From Maxwell s Eqs. and Newton s Laws to the Vlasov and Fokker-Planck Eqs.

Size: px
Start display at page:

Download "From Maxwell s Eqs. and Newton s Laws to the Vlasov and Fokker-Planck Eqs."

Transcription

1 F Maxwell s Eqs. and Newtn s Laws t the Vlas and Fkke-Planck Eqs. Rbet A. Schill, J. Uniesity f Neada, Las Vegas Dept. f Electical and Cpute Engineeing 4505 Mayland Pakway; Bx Las Vegas, NV (70) /4183 Lab: (70) FAX: (70) e-ail: schill@ee.unl.edu URL:

2 Diffeent Kinetic They Appaches R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 4

3 Elastic Binay Cllisins - Cente f Mass Syste C.M. c c Oigin c Cente f Mass (C.M.) Fae Cental Fce Tw bdy cllisins is equialent t a single bdy cllisin Mass Ments C + c 0 Cnseatin f Mass and Mentu & u cnst. c Relatie Mtin with Respect t C.M. Newtnian Fce c & & & M and M & ; M c c j F && ; educed ass Tque exeted by Cental Fce is ze & cnst. f tin Tque & Angula M. - educed ass + + j R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 7

4 z~ u P Binay Cllisins in a Cental Fce - Single Bdy Pble (1) x' Apse Line y' P P-dP θ θ P ~ x, x O θ P -Ipact Paaete χ - Scatteing Angle P -Vetex Pnt. f Pat. Taj. (,θ ) OP - Apse Line (length ) O - Oigin (Paticle ) P - Paticle (Paticle ) u - Initial Velcity f Paticle - Reduced Mass f Paticle χ y~ χ+ dχ z Gening Equatins [Pla Cd. (,θ)] P Ext. Cental Fce (Inteactin Pt. Φ) F Φ Dynaics Kinetic Enegy Paticle T 1 & + θ & Angula Mentu Γ y $ θ& Tque I F dγ dt 0 Cental fce is adial N fce in θ diectin Cnstants f Mtin ()() tθ & t ( t ) θ & ( t ) Cnst. R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 8 ext [( θ ) ( θ θ) θ] && & $ && && $ d Φ $ + + d Γ y Tt + Φ Tt + Φ Cnst.

5 Assuptins Initially plasa is in theal equilibiu Psitie test chage placed in plasa n - plasa density fa f test chage T e electn tepeatue; electn chage q -e Cllisinless plasa Since, i >> e the in dist. is assued nt affected by the test chage Vlas Equatin assuing an Maxwell-Bltzann Equilibiu f t Debye Shielding - Statistical Appach (1) f F f whee f (, ) e Geneally Spheically Syetic E-field f (, ) Culb Fce - F qe q $ dφ d f q d Φ f spheical cds d Methd f Sepaatin f Vaiables Bunday Cnditins (Maxwellian at infinity) n f d, ;. f, Ae e 3kT whee k Bltzann' s Cnst. e R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 15 1 A qa Φ e

6 Debye Shielding - Statistical Appach () V, Vc V Vc R ( R) V( R) Φ Φ Φ R V R R λ D q Φ 4πε λ Φ c c D Electn Velcity Distibutin Functin 3 (, ) ( ) Φ π f n kt e e e Electn and In Densities Φ n e ne n i n q kt e Electns Shield Test Chage - Weak Field Appx. Tayl Expansin Applied: n e Pissn s Eq. Φ( ) Φ( ) λ D whee λd εkte nq Debye Ptential and Debye Length Nea test chage 0; Culb-like Ptential Fa f test chage; Pefect shielding kt q kt e e e λ D Φ q 4 πε e λ D - the Debye Length; Gd shielding 1 t 5 λ D Pt. inalid 0; ilates weak field appx. R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 16

7 Ae. Fce Acting n a Test Paticle in a Plasa (1) u j u P j j+1 1 x 1 P 1 x n n z 1 x j P u'' j P z n x n j P j ~x j x n+1 n+1 x 3 z 3 P P χ j n+1 z n+1 Chaacteistics [MKS] Chaged test paticle ;, q, zj Dist. chaged field paticles (scattees); ~ z Fee space; ε,µ j Eq. f Mtin in Culb Field: CM s Lab. Fae CM: && 3 qq 4πε Mtin f C.M. is a cnstant LAB: F && && Cllisin with Field Paticles ( ) u sin ( χ ~$ j ) + j : F && z 3 P 3 u j + j+1 : F [ u ( χ j ) t] u Many paticles with elcity between and df qq 8πε u u ln f, q, u z usin χ x ~$ sin + d P + P P ax f ( ) d j Shielding effect: P ax λ D ; λ D >>P R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 17

8 Ae. Fce Acting n a Test Paticle in a Plasa () Cnsequence f Integal Tuncatin Plasa is nealy in a state f thedynaic equilibiu Debye shielding akes sense Paticles d nt inteact and d nt undeg significant scatteing f ipact paaetes lage than the Debye length Justified cutff distance - P ax ~ λ D Nn-equilibiu plasas - cutff distance abiguus - λ D nt justified Exact alues f P ae n lnge apppiate Mean P --- u 3k( T + T ) qq Culb Lg - ln Λ ln( λ D P ) whee P 6πεk[ T + T] Aeage Fce Acting n Paticle due t all Scattes qq F ( ) d ln Λ 8πε Aeage Change in Paticle Velcity d t dt F Inadequate desciptin f tin IN the plasa R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 18

9 tt 3 d dt i i z tt 4 t >t >t >t >0 x () i t t 0 () () d i j i t j t dt i Statistical Desciptin f Paticle t0 tt tt 1 Paticle Enseble Mdel N ( ) f abslutely identical test paticles with sae initial elcity Spatial Desciptin (tw diffeent ways t iew) Neglect - unif e plane in cnfiguatin space y Retain - unif e all cnfiguatin phase space Iagined as a spheical clud f phase pints cncentated at a pint in el. space, at tie t0; f (,, t 0) n δ( ) Ae. tin and speading f clud (ppeties sught) Cplete Desciptin f Clud Dynaics [i,jx,y,z] / supescipt -scatteing f ONE pat. in ed. f s Rate f change f fist ent - ate f change f the cente f gaity f the paticle clud in a ediu f field paticles Rate f change f ent - speading f clud sy. tens ank chaacteizes the 3-D ean squae deiatin Rate f change in highe de ents - negligible R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 19

10 Rate f Change f Ments - Integal F i w i w f Rate f Change f Ments () wd i λd π i i 0 0 j λ D π uupdpdϕ f w d ij u u up dp dϕ ij i j 0 0 Cputed fs f i whee 1 L ui u f d 3 L 1+ L 1+ [ Φ( ) ] 1 u L δ iu 4π 3 u u i j ij L i qq ε j i i 1 4π j f d f d 1 L f ( ) d i j 4 π L [ Ψ ] ln Λ u uz$ R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 1

11 Rate f Change f Ments-Obseatins Ψ ( ) ( ) Φ Ψ ( ) Φ ( ) f ( ) Highe de ents sall by fact f ln(λ) - - Culb Lgaith Special featue f Culb Ptential Fkke-Planck Appxiatin Spitze - cined the fllwing tes as diffusin tes and i i j + i k i k Rsenbluth Ptentials Φ andψ The elcity f the electn clud as a whle (elcity f the cente f gaity f the clud) in elcity space is elated t the ate f expansin f the clud in all diectins R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98]

12 Cntinuity Equatin f Phase Pints in Phase Space z, z Ω (6) Integal F f Cntinuity Eq. f Phase Pints (Absence f Cllisins) t f t d J Ω t d,,,, Σ s 6 ( 5) Ω Σs x, x Σ y, y (5) s J (6) - Six di. flux f phase pints J 6 f ( t) a f ( t) J,, +,, + J J Kineatic Steaing Te Pint F f Cntinuity Eq. f Phase Pints (Absence f Cllisins) f t f t + J + J [ f] [ af] R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 3

13 x t0- t0+ y (t0-)0 (t0+)>>0 ' z Ω (6) Σ (5) s Abupt Change in Velcity Cllisins - Geneal Discussin Cnsequence [Macscpic View] Abupt change in psitin and elcity Abupt changes in spatial psitin ae negligiblecntinuus f pint-t-pint In the cnfiguatin ptin f phase space, the phase pint will actually cut thugh the spatial suface f Σ (5) s bunding lue Ω (6) when enteing leaing Abupt changes in elcity ae dastic Befe cllisin afte cllisin At the instant f the cllisin, the phase pint in elcity space is annihilated at and ceated at a ete pint withut passing thugh inteediate pints in elcity space Des NOT cut suface Σ (5) s J can nt accunt f this Nea cllisins (sall ipact paaetes) Culb paticles ( lage ipact paaete) d nt exhibit dastic changes in elcity R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 4

14 Cllisins - Culb Cllisins (ln Λ>>1) f t J cl (5) Σ s Neighbhd f Suface Abupt Change in Velcity 1 ext + ( f) + ( F f) J Fcl i f D f ik k Teat as Micscpic Jups - alst cntinuus Equatin f Cntinuity is alid f ete inteactins Tayl expansin f the kineatic steaing te abut the neighbhd f Σ (5) s J A f ( t) B f t i i,, + ij,, +... Salle the jup, the e cntinuus is the flw 1 A a [ ] F ext F cl B D i i i + i ; ij ij Plasa Kinetic Equatin - Culb Cllisins Kineatic steaing is due t the fce f cl Dynaic Fictin [Chandasekha] Diffusin Flux Many & Single Specie Plasa - Binay Cllisins J J ; F F ; D D cl cl cl cl ik ik j R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 6

15 Rate f Change f the Ments f the Paticle Enseble Distibutin Functin f Paticle Enseble at t0 f (,, t 0) n δ( ) Fal Definitins i 1 1 if( t) d i j ( i i)( j j) f ( t) d n,, n,, Kinetic Equatin (Altenate F) f t t (,, ) ext cl Methd f Chaacteistics (Lagangian fae-fllw phase pint bits) df t dt (,, ) F cnsistency with u del, we assue thee ae n extenal fces. Only Culb cllisinal fce cntibutins ae assued t exist in deteining the fce f dynaical fictin and the diffusin tens. Rate f Change f Ments Ealuated at t0 R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 7 F + f t + (,, ) f (,, t) J (,, t) Fcl J whee J f t D f t J cl cl,,,, di 1 df dt n dt d cl i D ik i i + F t k d df ( )( ) [ ] dt n dt d D i k 1 i i i j j ik j cl

16 Fkke-Planck Equatin Fkke-Planck Cllisin Te due t Culb Cllisins J cl i i f t 1 i k (,, ) f (,, t) Kinetic Equatin with Fkke-Planck Cllisin Te ext f(,, t) F + f (,, t) + f (,, t) t k F cl i i 1 i k i k and Dik 1 k R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 8 i f t i t 1 i k t 1 f t f t,, :,, F f t D f t,,,, whee, i t L f t d + 1,, 1 i 4 π i j 1 L f( t) d i j π,, 4 i k (,, ) f (,, t)

17 Fkke-Planck Eqs. - Obseatins (1) The Diffusin Tens is elated t the initial ate f change f the tens that descibes the quadatic deiatins f the elcity f the ean in the test paticle enseble. D ( )( ) 1 d dt The Dynaic Fce f Fictin is pptinal t the Mean Fce. The Mean Fce is physical. The Dynaic Fce f Fictin is defined ut f cnenience. F F + Because f the sign diffeence assciated with the diffusin and the dynaic fce f fictin tes, they tend t be cpeting echaniss. Diffusin has the tendency f speading the distibutin in elcity space away f the aeage elcity wheeas the dynaical fictin has the tendency f slwing dwn speeding up paticles until they each an aeage elcity. Because f this cpeting effect, the Fkke-Planck cllisin tes yield a ze esult f Maxwellian distibutin functins. R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 9

18 Fkke-Planck Eqs. - Obseatins () f in the Plasa Kinetic Equatin is due t all fces (extenal echanic and electagnetic, and Culbic). Petubatin schees ae used t sle these equatins. The they deelped pides a fundatin f studying tanspt. R.A.Schill, J. ABCs f Zs Wkshp [5/1-/98] 30

Example

Example hapte Exaple.6-3. ---------------------------------------------------------------------------------- 5 A single hllw fibe is placed within a vey lage glass tube. he hllw fibe is 0 c in length and has a

More information

A) N B) 0.0 N C) N D) N E) N

A) N B) 0.0 N C) N D) N E) N Cdinat: H Bahluli Sunday, Nvembe, 015 Page: 1 Q1. Five identical pint chages each with chage =10 nc ae lcated at the cnes f a egula hexagn, as shwn in Figue 1. Find the magnitude f the net electic fce

More information

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating:

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating: Summa chapte 4. In chapte 4 dielectics ae discussed. In thse mateials the electns ae nded t the atms mlecules and cannt am fee thugh the mateial: the electns in insulats ae n a tight leash and all the

More information

CHE CHAPTER 11 Spring 2005 GENERAL 2ND ORDER REACTION IN TURBULENT TUBULAR REACTORS

CHE CHAPTER 11 Spring 2005 GENERAL 2ND ORDER REACTION IN TURBULENT TUBULAR REACTORS CHE 52 - CHPTE Sping 2005 GENEL 2ND ODE ECTION IN TUULENT TUUL ECTOS Vassilats & T, IChEJ. (4), 666 (965) Cnside the fllwing stichiety: a + b = P The ass cnsevatin law f species i yields Ci + vci =. Di

More information

School of Chemical & Biological Engineering, Konkuk University

School of Chemical & Biological Engineering, Konkuk University Schl f Cheical & Bilgical Engineeing, Knkuk Univesity Lectue 7 Ch. 2 The Fist Law Thecheisty Pf. Y-Sep Min Physical Cheisty I, Sping 2008 Ch. 2-2 The study f the enegy tansfeed as heat duing the cuse f

More information

Lecture 23: Central Force Motion

Lecture 23: Central Force Motion Lectue 3: Cental Foce Motion Many of the foces we encounte in natue act between two paticles along the line connecting the Gavity, electicity, and the stong nuclea foce ae exaples These types of foces

More information

1. Show that if the angular momentum of a boby is determined with respect to an arbitrary point A, then. r r r. H r A can be expressed by H r r r r

1. Show that if the angular momentum of a boby is determined with respect to an arbitrary point A, then. r r r. H r A can be expressed by H r r r r 1. Shw that if the angula entu f a bb is deteined with espect t an abita pint, then H can be epessed b H = ρ / v + H. This equies substituting ρ = ρ + ρ / int H = ρ d v + ρ ( ω ρ ) d and epanding, nte

More information

Electric Charge. Electric charge is quantized. Electric charge is conserved

Electric Charge. Electric charge is quantized. Electric charge is conserved lectstatics lectic Chage lectic chage is uantized Chage cmes in incements f the elementay chage e = ne, whee n is an intege, and e =.6 x 0-9 C lectic chage is cnseved Chage (electns) can be mved fm ne

More information

Chapter 31 Faraday s Law

Chapter 31 Faraday s Law Chapte 31 Faaday s Law Change oving --> cuent --> agnetic field (static cuent --> static agnetic field) The souce of agnetic fields is cuent. The souce of electic fields is chage (electic onopole). Altenating

More information

A) (0.46 î ) N B) (0.17 î ) N

A) (0.46 î ) N B) (0.17 î ) N Phys10 Secnd Maj-14 Ze Vesin Cdinat: xyz Thusday, Apil 3, 015 Page: 1 Q1. Thee chages, 1 = =.0 μc and Q = 4.0 μc, ae fixed in thei places as shwn in Figue 1. Find the net electstatic fce n Q due t 1 and.

More information

Lecture 2: Single-particle Motion

Lecture 2: Single-particle Motion Lecture : Single-particle Mtin Befre we start, let s l at Newtn s 3 rd Law Iagine a situatin where frces are nt transitted instantly between tw bdies, but rather prpagate at se velcity c This is true fr

More information

5.1 Moment of a Force Scalar Formation

5.1 Moment of a Force Scalar Formation Outline ment f a Cuple Equivalent System Resultants f a Fce and Cuple System ment f a fce abut a pint axis a measue f the tendency f the fce t cause a bdy t tate abut the pint axis Case 1 Cnside hizntal

More information

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement:

5/20/2011. HITT An electron moves from point i to point f, in the direction of a uniform electric field. During this displacement: 5/0/011 Chapte 5 In the last lectue: CapacitanceII we calculated the capacitance C f a system f tw islated cnducts. We als calculated the capacitance f sme simple gemeties. In this chapte we will cve the

More information

CHAPTER 24 GAUSS LAW

CHAPTER 24 GAUSS LAW CHAPTR 4 GAUSS LAW LCTRIC FLUX lectic flux is a measue f the numbe f electic filed lines penetating sme suface in a diectin pependicula t that suface. Φ = A = A csθ with θ is the angle between the and

More information

On the Micropolar Fluid Flow through Porous Media

On the Micropolar Fluid Flow through Porous Media Pceedings f the th WEA Int. Cnf. n MATHEMATICAL METHOD, COMPUTATIONAL TECHNIQUE AND INTELLIGENT YTEM On the Micpla Fluid Flw thugh Pus Media M.T. KAMEL 3, D. ROACH, M.H. HAMDAN,3 Depatment f Mathematical

More information

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March EN4: Dynaics and Vibations Midte Exaination Tuesday Mach 8 16 School of Engineeing Bown Univesity NME: Geneal Instuctions No collaboation of any kind is peitted on this exaination. You ay bing double sided

More information

CHAPTER GAUSS'S LAW

CHAPTER GAUSS'S LAW lutins--ch 14 (Gauss's Law CHAPTE 14 -- GAU' LAW 141 This pblem is ticky An electic field line that flws int, then ut f the cap (see Figue I pduces a negative flux when enteing and an equal psitive flux

More information

UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 1 Prof. Steven Errede LECTURE NOTES 1

UIUC Physics 435 EM Fields & Sources I Fall Semester, 2007 Lecture Notes 1 Prof. Steven Errede LECTURE NOTES 1 UIUC Physics 435 EM Fields & Suces I Fall Semeste, 007 Lectue Ntes 1 Pf. Steen Eede Intductin: LECTURE NOTES 1 In this cuse, we will study/inestigate the natue f the ELECTROMAGNETIC INTERACTION (at {ey}

More information

Introduction. Electrostatics

Introduction. Electrostatics UNIVESITY OF TECHNOLOGY, SYDNEY FACULTY OF ENGINEEING 4853 Electmechanical Systems Electstatics Tpics t cve:. Culmb's Law 5. Mateial Ppeties. Electic Field Stength 6. Gauss' Theem 3. Electic Ptential 7.

More information

Chapter 4 Motion in Two and Three Dimensions

Chapter 4 Motion in Two and Three Dimensions Chapte 4 Mtin in Tw and Thee Dimensins In this chapte we will cntinue t stud the mtin f bjects withut the estictin we put in chapte t me aln a staiht line. Instead we will cnside mtin in a plane (tw dimensinal

More information

ELECTROMAGNETIC INDUCTION PREVIOUS EAMCET BITS

ELECTROMAGNETIC INDUCTION PREVIOUS EAMCET BITS P P Methd EECTOMAGNETIC INDUCTION PEVIOUS EAMCET BITS [ENGINEEING PAPE]. A cnduct d f length tates with angula speed ω in a unifm magnetic field f inductin B which is pependicula t its mtin. The induced

More information

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields

Fri. 10/23 (C14) Linear Dielectrics (read rest at your discretion) Mon. (C 17) , E to B; Lorentz Force Law: fields Fi. 0/23 (C4) 4.4. Linea ielectics (ead est at yu discetin) Mn. (C 7) 2..-..2, 2.3. t B; 5..-..2 Lentz Fce Law: fields Wed. and fces Thus. (C 7) 5..3 Lentz Fce Law: cuents Fi. (C 7) 5.2 Bit-Savat Law HW6

More information

11/23/2009. v Solve for Flight Time t d t. 2 d. 2 t. v m. t And the derivative is: 2. tdt. R m. Time-of-Flight (TOF) Time-of-Flight (TOF)

11/23/2009. v Solve for Flight Time t d t. 2 d. 2 t. v m. t And the derivative is: 2. tdt. R m. Time-of-Flight (TOF) Time-of-Flight (TOF) /3/009 /3/009 Tie-f-Flight (TOF Suce Regin (Acceleatin Regin E = V/ Detect E s Dift Regin E = 0 = ift length ev ev Kinetic Enegy gien t the In in the Suce Regin Sling f Velcity Tie-f-Flight (TOF Sle f

More information

1121 T Question 1

1121 T Question 1 1121 T1 2008 Question 1 ( aks) You ae cycling, on a long staight path, at a constant speed of 6.0.s 1. Anothe cyclist passes you, tavelling on the sae path in the sae diection as you, at a constant speed

More information

The Gradient and Applications This unit is based on Sections 9.5 and 9.6, Chapter 9. All assigned readings and exercises are from the textbook

The Gradient and Applications This unit is based on Sections 9.5 and 9.6, Chapter 9. All assigned readings and exercises are from the textbook The Gadient and Applicatins This unit is based n Sectins 9.5 and 9.6 Chapte 9. All assigned eadings and eecises ae fm the tetbk Objectives: Make cetain that u can define and use in cntet the tems cncepts

More information

PHYSICS 151 Notes for Online Lecture #23

PHYSICS 151 Notes for Online Lecture #23 PHYSICS 5 Ntes fr Online Lecture #3 Peridicity Peridic eans that sething repeats itself. r exaple, eery twenty-fur hurs, the Earth aes a cplete rtatin. Heartbeats are an exaple f peridic behair. If yu

More information

Subjects discussed: Aircraft Engine Noise : Principles; Regulations

Subjects discussed: Aircraft Engine Noise : Principles; Regulations 16.50 Lectue 36 Subjects discussed: Aicaft Engine Nise : Pinciples; Regulatins Nise geneatin in the neighbhds f busy aipts has been a seius pblem since the advent f the jet-pweed tanspt, in the late 1950's.

More information

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09 FARADAY'S LAW No. of lectues allocated Actual No. of lectues dates : 3 9/5/09-14 /5/09 31.1 Faaday's Law of Induction In the pevious chapte we leaned that electic cuent poduces agnetic field. Afte this

More information

Physics 321 Solutions for Final Exam

Physics 321 Solutions for Final Exam Page f 8 Physics 3 Slutins fr inal Exa ) A sall blb f clay with ass is drpped fr a height h abve a thin rd f length L and ass M which can pivt frictinlessly abut its center. The initial situatin is shwn

More information

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K

A) 100 K B) 150 K C) 200 K D) 250 K E) 350 K Phys10 Secnd Maj-09 Ze Vesin Cdinat: k Wednesday, May 05, 010 Page: 1 Q1. A ht bject and a cld bject ae placed in themal cntact and the cmbinatin is islated. They tansfe enegy until they each a final equilibium

More information

AIR FORCE RESEARCH LABORATORY

AIR FORCE RESEARCH LABORATORY AIR FORC RSARCH LABORATORY The xtinctin Theem as an xample f Reseach Vistas in Mathematical Optics Mach Richad A. Albanese Infmatin Opeatins and Applied Mathematics Human ffectiveness Diectate Bks City-Base

More information

Journal of Theoretics

Journal of Theoretics Junal f Theetics Junal Hme Page The Classical Pblem f a Bdy Falling in a Tube Thugh the Cente f the Eath in the Dynamic They f Gavity Iannis Iaklis Haanas Yk Univesity Depatment f Physics and Astnmy A

More information

FARADAY'S LAW dt

FARADAY'S LAW dt FAADAY'S LAW 31.1 Faaday's Law of Induction In the peious chapte we leaned that electic cuent poduces agnetic field. Afte this ipotant discoey, scientists wondeed: if electic cuent poduces agnetic field,

More information

Electric Fields and Electric Forces

Electric Fields and Electric Forces Cpyight, iley 006 (Cutnell & Jhnsn 9. Ptential Enegy Chapte 9 mgh mgh GPE GPE Electic Fields and Electic Fces 9. Ptential Enegy 9. Ptential Enegy 9. The Electic Ptential Diffeence 9. The Electic Ptential

More information

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source

Multipole Radiation. February 29, The electromagnetic field of an isolated, oscillating source Multipole Radiation Febuay 29, 26 The electomagnetic field of an isolated, oscillating souce Conside a localized, oscillating souce, located in othewise empty space. We know that the solution fo the vecto

More information

Surface and Interface Science Physics 627; Chemistry 542. Lecture 10 March 1, 2013

Surface and Interface Science Physics 627; Chemistry 542. Lecture 10 March 1, 2013 Suface and Inteface Science Physics 67; Chemisty 54 Lectue 0 Mach, 03 Int t Electnic Ppeties: Wk Functin,Theminic Electn Emissin, Field Emissin Refeences: ) Wduff & Delcha, Pp. 40-4; 46-484 ) Zangwill

More information

Orbital Angular Momentum Eigenfunctions

Orbital Angular Momentum Eigenfunctions Obital Angula Moentu Eigenfunctions Michael Fowle 1/11/08 Intoduction In the last lectue we established that the opeatos J Jz have a coon set of eigenkets j J j = j( j+ 1 ) j Jz j = j whee j ae integes

More information

ME 236 Engineering Mechanics I Test #4 Solution

ME 236 Engineering Mechanics I Test #4 Solution ME 36 Enineein Mechnics I est #4 Slutin Dte: id, M 14, 4 ie: 8:-1: inutes Instuctins: vein hptes 1-13 f the tetbk, clsed-bk test, clcults llwed. 1 (4% blck ves utwd ln the slt in the pltf with speed f

More information

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set

WYSE Academic Challenge Sectional Mathematics 2006 Solution Set WYSE Academic Challenge Sectinal 006 Slutin Set. Cect answe: e. mph is 76 feet pe minute, and 4 mph is 35 feet pe minute. The tip up the hill takes 600/76, 3.4 minutes, and the tip dwn takes 600/35,.70

More information

Electromagnetic Waves

Electromagnetic Waves Chapte 3 lectmagnetic Waves 3.1 Maxwell s quatins and ectmagnetic Waves A. Gauss s Law: # clsed suface aea " da Q enc lectic fields may be geneated by electic chages. lectic field lines stat at psitive

More information

INVERSE QUANTUM STATES OF HYDROGEN

INVERSE QUANTUM STATES OF HYDROGEN INVERSE QUANTUM STATES OF HYDROGEN Rnald C. Bugin Edgecmbe Cmmunity Cllege Rcky Munt, Nth Calina 780 bugin@edgecmbe.edu ABSTRACT The pssible existence f factinal quantum states in the hydgen atm has been

More information

Work, Energy, and Power. AP Physics C

Work, Energy, and Power. AP Physics C k, Eneg, and Pwe AP Phsics C Thee ae man diffeent TYPES f Eneg. Eneg is expessed in JOULES (J) 4.19 J = 1 calie Eneg can be expessed me specificall b using the tem ORK() k = The Scala Dt Pduct between

More information

Magnetism. Chapter 21

Magnetism. Chapter 21 1.1 Magnetic Fields Chapte 1 Magnetism The needle f a cmpass is pemanent magnet that has a nth magnetic ple (N) at ne end and a suth magnetic ple (S) at the the. 1.1 Magnetic Fields 1.1 Magnetic Fields

More information

On the velocity autocorrelation function of a Brownian particle

On the velocity autocorrelation function of a Brownian particle Co. Dept. Che., ulg. Acad. Sci. 4 (1991) 576-58 [axiv 15.76] On the velocity autocoelation of a ownian paticle Rouen Tsekov and oyan Radoev Depatent of Physical Cheisty, Univesity of Sofia, 1164 Sofia,

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

Section 4.2 Radians, Arc Length, and Area of a Sector

Section 4.2 Radians, Arc Length, and Area of a Sector Sectin 4.2 Radian, Ac Length, and Aea f a Sect An angle i fmed by tw ay that have a cmmn endpint (vetex). One ay i the initial ide and the the i the teminal ide. We typically will daw angle in the cdinate

More information

CHAPTER 17. Solutions for Exercises. Using the expressions given in the Exercise statement for the currents, we have

CHAPTER 17. Solutions for Exercises. Using the expressions given in the Exercise statement for the currents, we have CHATER 7 Slutin f Execie E7. F Equatin 7.5, we have B gap Ki ( t ) c( θ) + Ki ( t ) c( θ 0 ) + Ki ( t ) c( θ 40 a b c ) Uing the expein given in the Execie tateent f the cuent, we have B gap K c( ωt )c(

More information

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions )

06 - ROTATIONAL MOTION Page 1 ( Answers at the end of all questions ) 06 - ROTATIONAL MOTION Page ) A body A of mass M while falling vetically downwads unde gavity beaks into two pats, a body B of mass ( / ) M and a body C of mass ( / ) M. The cente of mass of bodies B and

More information

Phy 213: General Physics III

Phy 213: General Physics III Phy 1: Geneal Physics III Chapte : Gauss Law Lectue Ntes E Electic Flux 1. Cnside a electic field passing thugh a flat egin in space w/ aea=a. The aea vect ( A ) with a magnitude f A and is diected nmal

More information

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM Honou School of Mathematical and Theoetical Physics Pat C Maste of Science in Mathematical and Theoetical Physics COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM HILARY TERM 18 TUESDAY, 13TH MARCH 18, 1noon

More information

The tunneling spectrum of Einsein Born-Infeld Black Hole. W. Ren2

The tunneling spectrum of Einsein Born-Infeld Black Hole. W. Ren2 Intenational Confeence on Engineeing Management Engineeing Education and Infomation Technology (EMEEIT 015) The tunneling spectum of Einsein Bon-Infeld Black Hole J Tang1 W Ren Y Han3 1 Aba teaches college

More information

March 15. Induction and Inductance Chapter 31

March 15. Induction and Inductance Chapter 31 Mach 15 Inductin and Inductance Chapte 31 > Fces due t B fields Lentz fce τ On a mving chage F B On a cuent F il B Cuent caying cil feels a tque = µ B Review > Cuents geneate B field Bit-Savat law = qv

More information

Mechanics Physics 151

Mechanics Physics 151 Mechanics Physics 151 Lectue 5 Cental Foce Poblem (Chapte 3) What We Did Last Time Intoduced Hamilton s Pinciple Action integal is stationay fo the actual path Deived Lagange s Equations Used calculus

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

AT622 Section 15 Radiative Transfer Revisited: Two-Stream Models

AT622 Section 15 Radiative Transfer Revisited: Two-Stream Models AT6 Sectin 5 Radiative Tansfe Revisited: Tw-Steam Mdels The gal f this sectin is t intduce sme elementay cncepts f adiative tansfe that accunts f scatteing, absptin and emissin and intduce simple ways

More information

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do

Announcements Candidates Visiting Next Monday 11 12:20 Class 4pm Research Talk Opportunity to learn a little about what physicists do Wed., /11 Thus., /1 Fi., /13 Mn., /16 Tues., /17 Wed., /18 Thus., /19 Fi., / 17.7-9 Magnetic Field F Distibutins Lab 5: Bit-Savat B fields f mving chages (n quiz) 17.1-11 Pemanent Magnets 18.1-3 Mic. View

More information

n Power transmission, X rays, lightning protection n Solid-state Electronics: resistors, capacitors, FET n Computer peripherals: touch pads, LCD, CRT

n Power transmission, X rays, lightning protection n Solid-state Electronics: resistors, capacitors, FET n Computer peripherals: touch pads, LCD, CRT .. Cu-Pl, INE 45- Electmagnetics I Electstatic fields anda Cu-Pl, Ph.. INE 45 ch 4 ECE UPM Maagüe, P me applicatins n Pwe tansmissin, X as, lightning ptectin n lid-state Electnics: esists, capacits, FET

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field Lectue 3.7 ELECTRICITY Electic chage Coulomb s law Electic field ELECTRICITY Inteaction between electically chages objects Many impotant uses Light Heat Rail tavel Computes Cental nevous system Human body

More information

r dt dt Momentum (specifically Linear Momentum) defined r r so r r note: momentum is a vector p x , p y = mv x = mv y , p z = mv z

r dt dt Momentum (specifically Linear Momentum) defined r r so r r note: momentum is a vector p x , p y = mv x = mv y , p z = mv z Moentu, Ipulse and Collisions Moentu eeyday connotations? physical eaning the tue easue of otion (what changes in esponse to applied foces) d d ΣF ( ) dt dt Moentu (specifically Linea Moentu) defined p

More information

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b.

Solutions. V in = ρ 0. r 2 + a r 2 + b, where a and b are constants. The potential at the center of the atom has to be finite, so a = 0. r 2 + b. Solutions. Plum Pudding Model (a) Find the coesponding electostatic potential inside and outside the atom. Fo R The solution can be found by integating twice, 2 V in = ρ 0 ε 0. V in = ρ 0 6ε 0 2 + a 2

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Solution: (a) C 4 1 AI IC 4. (b) IBC 4

Solution: (a) C 4 1 AI IC 4. (b) IBC 4 C A C C R A C R C R C sin 9 sin. A cuent f is maintaine in a single cicula lp f cicumfeence C. A magnetic fiel f is iecte paallel t the plane f the lp. (a) Calculate the magnetic mment f the lp. (b) What

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4! or. r ˆ = points from source q to observer Physics 8.0 Quiz One Equations Fall 006 F = 1 4" o q 1 q = q q ˆ 3 4" o = E 4" o ˆ = points fom souce q to obseve 1 dq E = # ˆ 4" 0 V "## E "d A = Q inside closed suface o d A points fom inside to V =

More information

Lecture XXX. Approximation Solutions to Boltzmann Equation: Relaxation Time Approximation. Readings: Brennan Chapter 6.2 & Notes. Prepared By: Hua Fan

Lecture XXX. Approximation Solutions to Boltzmann Equation: Relaxation Time Approximation. Readings: Brennan Chapter 6.2 & Notes. Prepared By: Hua Fan Prepared y: Hua Fan Lecture XXX Apprxiatin Slutins t ltann Equatin: Relaxatin ie Apprxiatin Readings: rennan Chapter 6. & Ntes Gergia Insitute echnlgy ECE 645-Hua Fan Apprxiatin Slutins the ltann Equatin

More information

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam)

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam) (Sample 3) Exam 1 - Physics 202 - Patel SPRING 1998 FORM CODE - A (solution key at end of exam) Be sue to fill in you student numbe and FORM lette (A, B, C) on you answe sheet. If you foget to include

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

Introduction: A Generalized approach for computing the trajectories associated with the Newtonian N Body Problem

Introduction: A Generalized approach for computing the trajectories associated with the Newtonian N Body Problem A Generalized apprach fr cmputing the trajectries assciated with the Newtnian N Bdy Prblem AbuBar Mehmd, Syed Umer Abbas Shah and Ghulam Shabbir Faculty f Engineering Sciences, GIK Institute f Engineering

More information

CHAPTER 5: Circular Motion; Gravitation

CHAPTER 5: Circular Motion; Gravitation CHAPER 5: Cicula Motion; Gavitation Solution Guide to WebAssign Pobles 5.1 [1] (a) Find the centipetal acceleation fo Eq. 5-1.. a R v ( 1.5 s) 1.10 1.4 s (b) he net hoizontal foce is causing the centipetal

More information

Tidal forces. m r. m 1 m 2. x r 2. r 1

Tidal forces. m r. m 1 m 2. x r 2. r 1 Tidal foces Befoe we look at fee waves on the eath, let s fist exaine one class of otion that is diectly foced: astonoic tides. Hee we will biefly conside soe of the tidal geneating foces fo -body systes.

More information

Thermal Radiation and the Second Law of Thermodynamics

Thermal Radiation and the Second Law of Thermodynamics IOS Jounal of Applied Physics (IOS-JAP) e-issn: 2278-4861.olue 9, Issue 4 e. III (Jul. Aug. 2017), PP 82-89 www.iosjounals.og heal adiation and the Second Law of heodynaics * D. akhanlall echanical Engineeing,

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination

University of Illinois at Chicago Department of Physics. Electricity & Magnetism Qualifying Examination E&M poblems Univesity of Illinois at Chicago Depatment of Physics Electicity & Magnetism Qualifying Examination Januay 3, 6 9. am : pm Full cedit can be achieved fom completely coect answes to 4 questions.

More information

Lecture #2 : Impedance matching for narrowband block

Lecture #2 : Impedance matching for narrowband block Lectue # : Ipedance atching f nawband blck ichad Chi-Hsi Li Telephne : 817-788-848 (UA) Cellula phne: 13917441363 (C) Eail : chihsili@yah.c.cn 1. Ipedance atching indiffeent f bandwidth ne pat atching

More information

3. Electromagnetic Waves II

3. Electromagnetic Waves II Lectue 3 - Electomagnetic Waves II 9 3. Electomagnetic Waves II Last time, we discussed the following. 1. The popagation of an EM wave though a macoscopic media: We discussed how the wave inteacts with

More information

Chap13. Universal Gravitation

Chap13. Universal Gravitation Chap13. Uniesal Gaitation Leel : AP Physics Instucto : Kim 13.1 Newton s Law of Uniesal Gaitation - Fomula fo Newton s Law of Gaitation F g = G m 1m 2 2 F21 m1 F12 12 m2 - m 1, m 2 is the mass of the object,

More information

Analytical Solution to Diffusion-Advection Equation in Spherical Coordinate Based on the Fundamental Bloch NMR Flow Equations

Analytical Solution to Diffusion-Advection Equation in Spherical Coordinate Based on the Fundamental Bloch NMR Flow Equations Intenatinal Junal f heetical and athematical Phsics 5, 5(5: 4-44 OI:.593/j.ijtmp.555.7 Analtical Slutin t iffusin-advectin Equatin in Spheical Cdinate Based n the Fundamental Blch N Flw Equatins anladi

More information

B. Spherical Wave Propagation

B. Spherical Wave Propagation 11/8/007 Spheical Wave Popagation notes 1/1 B. Spheical Wave Popagation Evey antenna launches a spheical wave, thus its powe density educes as a function of 1, whee is the distance fom the antenna. We

More information

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00 Peliminay Exam: Quantum Physics /4/ 9:-: Answe a total of SIX questions of which at least TWO ae fom section A and at least THREE ae fom section B Fo you answes you can use eithe the blue books o individual

More information

A perturbation density functional theory for the competition between inter and intramolecular association

A perturbation density functional theory for the competition between inter and intramolecular association petubatin density functinal they f the cpetitin between inte and intalecula assciatin Bennett D. Chapan a leand J. Gacía-Cuélla b and Walte G. Chapan a a Depatent f Cheical and Bilecula Engineeing Rice

More information

Lecture 6: Phase Space and Damped Oscillations

Lecture 6: Phase Space and Damped Oscillations Lecture 6: Phase Space and Damped Oscillatins Oscillatins in Multiple Dimensins The preius discussin was fine fr scillatin in a single dimensin In general, thugh, we want t deal with the situatin where:

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

1.2 Differential cross section

1.2 Differential cross section .2. DIFFERENTIAL CROSS SECTION Febuay 9, 205 Lectue VIII.2 Diffeential coss section We found that the solution to the Schodinge equation has the fom e ik x ψ 2π 3/2 fk, k + e ik x and that fk, k = 2 m

More information

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi ENGI 44 Non-Catesian Coodinates Page 7-7. Conesions between Coodinate Systems In geneal, the conesion of a ecto F F xi Fy j Fzk fom Catesian coodinates x, y, z to anothe othonomal coodinate system u,,

More information

ATMO 551a Fall 08. Diffusion

ATMO 551a Fall 08. Diffusion Diffusion Diffusion is a net tanspot of olecules o enegy o oentu o fo a egion of highe concentation to one of lowe concentation by ando olecula) otion. We will look at diffusion in gases. Mean fee path

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Problem Set 10 Solutions. r s MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Depatment Physics 8.033 Decembe 5, 003 Poblem Set 10 Solutions Poblem 1 M s y x test paticle The figue above depicts the geomety of the poblem. The position

More information

MEM202 Engineering Mechanics Statics Course Web site:

MEM202 Engineering Mechanics Statics Course Web site: 0 Engineeing Mechanics - Statics 0 Engineeing Mechanics Statics Cuse Web site: www.pages.dexel.edu/~cac54 COUSE DESCIPTION This cuse cves intemediate static mechanics, an extensin f the fundamental cncepts

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

1 st VS 2 nd Laws of Thermodynamics

1 st VS 2 nd Laws of Thermodynamics t VS nd Law f hemdynamic he fit Law Enegy cneatin Quantity pint f iew - In tem f Enegy Enegy cannt be ceated detyed, but it alway cnee - If nt, it ilate t law f themdynamic Enegy input Enegy utput Enegy

More information

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf " #, # $ work function.

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf  #, # $ work function. PHYSICS 4E FINAL EXAM SPRING QUARTER 1 Fomulas and constants: hc =1,4 ev A ; k B =1/11,6 ev/k ; ke =14.4eVA ; m e c =.511"1 6 ev ; m p /m e =1836 Relativistic enegy - momentum elation E = m c 4 + p c ;

More information

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9 SPH4 nit 6.3 Gavitational Potential negy Page of Notes Physics ool box he gavitational potential enegy of a syste of two (spheical) asses is diectly popotional to the poduct of thei asses, and invesely

More information

ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A

ELECTRIC & MAGNETIC FIELDS I (STATIC FIELDS) ELC 205A LCTRIC & MAGNTIC FILDS I (STATIC FILDS) LC 05A D. Hanna A. Kils Assciate Pfess lectnics & Cmmnicatins ngineeing Depatment Faclty f ngineeing Cai Univesity Fall 0 f Static lecticity lectic & Magnetic Fields

More information

Radiation Resistance of System G( Iron Torus is not used as we can see ) ( ) 2

Radiation Resistance of System G( Iron Torus is not used as we can see ) ( ) 2 THE FNAL NVESTGATON ON TORS EXPERMENT N AQNO S SET P n the llwing invetigatin, we ae ging t exaine the equatin Syte G, accding t Pe Aquin clai. THE EQATONS FOR THE TORS EXPERMENT ARE THE FOLLOW: Velcity

More information

Field emission of Electrons from Negatively Charged Cylindrical Particles with Nonlinear Screening in a Dusty Plasma

Field emission of Electrons from Negatively Charged Cylindrical Particles with Nonlinear Screening in a Dusty Plasma Reseach & Reviews: Jounal of Pue and Applied Physics Field emission of Electons fom Negatively Chaged Cylindical Paticles with Nonlinea Sceening in a Dusty Plasma Gyan Pakash* Amity School of Engineeing

More information

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!!

Physics 161 Fall 2011 Extra Credit 2 Investigating Black Holes - Solutions The Following is Worth 50 Points!!! Physics 161 Fall 011 Exta Cedit Investigating Black Holes - olutions The Following is Woth 50 Points!!! This exta cedit assignment will investigate vaious popeties of black holes that we didn t have time

More information

1131 T Question 1

1131 T Question 1 1131 T1 2008 Question 1 ( aks) You ae cycling, on a long staight path, at a constant speed of 6.0.s 1. Anothe cyclist passes you, taelling on the sae path in the sae diection as you, at a constant speed

More information

Chapter 15. ELECTRIC POTENTIALS and ENERGY CONSIDERATIONS

Chapter 15. ELECTRIC POTENTIALS and ENERGY CONSIDERATIONS Ch. 15--Elect. Pt. and Enegy Cns. Chapte 15 ELECTRIC POTENTIALS and ENERGY CONSIDERATIONS A.) Enegy Cnsideatins and the Abslute Electical Ptential: 1.) Cnside the fllwing scenai: A single, fixed, pint

More information

which represents a straight line whose slope is C 1.

which represents a straight line whose slope is C 1. hapte, Slutin 5. Ye, thi claim i eanable ince in the abence any heat eatin the ate heat tane thugh a plain wall in teady peatin mut be cntant. But the value thi cntant mut be ze ince ne ide the wall i

More information