FARADAY'S LAW dt

Size: px
Start display at page:

Download "FARADAY'S LAW dt"

Transcription

1 FAADAY'S LAW 31.1 Faaday's Law of Induction In the peious chapte we leaned that electic cuent poduces agnetic field. Afte this ipotant discoey, scientists wondeed: if electic cuent poduces agnetic field, is it possible that agnetic field can poduce an electic cuent? Conside loop of wie that is connected to a galanoete and a agnet is oed in the icinity of the loop. It was obseed that if both the loop and the agnet held stationay elatie to each othe thee will be no deflection in the galanoete. If the loop is held stationay while the agnet is oed towad the loop, the galanoete will deflect in one diection. If the agnet is oed away fo the loop, the galanoete will deflect in the opposite diection. The sae obseations is occued when the loop is oed while the agnet is held stationay. Fo these obseations one concludes that a cuent is poduced in the loop as long as thee is elatie otion between the loop and the agnet. Such a cuent is called the induced cuent, and it souce is called the induced ef. The phenoenon itself (the poduction of electic cuent fo changing agnetic field) is called the electoagnetic induction. Michael Faaday studied these obseations quantitatiely and put the in a atheatical foula consideed as one of the fundaental laws in electoagnetic theoy. He found that the induced ef is popotional to the ate of change of the agnetic flux, i.e., = N 31.1 N S N S N S (a) (b) (c) Figue 31.1 (a) A ba agnet is stationay elatie to the loop and thee is no deflection in the galanoete. (b) The ba agnet is oing towad the loop and the galanoete deflects in one diection. (c) The ba agnet is oing away fo the loop and the galanoete deflects in the opposite diection. Whee N is the nube of tuns in the loop. Fo a unifo agnetic field the agnetic flux becoes Φ = BAcosθ

2 With θ is the angle between the agnetic field and the aea ( The diection of the aea of a plane is noal to the plane). The SI unit of the agnetic flux is Webe (Wb) with 1 Wb equals to 1 T.. Faaday's law now eads ( BAcosθ ) d N 31. Fo this expession we conclude that an induced ef can be ceated if eithe B, A, θ, o a cobination of the ay with tie. The inus sign in Faaday's law is a consequence of the law of conseation of enegy. Exaple 31.1 A coil consists of 00 tuns of wie. Each tun is a squae of side 18 c, and a unifo. field pependicula to the plane of the oil is tuned on. If B = 0.5T in 0. 8 s, what is the induced ef in the coil. Solution Knowing that θ = 0, and the aea A is constant we hae ( B) d db 0.5 NAcos θ NA = 00(0.18) = 4.1 V 0.8 Exaple 31. A loop of wie of aea A is placed in a. field pependicula to the plane of the loop. The agnitude of B aies with tie accoding to B = B ax e, what is the induced ef in the loop. Solution Again θ = 0, and the aea A is constant we hae αt NAcos θ ( B) d db NA = αabax e αt 31. MOTIONAL EMF To undestand how the induced ef is oiginated we now study in details the natue of the induced ef. Conside a od of length l oing with speed in a unifo agnetic field B diected into the page, as shown in Figue 31.. The fee electons inside the od will expeience a agnetic foce F = eb which is diected downwad. The electons then will accuulate at the lowe end of the od leaing a net positie at its uppe end. As a esult of this chage sepaation, a net electic field E will be set up inside the od. Theefoe, fee electons now will be affected by an upwad electic foce F e = ee in addition to the agnetic field. Chages continue to build up at the ends of the od until the two foces balanced. At this point otion of chages ceases leaing the od with two opposite polaities at its end, that is an ef is poduced acoss the od. To calculate this ef we hae, fo the equilibiu condition F = o eb= ee so E = B F e

3 B l Figue 31. (a) A conducting od oing in a unifo agnetic field into the page. The agnetic foce akes electons to accuulate at the lowe end of the od, leaing the uppe end with positie chages. (b) A conducting od slides along conducting ails in a unifo agnetic field into the page. A cuent will be induced in the loop. l B x Since the electic field in unifo inside the od, the potential diffeence acoss the od is elated to this electic field accoding to = V = El = lb 31.3 This potential diffeence is aintained acoss the ends of the od as long as it is oing in the field and is called the otional ef. If the od is a pat of closed loop, as shown in Figue 31.(b), a cuent will flow in the loop fo the positie end to the negatie end (counteclockwise). Let us now poe Equation 31.3 using Faaday's law. Conside again Figue 14.(b) whee the od is sliding along conducting ails in the agnetic field such that it fos a closed loop. The ate of change of the agnetic flux though the loop is now popotional to the change in the aea of the loop. As the aea of the loop at soe instant is A= lx, the agnetic flux though the loop is Φ = Blx Whee x, the wih of the loop is changing with tie as the od oes. Using Faaday's law, we find that the induced ef in the loop is d Φ d = = ( Blx) = dx Bl But ( dx ) epesents the speed of the od, so we obtain

4 lb 31.4 Which is the sae esult of Equation 31.3 except of the inus sign. Exaple 31.3 A conducting ba of length l otates with a constant angula speed ω about one end. A unifo. B is pependicula to the plane of the otation. What is the potential diffeence induced between the ends of the ba. Solution It is clea that is not constant along the length of the ba We hae to diide the ba into sall eleents each of length d. Noe the ef acoss one of these e eleents is dv = Bd = ωbd l Integate to find the ef acoss the ba L V = ω B d = 31.3 Lenz's Law 0 1 Bωl It tells us that the induced cuent ust be in a diection such that it poduces a agnetic field to oppose the change in the agnetic flux. Lenz's law can be explained by the following two ules: (1) If the agnetic flux though the loop is inceasing, the diection of the induced cuent is such that it poduces a agnetic field opposite to the souce agnetic field, () If the agnetic flux though the loop is deceasing, the diection of the induced cuent is such that it poduces a agnetic filed in the sae diection as that of the souce agnetic field.

5 Exaple 9.3 A squae loop of side L and esistance oes with constant speed though a egion of wih 3L in which a unifo agnetic field B diected out of the page as shown. Plot the flux and the induced ef in the loop as a function of x, the position of the ight side of the loop. Solution The agnetic flux is zeo befoe the loop entes the field. As the loop is enteing the field, Φ =Blx, that is, the flux inceases linealy with x, eaches its axiu alue, Bl, when the loop is entiely in the field. Finally, as the loop is leaing the field Φ =Bl(4L-x), that is the flux deceases linealy with x, eaches to zeo when the loop is entiely outside the field. Φ 3L x Now dx dx dx F Noting that /dx is the slope of the cue in the fist gaph, (Φ s. x). While the loop is enteing the filed the flux is inceasing and, accoding to Lenz s ule, the agnetic field set up by the induced cuent is into the page (opposite to the oiginal field). Hence the induced ef is clockwise. While the loop is leaing the field, Φ is deceasing and the agnetic field set up by the induced cuent in, this case, is out of the page (siila to the oiginal field). This eans that the induced ef is counteclockwise. To find the foce on the loop it clea that while the loop is enteing the only side that cause the net foce is the ight side. Now F = Il B = ILB ( j k) = ILB( iˆ ) While the loop leaing the left side is the only side that cause the foce. Again

6 F = Il L B = ILB ( j k) = ILB( iˆ ) 9.3 INDUCED ELECTIC FIELD A changing agnetic flux ceates an induced ef and thus an induced cuent in a conducting loop. Theefoe, an electic field ust be pesent along the loop. This field, which is ceated by changing agnetic flux, is called induced electic field and gien by. in = E ds 31.5 Using Equation 31.1, Faaday s law can be ewitten as E ds 31.6 It should be noted that this esult is also alid fo any hypothetical closed path. The induced electic field gien by Equation 31.6 is quite diffeent fo the electostatic field (poduced by static chages). The foal one is a non-conseatie field poduced by a changing agnetic flux. Hence no electic potential can be associated by the induced electic field. The potential diffeence between two points i and f is V f V i f E ds i which would be zeo fo a closed path, contay to Equation 31.6 The diection of the induced e.f. is deteined by Lenz's ule Exaple 31.8 A long solenoid of adius has n tuns of wie pe unit length and caies a cuent gien by I = Iax cosωt, with B o and ω ae constant and the tie t is in seconds. Calculate the induced electic field inside and outside the Solenoid. Solution Φ The. flux though the aea enclosed by the closed loop is = BAcosθ = µ o ni ( π ) = µ nπ I cosωt o ax Now applying

7 E ds = µ nπ ωi o ax By syety, the agnitude of E is constant aound the path and tangent to it ( ax E π) = µ onπ ωi Fo which we find that µ onωiax E = To calculate the electic field outside the sphee, the closed path has now a adius >. Since the agnetic field is confined only to the egion <, the agnetic flux though the path is Φ ( π ) = µ nπ I ωt = µ oni o ax cos The electic field is now ( ax E π ) = µ onπ ωi Fo which we find that µ n I E o ω = ax

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09

FARADAY'S LAW. dates : No. of lectures allocated. Actual No. of lectures 3 9/5/09-14 /5/09 FARADAY'S LAW No. of lectues allocated Actual No. of lectues dates : 3 9/5/09-14 /5/09 31.1 Faaday's Law of Induction In the pevious chapte we leaned that electic cuent poduces agnetic field. Afte this

More information

Chapter 31 Faraday s Law

Chapter 31 Faraday s Law Chapte 31 Faaday s Law Change oving --> cuent --> agnetic field (static cuent --> static agnetic field) The souce of agnetic fields is cuent. The souce of electic fields is chage (electic onopole). Altenating

More information

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law

Faraday s Law. Faraday s Law. Faraday s Experiments. Faraday s Experiments. Magnetic Flux. Chapter 31. Law of Induction (emf( emf) Faraday s Law Faaday s Law Faaday s Epeiments Chapte 3 Law of nduction (emf( emf) Faaday s Law Magnetic Flu Lenz s Law Geneatos nduced Electic fields Michael Faaday discoeed induction in 83 Moing the magnet induces

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

(a) Calculate the apparent weight of the student in the first part of the journey while accelerating downwards at 2.35 m s 2.

(a) Calculate the apparent weight of the student in the first part of the journey while accelerating downwards at 2.35 m s 2. Chapte answes Heineann Physics 1 4e Section.1 Woked exaple: Ty youself.1.1 CALCULATING APPARENT WEIGHT A 79.0 kg student ides a lift down fo the top floo of an office block to the gound. Duing the jouney

More information

Exam 3, vers Physics Spring, 2003

Exam 3, vers Physics Spring, 2003 1 of 9 Exam 3, ves. 0001 - Physics 1120 - Sping, 2003 NAME Signatue Student ID # TA s Name(Cicle one): Michael Scheffestein, Chis Kelle, Paisa Seelungsawat Stating time of you Tues ecitation (wite time

More information

16.1 Permanent magnets

16.1 Permanent magnets Unit 16 Magnetism 161 Pemanent magnets 16 The magnetic foce on moving chage 163 The motion of chaged paticles in a magnetic field 164 The magnetic foce exeted on a cuent-caying wie 165 Cuent loops and

More information

Unit 7: Sources of magnetic field

Unit 7: Sources of magnetic field Unit 7: Souces of magnetic field Oested s expeiment. iot and Savat s law. Magnetic field ceated by a cicula loop Ampèe s law (A.L.). Applications of A.L. Magnetic field ceated by a: Staight cuent-caying

More information

FI 2201 Electromagnetism

FI 2201 Electromagnetism FI 2201 Electomagnetism Alexande A. Iskanda, Ph.D. Physics of Magnetism and Photonics Reseach Goup Electodynamics ELETROMOTIVE FORE AND FARADAY S LAW 1 Ohm s Law To make a cuent flow, we have to push the

More information

Module 21: Faraday s Law of Induction 1 Table of Contents

Module 21: Faraday s Law of Induction 1 Table of Contents Module 21: Faaday s Law of Induction 1 Table of Contents 10.1 Faaday s Law of Induction... 10-2 10.1.1 Magnetic Flux... 10-3 10.1.2 Lenz s Law... 10-5 1 10.2 Motional EMF... 10-7 10.3 Induced Electic Field...

More information

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2!

Ch 30 - Sources of Magnetic Field! The Biot-Savart Law! = k m. r 2. Example 1! Example 2! Ch 30 - Souces of Magnetic Field 1.) Example 1 Detemine the magnitude and diection of the magnetic field at the point O in the diagam. (Cuent flows fom top to bottom, adius of cuvatue.) Fo staight segments,

More information

r cos, and y r sin with the origin of coordinate system located at

r cos, and y r sin with the origin of coordinate system located at Lectue 3-3 Kinematics of Rotation Duing ou peious lectues we hae consideed diffeent examples of motion in one and seeal dimensions. But in each case the moing object was consideed as a paticle-like object,

More information

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations

Phys-272 Lecture 17. Motional Electromotive Force (emf) Induced Electric Fields Displacement Currents Maxwell s Equations Phys-7 Lectue 17 Motional Electomotive Foce (emf) Induced Electic Fields Displacement Cuents Maxwell s Equations Fom Faaday's Law to Displacement Cuent AC geneato Magnetic Levitation Tain Review of Souces

More information

CHAPTER: 4 MOVING CHARGES AND MAGNETISM

CHAPTER: 4 MOVING CHARGES AND MAGNETISM CHAPTER: 4 MOVING CHARGES AND MAGNETISM 1 Define electic Loentz foce * It is the foce expeienced by a chaged paticle at est o oving in an electic field F E E 2 Define Magnetic Loentz foce * It is the foce

More information

30 The Electric Field Due to a Continuous Distribution of Charge on a Line

30 The Electric Field Due to a Continuous Distribution of Charge on a Line hapte 0 The Electic Field Due to a ontinuous Distibution of hage on a Line 0 The Electic Field Due to a ontinuous Distibution of hage on a Line Evey integal ust include a diffeential (such as d, dt, dq,

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) Right-Hand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase?

Electrostatics. 1. Show does the force between two point charges change if the dielectric constant of the medium in which they are kept increase? Electostatics 1. Show does the foce between two point chages change if the dielectic constant of the medium in which they ae kept incease? 2. A chaged od P attacts od R whee as P epels anothe chaged od

More information

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt

More information

CHAPTER 25 ELECTRIC POTENTIAL

CHAPTER 25 ELECTRIC POTENTIAL CHPTE 5 ELECTIC POTENTIL Potential Diffeence and Electic Potential Conside a chaged paticle of chage in a egion of an electic field E. This filed exets an electic foce on the paticle given by F=E. When

More information

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B.

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B. PHY 249 Lectue Notes Chapte 32: Page 1 of 12 What we have leaned so fa a a F q a a in motion F q v a a d/ Ae thee othe "static" chages that can make -field? this lectue d/? next lectue da dl Cuve Cuve

More information

1121 T Question 1

1121 T Question 1 1121 T1 2008 Question 1 ( aks) You ae cycling, on a long staight path, at a constant speed of 6.0.s 1. Anothe cyclist passes you, tavelling on the sae path in the sae diection as you, at a constant speed

More information

A moving charged particle creates a magnetic field vector at every point in space except at its position.

A moving charged particle creates a magnetic field vector at every point in space except at its position. 1 Pat 3: Magnetic Foce 3.1: Magnetic Foce & Field A. Chaged Paticles A moving chaged paticle ceates a magnetic field vecto at evey point in space ecept at its position. Symbol fo Magnetic Field mks units

More information

ATMO 551a Fall 08. Diffusion

ATMO 551a Fall 08. Diffusion Diffusion Diffusion is a net tanspot of olecules o enegy o oentu o fo a egion of highe concentation to one of lowe concentation by ando olecula) otion. We will look at diffusion in gases. Mean fee path

More information

DEMYSTIFING MAGNETISM

DEMYSTIFING MAGNETISM PHYS2012 ag02doc DEMYSTIFING MAGNETISM ELECTRICAL PROPERTIES OF MATERIALS What is an electic field? What ceates an electic field? fee chages electic displaceent D electic dipoles bound suface chages polaization

More information

Ch. 4: FOC 9, 13, 16, 18. Problems 20, 24, 38, 48, 77, 83 & 115;

Ch. 4: FOC 9, 13, 16, 18. Problems 20, 24, 38, 48, 77, 83 & 115; WEEK-3 Recitation PHYS 3 eb 4, 09 Ch. 4: OC 9, 3,, 8. Pobles 0, 4, 38, 48, 77, 83 & 5; Ch. 4: OC Questions 9, 3,, 8. 9. (e) Newton s law of gavitation gives the answe diectl. ccoding to this law the weight

More information

Physics 30 Lesson 20 Magnetic Forces Charged Particles

Physics 30 Lesson 20 Magnetic Forces Charged Particles Physics 30 Lesson 20 Magnetic Foces Chaged Paticles I. Chaged paticles in extenal agnetic fields In the pevious lesson we leaned that when a chaged paticle is in otion, a agnetic field is induced aound

More information

Review for 2 nd Midterm

Review for 2 nd Midterm Review fo 2 nd Midtem Midtem-2! Wednesday Octobe 29 at 6pm Section 1 N100 BCC (Business College) Section 2 158 NR (Natual Resouces) Allowed one sheet of notes (both sides) and calculato Coves Chaptes 27-31

More information

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines

THE MAGNETIC FIELD. This handout covers: The magnetic force between two moving charges. The magnetic field, B, and magnetic field lines EM 005 Handout 7: The Magnetic ield 1 This handout coes: THE MAGNETIC IELD The magnetic foce between two moing chages The magnetic field,, and magnetic field lines Magnetic flux and Gauss s Law fo Motion

More information

Magnetic Dipoles Challenge Problem Solutions

Magnetic Dipoles Challenge Problem Solutions Magnetic Dipoles Challenge Poblem Solutions Poblem 1: Cicle the coect answe. Conside a tiangula loop of wie with sides a and b. The loop caies a cuent I in the diection shown, and is placed in a unifom

More information

8-3 Magnetic Materials

8-3 Magnetic Materials 11/28/24 section 8_3 Magnetic Mateials blank 1/2 8-3 Magnetic Mateials Reading Assignent: pp. 244-26 Recall in dielectics, electic dipoles wee ceated when and E-field was applied. Q: Theefoe, we defined

More information

Chapter 22 The Electric Field II: Continuous Charge Distributions

Chapter 22 The Electric Field II: Continuous Charge Distributions Chapte The lectic Field II: Continuous Chage Distibutions A ing of adius a has a chage distibution on it that vaies as l(q) l sin q, as shown in Figue -9. (a) What is the diection of the electic field

More information

Physics NYB problem set 5 solution

Physics NYB problem set 5 solution Physics NY poblem set 5 solutions 1 Physics NY poblem set 5 solution Hello eveybody, this is ED. Hi ED! ED is useful fo dawing the ight hand ule when you don t know how to daw. When you have a coss poduct

More information

Magnetic Field. Conference 6. Physics 102 General Physics II

Magnetic Field. Conference 6. Physics 102 General Physics II Physics 102 Confeence 6 Magnetic Field Confeence 6 Physics 102 Geneal Physics II Monday, Mach 3d, 2014 6.1 Quiz Poblem 6.1 Think about the magnetic field associated with an infinite, cuent caying wie.

More information

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m

Calculate the electric potential at B d2=4 m Calculate the electric potential at A d1=3 m 3 m 3 m MTE : Ch 13 5:3-7pm on Oct 31 ltenate Exams: Wed Ch 13 6:3pm-8:pm (people attending the altenate exam will not be allowed to go out of the oom while othes fom pevious exam ae still aound) Thu @ 9:-1:3

More information

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D.

ELECTROSTATICS::BHSEC MCQ 1. A. B. C. D. ELETROSTATIS::BHSE 9-4 MQ. A moving electic chage poduces A. electic field only. B. magnetic field only.. both electic field and magnetic field. D. neithe of these two fields.. both electic field and magnetic

More information

Chapter 9 FARADAY'S LAW Recommended Problems:

Chapter 9 FARADAY'S LAW Recommended Problems: Chapter 9 FARADAY'S LAW Recommended Problems: 5,7,9,10,11,13,15,17,20,21,28,29,31,32,33,34,49,50,52,58,63,64. Faraday's Law of Induction We learned that e. current produces magnetic field. Now we want

More information

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t)

rt () is constant. We know how to find the length of the radius vector by r( t) r( t) r( t) Cicula Motion Fom ancient times cicula tajectoies hae occupied a special place in ou model of the Uniese. Although these obits hae been eplaced by the moe geneal elliptical geomety, cicula motion is still

More information

3. Magnetostatic fields

3. Magnetostatic fields 3. Magnetostatic fields D. Rakhesh Singh Kshetimayum 1 Electomagnetic Field Theoy by R. S. Kshetimayum 3.1 Intoduction to electic cuents Electic cuents Ohm s law Kichoff s law Joule s law Bounday conditions

More information

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force

Potential Energy. The change U in the potential energy. is defined to equal to the negative of the work. done by a conservative force Potential negy The change U in the potential enegy is defined to equal to the negative of the wok done by a consevative foce duing the shift fom an initial to a final state. U = U U = W F c = F c d Potential

More information

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials

Sources of the Magnetic Field. Moving charges currents Ampere s Law Gauss Law in magnetism Magnetic materials Souces of the Magnetic Field Moving chages cuents Ampee s Law Gauss Law in magnetism Magnetic mateials Biot-Savat Law ˆ ˆ θ ds P db out I db db db db ds ˆ 1 I P db in db db ds sinθ db μ 4 π 0 Ids ˆ B μ0i

More information

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum 2. Electostatics D. Rakhesh Singh Kshetimayum 1 2.1 Intoduction In this chapte, we will study how to find the electostatic fields fo vaious cases? fo symmetic known chage distibution fo un-symmetic known

More information

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics

anubhavclasses.wordpress.com CBSE Solved Test Papers PHYSICS Class XII Chapter : Electrostatics CBS Solved Test Papes PHYSICS Class XII Chapte : lectostatics CBS TST PAPR-01 CLASS - XII PHYSICS (Unit lectostatics) 1. Show does the foce between two point chages change if the dielectic constant of

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electomagnetic I Chapte 4 Electostatic fields Islamic Univesity of Gaza Electical Engineeing Depatment D. Talal Skaik 212 1 Electic Potential The Gavitational Analogy Moving an object upwad against

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is

( ) Make-up Tests. From Last Time. Electric Field Flux. o The Electric Field Flux through a bit of area is Mon., 3/23 Wed., 3/25 Thus., 3/26 Fi., 3/27 Mon., 3/30 Tues., 3/31 21.4-6 Using Gauss s & nto to Ampee s 21.7-9 Maxwell s, Gauss s, and Ampee s Quiz Ch 21, Lab 9 Ampee s Law (wite up) 22.1-2,10 nto to

More information

ELECTROMAGNETISM (CP2)

ELECTROMAGNETISM (CP2) Revision Lectue on ELECTROMAGNETISM (CP) Electostatics Magnetostatics Induction EM Waves based on pevious yeas Pelims questions State Coulomb s Law. Show how E field may be defined. What is meant by E

More information

CHAPTER 5: Circular Motion; Gravitation

CHAPTER 5: Circular Motion; Gravitation CHAPER 5: Cicula Motion; Gavitation Solution Guide to WebAssign Pobles 5.1 [1] (a) Find the centipetal acceleation fo Eq. 5-1.. a R v ( 1.5 s) 1.10 1.4 s (b) he net hoizontal foce is causing the centipetal

More information

Appendix B The Relativistic Transformation of Forces

Appendix B The Relativistic Transformation of Forces Appendix B The Relativistic Tansfomation of oces B. The ou-foce We intoduced the idea of foces in Chapte 3 whee we saw that the change in the fou-momentum pe unit time is given by the expession d d w x

More information

Charged particle motion in magnetic field

Charged particle motion in magnetic field Chaged paticle otion in agnetic field Paticle otion in cued agnetic fieldlines We diide the equation of otion into a elocity coponent along the agnetic field and pependicula to the agnetic field. Suppose

More information

1131 T Question 1

1131 T Question 1 1131 T1 2008 Question 1 ( aks) You ae cycling, on a long staight path, at a constant speed of 6.0.s 1. Anothe cyclist passes you, taelling on the sae path in the sae diection as you, at a constant speed

More information

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism

Physics 2020, Spring 2005 Lab 5 page 1 of 8. Lab 5. Magnetism Physics 2020, Sping 2005 Lab 5 page 1 of 8 Lab 5. Magnetism PART I: INTRODUCTION TO MAGNETS This week we will begin wok with magnets and the foces that they poduce. By now you ae an expet on setting up

More information

4. Electrodynamic fields

4. Electrodynamic fields 4. Electodynamic fields D. Rakhesh Singh Kshetimayum 1 4.1 Intoduction Electodynamics Faaday s law Maxwell s equations Wave equations Lenz s law Integal fom Diffeential fom Phaso fom Bounday conditions

More information

Chapter 23: GAUSS LAW 343

Chapter 23: GAUSS LAW 343 Chapte 23: GAUSS LAW 1 A total chage of 63 10 8 C is distibuted unifomly thoughout a 27-cm adius sphee The volume chage density is: A 37 10 7 C/m 3 B 69 10 6 C/m 3 C 69 10 6 C/m 2 D 25 10 4 C/m 3 76 10

More information

DYNAMICS OF UNIFORM CIRCULAR MOTION

DYNAMICS OF UNIFORM CIRCULAR MOTION Chapte 5 Dynamics of Unifom Cicula Motion Chapte 5 DYNAMICS OF UNIFOM CICULA MOTION PEVIEW An object which is moing in a cicula path with a constant speed is said to be in unifom cicula motion. Fo an object

More information

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9

SPH4U Unit 6.3 Gravitational Potential Energy Page 1 of 9 SPH4 nit 6.3 Gavitational Potential negy Page of Notes Physics ool box he gavitational potential enegy of a syste of two (spheical) asses is diectly popotional to the poduct of thei asses, and invesely

More information

Lecture 23: Central Force Motion

Lecture 23: Central Force Motion Lectue 3: Cental Foce Motion Many of the foces we encounte in natue act between two paticles along the line connecting the Gavity, electicity, and the stong nuclea foce ae exaples These types of foces

More information

Force between two parallel current wires and Newton s. third law

Force between two parallel current wires and Newton s. third law Foce between two paallel cuent wies and Newton s thid law Yannan Yang (Shanghai Jinjuan Infomation Science and Technology Co., Ltd.) Abstact: In this pape, the essence of the inteaction between two paallel

More information

Physics 11 Chapter 20: Electric Fields and Forces

Physics 11 Chapter 20: Electric Fields and Forces Physics Chapte 0: Electic Fields and Foces Yesteday is not ous to ecove, but tomoow is ous to win o lose. Lyndon B. Johnson When I am anxious it is because I am living in the futue. When I am depessed

More information

Niraj Sir. circular motion;; SOLUTIONS TO CONCEPTS CHAPTER 7

Niraj Sir. circular motion;; SOLUTIONS TO CONCEPTS CHAPTER 7 SOLUIONS O CONCEPS CHAPE 7 cicula otion;;. Distance between Eath & Moon.85 0 5 k.85 0 8 7. days 4 600 (7.) sec.6 0 6 sec.4.85 0 v 6.6 0 8 05.4/sec v (05.4) a 0.007/sec.7 0 /sec 8.85 0. Diaete of eath 800k

More information

Recitation PHYS 131. must be one-half of T 2

Recitation PHYS 131. must be one-half of T 2 Reitation PHYS 131 Ch. 5: FOC 1, 3, 7, 10, 15. Pobles 4, 17, 3, 5, 36, 47 & 59. Ch 5: FOC Questions 1, 3, 7, 10 & 15. 1. () The eloity of a has a onstant agnitude (speed) and dietion. Sine its eloity is

More information

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e

ev dm e evd 2 m e 1 2 ev2 B) e 2 0 dm e D) m e . A paallel-plate capacito has sepaation d. The potential diffeence between the plates is V. If an electon with chage e and mass m e is eleased fom est fom the negative plate, its speed when it eaches

More information

How Electric Currents Interact with Magnetic Fields

How Electric Currents Interact with Magnetic Fields How Electic Cuents nteact with Magnetic Fields 1 Oested and Long Wies wote these notes to help ou with vaious diectional ules, and the equivalence between the magnetism of magnets and the magnets of electic

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

SPH4U Magnetism Test Name: Solutions

SPH4U Magnetism Test Name: Solutions SPH4U Magneti et Nae: Solution QUESION 1 [4 Mak] hi and the following two quetion petain to the diaga below howing two cuent-caying wie. wo cuent ae flowing in the ae diection (out of the page) a hown.

More information

Tidal forces. m r. m 1 m 2. x r 2. r 1

Tidal forces. m r. m 1 m 2. x r 2. r 1 Tidal foces Befoe we look at fee waves on the eath, let s fist exaine one class of otion that is diectly foced: astonoic tides. Hee we will biefly conside soe of the tidal geneating foces fo -body systes.

More information

Chapter 29 Magnetic Fields

Chapter 29 Magnetic Fields Chapte 9 Magnetic Fiels electic ipole +e agnetic ipole -e can t fin onopole --> cuent oel Magnetic poles always occu in pais. Thus fa, thee is no conclusie eience that an isolate agnetic onopole eists.

More information

Class 6 - Circular Motion and Gravitation

Class 6 - Circular Motion and Gravitation Class 6 - Cicula Motion and Gavitation pdf vesion [http://www.ic.sunysb.edu/class/phy141d/phy131pdfs/phy131class6.pdf] Fequency and peiod Fequency (evolutions pe second) [ o ] Peiod (tie fo one evolution)

More information

Orbital Angular Momentum Eigenfunctions

Orbital Angular Momentum Eigenfunctions Obital Angula Moentu Eigenfunctions Michael Fowle 1/11/08 Intoduction In the last lectue we established that the opeatos J Jz have a coon set of eigenkets j J j = j( j+ 1 ) j Jz j = j whee j ae integes

More information

Page 1 of 6 Physics II Exam 1 155 points Name Discussion day/time Pat I. Questions 110. 8 points each. Multiple choice: Fo full cedit, cicle only the coect answe. Fo half cedit, cicle the coect answe and

More information

TUTORIAL 9. Static magnetic field

TUTORIAL 9. Static magnetic field TUTOIAL 9 Static magnetic field Vecto magnetic potential Null Identity % & %$ A # Fist postulation # " B such that: Vecto magnetic potential Vecto Poisson s equation The solution is: " Substitute it into

More information

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241 Chapte 0 Electicity 41 0-9 ELECTRIC IELD LINES Goals Illustate the concept of electic field lines. Content The electic field can be symbolized by lines of foce thoughout space. The electic field is stonge

More information

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge.

Magnetic fields (origins) CHAPTER 27 SOURCES OF MAGNETIC FIELD. Permanent magnets. Electric currents. Magnetic field due to a moving charge. Magnetic fields (oigins) CHAPTER 27 SOURCES OF MAGNETC FELD Magnetic field due to a moving chage. Electic cuents Pemanent magnets Magnetic field due to electic cuents Staight wies Cicula coil Solenoid

More information

Sources of Magnetic Fields (chap 28)

Sources of Magnetic Fields (chap 28) Souces of Magnetic Fields (chap 8) In chapte 7, we consideed the magnetic field effects on a moving chage, a line cuent and a cuent loop. Now in Chap 8, we conside the magnetic fields that ae ceated by

More information

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 10 Solutions

Pearson Physics Level 30 Unit VI Forces and Fields: Chapter 10 Solutions Peason Physics Level 30 Unit VI Foces and Fields: hapte 10 Solutions Student Book page 518 oncept heck 1. It is easie fo ebonite to eove electons fo fu than fo silk.. Ebonite acquies a negative chage when

More information

Phys-272 Lecture 18. Mutual Inductance Self-Inductance R-L Circuits

Phys-272 Lecture 18. Mutual Inductance Self-Inductance R-L Circuits Phys-7 ectue 8 Mutual nductance Self-nductance - Cicuits Mutual nductance f we have a constant cuent i in coil, a constant magnetic field is ceated and this poduces a constant magnetic flux in coil. Since

More information

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

Physics 2A Chapter 10 - Moment of Inertia Fall 2018 Physics Chapte 0 - oment of netia Fall 08 The moment of inetia of a otating object is a measue of its otational inetia in the same way that the mass of an object is a measue of its inetia fo linea motion.

More information

Faraday s Law (continued)

Faraday s Law (continued) Faaday s Law (continued) What causes cuent to flow in wie? Answe: an field in the wie. A changing magnetic flux not only causes an MF aound a loop but an induced electic field. Can wite Faaday s Law: ε

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Gauss s Law: Circuits

Gauss s Law: Circuits Gauss s Law: Cicuits Can we have excess chage inside in steady state? E suface nˆ A q inside E nˆ A E nˆ A left _ suface ight _ suface q inside 1 Gauss s Law: Junction Between two Wies n 2

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Last time MAGNETIC FORCE point charge

Last time MAGNETIC FORCE point charge Last time MAGNTIC FORC point chage Result of Coss Poduct is Pependicula to both and Right-Hand Rule: 1) ) 1 Magnet foce on cuents Hall effect Relatiity effect Today iclicke Question Small metal ball has

More information

PHYS 1444 Lecture #5

PHYS 1444 Lecture #5 Shot eview Chapte 24 PHYS 1444 Lectue #5 Tuesday June 19, 212 D. Andew Bandt Capacitos and Capacitance 1 Coulom s Law The Fomula QQ Q Q F 1 2 1 2 Fomula 2 2 F k A vecto quantity. Newtons Diection of electic

More information

Objectives: After finishing this unit you should be able to:

Objectives: After finishing this unit you should be able to: lectic Field 7 Objectives: Afte finishing this unit you should be able to: Define the electic field and explain what detemines its magnitude and diection. Wite and apply fomulas fo the electic field intensity

More information

Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic fields. Chapter 28: Magnetic fields

Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic Field and Magnetic Force. Chapter 28: Magnetic fields. Chapter 28: Magnetic fields Chapte 8: Magnetic fiels Histoically, people iscoe a stone (e 3 O 4 ) that attact pieces of ion these stone was calle magnets. two ba magnets can attact o epel epening on thei oientation this is ue to

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

MTE2 Wed 26, at 5:30-7:00 pm Ch2103 and SH 180. Contents of MTE2. Study chapters (no 32.6, 32.10, no 32.8 forces between wires)

MTE2 Wed 26, at 5:30-7:00 pm Ch2103 and SH 180. Contents of MTE2. Study chapters (no 32.6, 32.10, no 32.8 forces between wires) MTE Wed 6, at 5:30-7:00 pm Ch03 and SH 80 Contents of MTE Wok of the electic foce and potential enegy Electic Potential and ield Capacitos and capacitance Cuent and esistance, Ohm s la DC Cicuits and Kichoff

More information

SEE LAST PAGE FOR SOME POTENTIALLY USEFUL FORMULAE AND CONSTANTS

SEE LAST PAGE FOR SOME POTENTIALLY USEFUL FORMULAE AND CONSTANTS Cicle instucto: Moow o Yethiaj Name: MEMORIL UNIVERSITY OF NEWFOUNDLND DEPRTMENT OF PHYSICS ND PHYSICL OCENOGRPHY Final Eam Phsics 5 Winte 3:-5: pil, INSTRUCTIONS:. Do all SIX (6) questions in section

More information

Electricity Revision ELECTRICITY REVISION KEY CONCEPTS TERMINOLOGY & DEFINITION. Physical Sciences X-Sheets

Electricity Revision ELECTRICITY REVISION KEY CONCEPTS TERMINOLOGY & DEFINITION. Physical Sciences X-Sheets Electicity Revision KEY CONCEPTS In this session we will focus on the following: Stating and apply Coulomb s Law. Defining electical field stength and applying the deived equations. Dawing electical field

More information

The Law of Biot-Savart & RHR P θ

The Law of Biot-Savart & RHR P θ The Law of iot-savat & RHR P R dx x Jean-aptiste iot élix Savat Phys 122 Lectue 19 G. Rybka Recall: Potential Enegy of Dipole Wok equied to otate a cuentcaying loop in a magnetic field Potential enegy

More information

Introduction: Vectors and Integrals

Introduction: Vectors and Integrals Intoduction: Vectos and Integals Vectos a Vectos ae chaacteized by two paametes: length (magnitude) diection a These vectos ae the same Sum of the vectos: a b a a b b a b a b a Vectos Sum of the vectos:

More information

Physics Spring 2012 Announcements: Mar 07, 2012

Physics Spring 2012 Announcements: Mar 07, 2012 Physics 00 - Sping 01 Announcements: Ma 07, 01 HW#6 due date has been extended to the moning of Wed. Ma 1. Test # (i. Ma ) will cove only chaptes 0 and 1 All of chapte will be coveed in Test #4!!! Test

More information

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam)

(Sample 3) Exam 1 - Physics Patel SPRING 1998 FORM CODE - A (solution key at end of exam) (Sample 3) Exam 1 - Physics 202 - Patel SPRING 1998 FORM CODE - A (solution key at end of exam) Be sue to fill in you student numbe and FORM lette (A, B, C) on you answe sheet. If you foget to include

More information

To Feel a Force Chapter 7 Static equilibrium - torque and friction

To Feel a Force Chapter 7 Static equilibrium - torque and friction To eel a oce Chapte 7 Chapte 7: Static fiction, toque and static equilibium A. Review of foce vectos Between the eath and a small mass, gavitational foces of equal magnitude and opposite diection act on

More information

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #7 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased PHYS 0B - HW #7 Sping 2004, Solutions by David Pace Any efeenced euations ae fom Giffiths Poblem statements ae paaphased. Poblem 0.3 fom Giffiths A point chage,, moves in a loop of adius a. At time t 0

More information

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23.

(r) = 1. Example: Electric Potential Energy. Summary. Potential due to a Group of Point Charges 9/10/12 1 R V(r) + + V(r) kq. Chapter 23. Eample: Electic Potential Enegy What is the change in electical potential enegy of a eleased electon in the atmosphee when the electostatic foce fom the nea Eath s electic field (diected downwad) causes

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information