes localized at infinity Circular fringe constant

More information

Chapter 8 Optical Interferometry

Chapter 8 Optical Interferometry Chapter 8 Optical Interferometry Lecture Notes for Modern Optics based on Pedrotti & Pedrotti & Pedrotti Instructor: Nayer Eradat Spring 009 4/0/009 Optical Interferometry 1 Optical interferometry Interferometer

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 32 Electromagnetic Waves Spring 2016 Semester Matthew Jones Electromagnetism Geometric optics overlooks the wave nature of light. Light inconsistent with longitudinal

More information

A novel scheme for measuring the relative phase difference between S and P polarization in optically denser medium

A novel scheme for measuring the relative phase difference between S and P polarization in optically denser medium A novel scheme for measuring the relative phase difference between S and P polarization in optically denser medium Abstract Yu Peng School of Physics, Beijing Institute of Technology, Beijing, 100081,

More information

Today in Physics 218: stratified linear media II

Today in Physics 218: stratified linear media II Today in Physics 28: stratified linear media II Characteristic matrix formulation of reflected and transmitted fields and intensity Examples: Single interface Plane-parallel dielectric in vacuum Multiple

More information

Topic 4: Waves 4.3 Wave characteristics

Topic 4: Waves 4.3 Wave characteristics Guidance: Students will be expected to calculate the resultant of two waves or pulses both graphically and algebraically Methods of polarization will be restricted to the use of polarizing filters and

More information

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields Lecture 6: Polarimetry 1 Outline 1 Polarized Light in the Universe 2 Fundamentals of Polarized Light 3 Descriptions of Polarized Light Polarized Light in the Universe Polarization indicates anisotropy

More information

EM waves and interference. Review of EM wave equation and plane waves Energy and intensity in EM waves Interference

EM waves and interference. Review of EM wave equation and plane waves Energy and intensity in EM waves Interference EM waves and interference Review of EM wave equation and plane waves Energy and intensity in EM waves Interference Maxwell's Equations to wave eqn The induced polarization, P, contains the effect of the

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

Chapter 3. Design for manufacture of Fabry-Perot cavity sensors

Chapter 3. Design for manufacture of Fabry-Perot cavity sensors Chapter 3 Design for manufacture of Fabry-Perot cavity sensors When Fabry-Perot cavity sensors are manufactured, the thickness of each layer must be tightly controlled to achieve the target performance

More information

Modeling of High Performance Reflection Coatings for Visible Region

Modeling of High Performance Reflection Coatings for Visible Region AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:1991-8178 EISSN: 2309-8414 Journal home page: www.ajbasweb.com Modeling of High Performance Reflection Coatings for Visible Region Sabah Ibrahim Abbas,

More information

NTUA. A. Georgakopoulou. A. Papayannis1, A. Aravantinos2 NATIONAL TECHNICAL UNIVERSITY OF ATHENS TECHNOLOGICAL EDUCATIONAL INSTIDUTION OF ATHENS SIENA

NTUA. A. Georgakopoulou. A. Papayannis1, A. Aravantinos2 NATIONAL TECHNICAL UNIVERSITY OF ATHENS TECHNOLOGICAL EDUCATIONAL INSTIDUTION OF ATHENS SIENA High Spectral Resolution LIDAR Receivers, to Measure Aerosol to Molecular Scattering Ratio in Bistatic Mode, for use in Atmospheric Monitoring for EAS Detectors E. Fokitis1, P. Fetfatzis1, 1, S. Maltezos1

More information

Fresnel Equations cont.

Fresnel Equations cont. Lecture 11 Chapter 4 Fresnel quations cont. Total internal reflection and evanescent waves Optical properties of metals Familiar aspects of the interaction of light and matter Fresnel quations: phases

More information

Shielding Effectiveness of Modern Energy Saving Windows

Shielding Effectiveness of Modern Energy Saving Windows Shielding Effectiveness of Modern Energy Saving Windows Žilvinas Kancleris, Head of Microwave laboratory zilvinas.kancleris@ftmc.lt Shielding effectiveness of modern... Before starting my talk I would

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy

Interference, Diffraction and Fourier Theory. ATI 2014 Lecture 02! Keller and Kenworthy Interference, Diffraction and Fourier Theory ATI 2014 Lecture 02! Keller and Kenworthy The three major branches of optics Geometrical Optics Light travels as straight rays Physical Optics Light can be

More information

Physics I Keystone Institute Technology & Management Unit-II

Physics I Keystone Institute Technology & Management Unit-II Un-polarized light Ordinary light is a collection of wave trains emitted by atoms or group of atoms with coherent time no longer than 10-8 second. Each wave train has different orientation and phase of

More information

Measurement of the Complex Index of Refraction for UO x in the Extreme Ultraviolet

Measurement of the Complex Index of Refraction for UO x in the Extreme Ultraviolet Measurement of the Complex Index of Refraction for UO x in the Extreme Ultraviolet Heidi Dumais Department of Physics and Astronomy, Brigham Young University Abstract - The reflectance and transmittance

More information

Chiroptical Spectroscopy

Chiroptical Spectroscopy Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 2: Polarized light Masters Level Class (181 041) Mondays, 8.15-9.45 am, NC 02/99 Wednesdays, 10.15-11.45 am, NC 02/99 28 Electromagnetic

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

Interference. Part-2. Gambar: Museum Victoria Australia

Interference. Part-2. Gambar: Museum Victoria Australia Interference Part-2 Gambar: Museum Victoria Australia Amplitude Splitting Interferometer S 2. Michelson Interferometer The principle: amplitude splitting d HM D F B M1 Detector C M1 E Interference at F

More information

Fabry-Perot Interferometers

Fabry-Perot Interferometers Fabry-Perot Interferometers Astronomy 6525 Literature: C.R. Kitchin, Astrophysical Techniques Born & Wolf, Principles of Optics Theory: 1 Fabry-Perots are best thought of as resonant cavities formed between

More information

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline Lecture 8: Polarimetry 2 Outline 1 Polarizers and Retarders 2 Polarimeters 3 Scattering Polarization 4 Zeeman Effect Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Observational Astrophysics

More information

Full-color Subwavelength Printing with Gapplasmonic

Full-color Subwavelength Printing with Gapplasmonic Supporting information for Full-color Subwavelength Printing with Gapplasmonic Optical Antennas Masashi Miyata, Hideaki Hatada, and Junichi Takahara *,, Graduate School of Engineering, Osaka University,

More information

Module 5 : Plane Waves at Media Interface. Lecture 36 : Reflection & Refraction from Dielectric Interface (Contd.) Objectives

Module 5 : Plane Waves at Media Interface. Lecture 36 : Reflection & Refraction from Dielectric Interface (Contd.) Objectives Objectives In this course you will learn the following Reflection and Refraction with Parallel Polarization. Reflection and Refraction for Normal Incidence. Lossy Media Interface. Reflection and Refraction

More information

Interference- Michelson Interferometer. Interference lecture by Dr. T.Vishwam

Interference- Michelson Interferometer. Interference lecture by Dr. T.Vishwam Interference- Michelson Interferometer Interference lecture by Dr. T.Vishwam * Measurement of the coherence length of a spectral line * Measurement of thickness of thin transparent flakes * Measurement

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE318S Fundamentals of Optics. Final Exam. April 16, 2007.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE318S Fundamentals of Optics. Final Exam. April 16, 2007. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE318S Fundamentals of Optics Final Exam April 16, 2007 Exam Type: D (Close-book + two double-sided aid sheets + a non-programmable

More information

Constructive vs. destructive interference; Coherent vs. incoherent interference

Constructive vs. destructive interference; Coherent vs. incoherent interference Constructive vs. destructive interference; Coherent vs. incoherent interference Waves that combine in phase add up to relatively high irradiance. = Constructive interference (coherent) Waves that combine

More information

POLARIZATION OF LIGHT

POLARIZATION OF LIGHT POLARIZATION OF LIGHT OVERALL GOALS The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results. It is not your job to understand every aspect of the theory,

More information

Experiment 6: Interferometers

Experiment 6: Interferometers Experiment 6: Interferometers Nate Saffold nas2173@columbia.edu Office Hour: Mondays, 5:30PM-6:30PM @ Pupin 1216 INTRO TO EXPERIMENTAL PHYS-LAB 1493/1494/2699 NOTE: No labs and no lecture next week! Outline

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter 1 Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter

CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter CHAPTER 6 INTRODUCTION TO SPECTROPHOTOMETRIC METHODS Interaction of Radiation With Matter Announcements Add to your notes of Chapter 1 Analytical sensitivity γ=m/s s Homework Problems 1-9, 1-10 Challenge

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

TA/TI survey. Phy Phy

TA/TI survey.   Phy Phy TA/TI survey https://webapps.pas.rochester.edu/secure/phpq/ Phy121 7 60 73 Phy123 1 6 11 Chapter 34 The Wave Nature of Light; Interference Units of Chapter 34 34-5 Interference in Thin Films 34-6 Michelson

More information

gap trans inc n=1 z Jackson 7.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

gap trans inc n=1 z Jackson 7.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 7.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two plane semi-infinite slabs of the same uniform, isotropic, nonpermeable, lossless dielectric

More information

Physics 313: Laboratory 8 - Polarization of Light Electric Fields

Physics 313: Laboratory 8 - Polarization of Light Electric Fields Physics 313: Laboratory 8 - Polarization of Light Electric Fields Introduction: The electric fields that compose light have a magnitude, phase, and direction. The oscillating phase of the field and the

More information

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L.

1. Consider the biconvex thick lens shown in the figure below, made from transparent material with index n and thickness L. Optical Science and Engineering 2013 Advanced Optics Exam Answer all questions. Begin each question on a new blank page. Put your banner ID at the top of each page. Please staple all pages for each individual

More information

Problem 8.0 Make Your Own Exam Problem for Midterm II by April 13

Problem 8.0 Make Your Own Exam Problem for Midterm II by April 13 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.007 Electromagnetic Energy: From Motors to Lasers Spring 2011 Problem Set 8: Electromagnetic Waves at Boundaries

More information

Interferometers. PART 1: Michelson Interferometer The Michelson interferometer is one of the most useful of all optical instru

Interferometers. PART 1: Michelson Interferometer The Michelson interferometer is one of the most useful of all optical instru Interferometers EP421 Lab Interferometers Introduction: Interferometers are the key to accurate distance measurement using optics. Historically, when mechanical measurements dominated, interferometers

More information

A refl = R A inc, A trans = T A inc.

A refl = R A inc, A trans = T A inc. Reading: Wave Optics 1, 2 Key concepts: Superposition; phase difference; amplitude and intensity; thin film interference; Fraunhofer diffraction; gratings; resolving power. 1.! Questions about interference

More information

Nature of Light Part 2

Nature of Light Part 2 Nature of Light Part 2 Fresnel Coefficients From Helmholts equation see imaging conditions for Single lens 4F system Diffraction ranges Rayleigh Range Diffraction limited resolution Interference Newton

More information

Phys 531 Lecture 27 6 December 2005

Phys 531 Lecture 27 6 December 2005 Phys 531 Lecture 27 6 December 2005 Final Review Last time: introduction to quantum field theory Like QM, but field is quantum variable rather than x, p for particle Understand photons, noise, weird quantum

More information

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle

LECTURE 23: LIGHT. Propagation of Light Huygen s Principle LECTURE 23: LIGHT Propagation of Light Reflection & Refraction Internal Reflection Propagation of Light Huygen s Principle Each point on a primary wavefront serves as the source of spherical secondary

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Homework 1. Nano Optics, Fall Semester 2018 Photonics Laboratory, ETH Zürich

Homework 1. Nano Optics, Fall Semester 2018 Photonics Laboratory, ETH Zürich Homework 1 Contact: mfrimmer@ethz.ch Due date: Friday 12 October 2018; 10:00 a.m. Nano Optics, Fall Semester 2018 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch The goal of this homework is to

More information

Chapter 10. Interference of Light

Chapter 10. Interference of Light Chapter 10. Interference of Light Last Lecture Wave equations Maxwell equations and EM waves Superposition of waves This Lecture Two-Beam Interference Young s Double Slit Experiment Virtual Sources Newton

More information

Physics 214 Course Overview

Physics 214 Course Overview Physics 214 Course Overview Lecturer: Mike Kagan Course topics Electromagnetic waves Optics Thin lenses Interference Diffraction Relativity Photons Matter waves Black Holes EM waves Intensity Polarization

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 25 Propagation of Light Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters

More information

Today in Physics 218: Fresnel s equations

Today in Physics 218: Fresnel s equations Today in Physics 8: Fresnel s equations Transmission and reflection with E parallel to the incidence plane The Fresnel equations Total internal reflection Polarization on reflection nterference R 08 06

More information

Chapter 33. Electromagnetic Waves

Chapter 33. Electromagnetic Waves Chapter 33 Electromagnetic Waves Today s information age is based almost entirely on the physics of electromagnetic waves. The connection between electric and magnetic fields to produce light is own of

More information

Homework 1. Nano Optics, Fall Semester 2017 Photonics Laboratory, ETH Zürich

Homework 1. Nano Optics, Fall Semester 2017 Photonics Laboratory, ETH Zürich Homework 1 Contact: mfrimmer@ethz.ch Due date: Friday 13.10.2017; 10:00 a.m. Nano Optics, Fall Semester 2017 Photonics Laboratory, ETH Zürich www.photonics.ethz.ch The goal of this homework is to establish

More information

Physics 142 Wave Optics 1 Page 1. Wave Optics 1. For every complex problem there is one solution that is simple, neat, and wrong. H.L.

Physics 142 Wave Optics 1 Page 1. Wave Optics 1. For every complex problem there is one solution that is simple, neat, and wrong. H.L. Physics 142 Wave Optics 1 Page 1 Wave Optics 1 For every complex problem there is one solution that is simple, neat, and wrong. H.L. Mencken Interference and diffraction of waves The essential characteristic

More information

6.5 Optical-Coating-Deposition Technologies

6.5 Optical-Coating-Deposition Technologies 92 Chapter 6 6.5 Optical-Coating-Deposition Technologies The coating process takes place in an evaporation chamber with a fully controlled system for the specified requirements. Typical systems are depicted

More information

Massachusetts Institute of Technology Physics 8.03SC Fall 2016 Homework 9

Massachusetts Institute of Technology Physics 8.03SC Fall 2016 Homework 9 Massachusetts Institute of Technology Physics 8.03SC Fall 016 Homework 9 Problems Problem 9.1 (0 pts) The ionosphere can be viewed as a dielectric medium of refractive index ωp n = 1 ω Where ω is the frequency

More information

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003.

Edward S. Rogers Sr. Department of Electrical and Computer Engineering. ECE426F Optical Engineering. Final Exam. Dec. 17, 2003. Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE426F Optical Engineering Final Exam Dec. 17, 2003 Exam Type: D (Close-book + one 2-sided aid sheet + a non-programmable calculator)

More information

Physics of electromagnetic waves

Physics of electromagnetic waves Chapter 3 Physics of electromagnetic waves 3.1 Introduction: Basic optical concepts This chapter reminds some basic principles of electrodynamics which are relevant for the geometric optics and wave optics

More information

Overview: Astronomical Spectroscopy

Overview: Astronomical Spectroscopy Overview: Astronomical Spectroscopy or How to Start Thinking Creatively about Measuring the Universe Basic Spectrograph Optics Objective Prism Spectrometers - AESoP Slit Spectrometers Spectrometers for

More information

Where are the Fringes? (in a real system) Div. of Amplitude - Wedged Plates. Fringe Localisation Double Slit. Fringe Localisation Grating

Where are the Fringes? (in a real system) Div. of Amplitude - Wedged Plates. Fringe Localisation Double Slit. Fringe Localisation Grating Where are the Fringes? (in a real system) Fringe Localisation Double Slit spatial modulation transverse fringes? everywhere or well localised? affected by source properties: coherence, extension Plane

More information

Chapter 2 Basic Optics

Chapter 2 Basic Optics Chapter Basic Optics.1 Introduction In this chapter we will discuss the basic concepts associated with polarization, diffraction, and interference of a light wave. The concepts developed in this chapter

More information

Lecture 9. Transmission and Reflection. Reflection at a Boundary. Specific Boundary. Reflection at a Boundary

Lecture 9. Transmission and Reflection. Reflection at a Boundary. Specific Boundary. Reflection at a Boundary Lecture 9 Reflection at a Boundary Transmission and Reflection A boundary is defined as a place where something is discontinuous Half the work is sorting out what is continuous and what is discontinuous

More information

Question 1. (Marks 16)

Question 1. (Marks 16) 5 Question 1. (Marks 16) Consider the circuit shown in the figure, where C 1 = 6.00µF, C 2 = 3.00µF, and V = 20.0V. Capacitor C 1 is first charged by closing switch S 1. Switch S 1 is then opened, and

More information

PHYSICS nd TERM Outline Notes (continued)

PHYSICS nd TERM Outline Notes (continued) PHYSICS 2800 2 nd TERM Outline Notes (continued) Section 6. Optical Properties (see also textbook, chapter 15) This section will be concerned with how electromagnetic radiation (visible light, in particular)

More information

Our astronomical filters have been supplied or installed in the followings.

Our astronomical filters have been supplied or installed in the followings. Astronomical Filters Asahi Spectra has supplied astronomical filters with science-grade to world famous observatories, institutes or universities for over 15 years. Unlike cheap astronomical filters for

More information

sin constructive n same condition destructive 2 Interference Constructive - Destructive 2-slit single slit diff. grating

sin constructive n same condition destructive 2 Interference Constructive - Destructive 2-slit single slit diff. grating Interference Constructive - Destructive 2-slit single slit diff. grating reflection Note: difference = 0 difference destructive 2 d sin reflection constructive d 2 sin tot. inter. = reflection + path length

More information

THE ZEEMAN EFFECT PHYSICS 359E

THE ZEEMAN EFFECT PHYSICS 359E THE ZEEMAN EFFECT PHYSICS 359E INTRODUCTION The Zeeman effect is a demonstration of spatial quantization of angular momentum in atomic physics. Since an electron circling a nucleus is analogous to a current

More information

= nm. = nm. = nm

= nm. = nm. = nm Chemistry 60 Analytical Spectroscopy PROBLEM SET 5: Due 03/0/08 1. At a recent birthday party, a young friend (elementary school) noticed that multicolored rings form across the surface of soap bubbles.

More information

(a) Show that the amplitudes of the reflected and transmitted waves, corrrect to first order

(a) Show that the amplitudes of the reflected and transmitted waves, corrrect to first order Problem 1. A conducting slab A plane polarized electromagnetic wave E = E I e ikz ωt is incident normally on a flat uniform sheet of an excellent conductor (σ ω) having thickness D. Assume that in space

More information

Summary of Beam Optics

Summary of Beam Optics Summary of Beam Optics Gaussian beams, waves with limited spatial extension perpendicular to propagation direction, Gaussian beam is solution of paraxial Helmholtz equation, Gaussian beam has parabolic

More information

Speed of Light in Glass

Speed of Light in Glass Experiment (1) Speed of Light in Glass Objective:- This experiment is used to determine the speed of propagation of light waves in glass. Apparatus:- Prism, spectrometer, Halogen lamp source. Theory:-

More information

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case

ECE 604, Lecture 17. October 30, In this lecture, we will cover the following topics: Reflection and Transmission Single Interface Case ECE 604, Lecture 17 October 30, 2018 In this lecture, we will cover the following topics: Duality Principle Reflection and Transmission Single Interface Case Interesting Physical Phenomena: Total Internal

More information

Simulations of an Interference Birefringent Thin-Film Filter Used as a Narrow-Band Polarizer

Simulations of an Interference Birefringent Thin-Film Filter Used as a Narrow-Band Polarizer imulations of an Interference Birefringent Thin-Film Filter Used as a Narrow-Band olarizer Hugo uertas de Araújo and ebastião Gomes dos antos Filho University of ão aulo LI / I / EU Av. rof. Luciano Gualberto

More information

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light

1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Waves and Particles 2. Interference of Waves 3. Wave Nature of Light 1. Double-Slit Eperiment reading: Chapter 22 2. Single-Slit Diffraction reading: Chapter 22 3. Diffraction Grating reading: Chapter

More information

Chemistry Instrumental Analysis Lecture 2. Chem 4631

Chemistry Instrumental Analysis Lecture 2. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 2 Electromagnetic Radiation Can be described by means of a classical sinusoidal wave model. Oscillating electric and magnetic field. (Wave model) wavelength,

More information

Chapter 33: ELECTROMAGNETIC WAVES 559

Chapter 33: ELECTROMAGNETIC WAVES 559 Chapter 33: ELECTROMAGNETIC WAVES 1 Select the correct statement: A ultraviolet light has a longer wavelength than infrared B blue light has a higher frequency than x rays C radio waves have higher frequency

More information