LHC Studies Working Group Notes from the meeting held on 13th September 2011

Size: px
Start display at page:

Download "LHC Studies Working Group Notes from the meeting held on 13th September 2011"

Transcription

1 LHC Studies Working Group Notes from the meeting held on 13th September 2011 The meeting was dedicated to the results of LHC MD#3, which took place from August 24th to 29th. The slides can be found at the following link: m β* (J. Wenninger) The commissioning of 1m β* was summarized. During MD time, the 1-m optics was tested with tight collimator settings and a half crossing angle of 100µrad. The β-beating at 1m was within 10%, the β* was measured with the K-modulation and was found to be consistent with 1m (within errors), so that no corrections had to be made. The first time two 36-bunch trains colliding in all IPs were squeezed to 1m, some of the bunches lost up to 40-50% of the intensity; observations of the bunch-by-bunch losses pointed to long-range (LR) BB effects (loss shape, for bunches colliding in IP1 and 5 only). In fact, the beam-beam (BB) separation was below 6σ at the triplets. It was noted that with the tight collimator settings, about 0.5% of the beam was scraped away during the ramp. Given that the physical aperture around the triplets in the IPs was found to be larger than initially assumed during another MD, it was decided at the LMC to run with the same collimator settings as before the TS (TCTs 11.8σ in IR1, 5, 8) and to keep the crossing angle of 120µrad, provided the additional aperture would be confirmed by further measurements and analysis (in fact, ~2σ additional margin is available). The two 36-bunch trains were squeezed and no loss problems were observed anymore (no changes of octupoles or ADT gains with respect to 1.5m). The 1m β* is now operational but the exercise highlighted some important issues: the losses during the ramp, the orbit stability in the squeeze that must be improved to run comfortably with tight collimator settings (loss spikes observed consistent with orbit drifts), the beam stability that needs to be proven ok with tight settings and larger LR BB separation. These issues should be studied in 2011 if the tighter collimator settings are to be used in 2012 to lower the β* further. L. Evans asked whether the coupling knob between 1.5m and 1m needed changes, J. Wenninger and R. Tomas answered no, meaning that either the ITs are very well aligned, or the local corrections are very good. 2. Tight collimator settings with β*=1m (R. Bruce) The tight collimator settings were to be used with β* 1m prior to the finding of the extra available aperture at the triplets. The settings are introduced in the ramp function, with TCPs closing to 4σ, TCS s to 6σ. Two nominal bunches were ramped and squeezed to β* of 1m (half crossing angle of 100μrad) and the TCTs aligned. Then the separation bumps were collapsed, collisions found and the TCTs realigned and then retracted to 9.3σ. About 10 minutes per collimator were needed for the alignment, with b2 slower than b1 due to high noise levels. It is not well understood why the TCTH.4R5.B2 center offset was found shifted by 860μm (corresponding to less than 1σ). Loss maps were performed and the cleaning efficiency from the previous MD reproduced (TCTs retracted by 2 sigma; loss maps still fine; at least 2 sigma margin). The loss maps are ok for operation, although a degradation of the loss pattern over time is observed and more visible due to tighter margins. The leakage to the cold magnets in IR7 is only slightly

2 worse than in the previous MD and could probably be improved by a new collimation setup in IR7. The results confirm the assumptions used in the calculation of the intensity reach, where tight collimator settings are needed. To be noted is that the leakage between TCT and triplet is sufficiently small and that the tight settings with possibly smaller β* could be useful next year. L. Evans commented that in case of heating problems the collimators should be opened as much as possible (collimator heating goes with inverse cube of the aperture), compatibly with good protection and low backgrounds at the experiments. S. Fartoukh asked whether the tight settings are needed for the IR3/7 dispersion suppressors cleaning efficiency, R. Bruce answered that with relaxed settings we are not limited at 3.5 TeV, D. Wollmann added that the intensity limit from the review was reached for tight settings. 3. Long bunches and lifetimes (J. F. Esteban Mueller) Longer bunches help reducing heating (at MKIs, beam screens and collimators), cause less e-cloud effect. Additionally, for the same total voltage the emittance is larger, and this is beneficial for stability and gives lower IBS growth rate. Longer bunches though give potentially a degraded beam lifetime (more particle losses). The goal of the MD was to relate single beam lifetime and bunch length. 8 nominal bunches per ring were ramped with blow-up target at 1ns (to be noted, the large spread in intensity), and then blown-up at the flat top with phase noise that was modulated in amplitude along the ring, so to achieve a spread in bunch length. For b1 the bunch lengths were between 1.15 and 1.50ns and for b2 between 1.25 and 1.65ns. It was observed, as expected, that longer bunch lengths correspond to higher losses (factor 2 between 1.2ns and 1.4ns, from 0.5%/h to 1%/h). The voltage was reduced at the end of the study to further increase the bunch length. As a complement to the study, it is suggested to try and change the operational setting from 1.25ns to 1.3ns and observe the lifetime during a few physics fills. P. Baudrenghien added that the operational blow up during the ramp is tailored to excite the core of the bunch only, while during the MD broadband noise was applied and this is likely to have enhanced the tail population. F. Zimmermann suggested redoing the study with the same spectrum as operationally used during the ramp. R. Bruce suggested comparing the measured loss rates with the predictions from different codes. 4. Beam Instrumentation (F. Roncarolo) It was noted how the BI MD was less efficient than the previous ones, resulting in part of the program not being carried out. The B1 direct dump Beam Loss Monitors were calibrated: the signal was normalized to the intensity to get a calibration factor, a 10-30% difference with respect to the b2 calibration was found and is due to the slightly different detector positions. Small residual variations are due to space charge effects in the ionization chambers. The fbct with new logic in the acquisition system was calibrated against the DC-BCT by means of scraping high intensity bunches. A very good agreement was found. Concerning the Beam Position Monitor System, the new IIR filter was tested (it allows much longer filter length, corresponding to lower rms noise on the orbit but slower convergence) and the response studied by changing the orbit by an RF trim. An automatic best IIR filter selection is under discussion (dependent on the filling pattern).

3 Also, the synchronous and asynchronous orbit modes were compared (the asynchronous mode is auto-triggered, while the synchronous mode allows the gating on a few selected bunches, which could be used for the strip-line detectors to avoid directivity problems); the two modes showed similar results in term of absolute and rms orbit. J. Wenninger added it was recently proven that the bunch-by-bunch orbit is not precise enough to measure differences due to BB effects. S. Fartoukh and/or F. Zimmermann noted that the synchronous measurement is noisier than the asynchronous, F. Roncarolo replied that anyway the rms noise is for both well in specification. Little time was spent on the Beam Gas Ionization, where the new control software for camera gain and gate was tested and a saturation level was found (useful towards the optimization of the working point). Also the Synchrotron Light Telescope suffered from lack of time and only one out of four orbit bumps was performed to study the magnification and the focusing while moving the CCD camera. Measurements were performed for the Wire Scanners during the scraping to test an algorithm to automatically subtract the 200Hz noise (background acquired for a slot in the abort gap, to be used until a solution is found). The Matching Monitor had been installed for b1 shortly before MD#3, Unfortunately the alignment was not well optimized and nothing could be done during the MD; the alignment was then optimized during the TS and the matching monitor is now ready for tests with (Inj&Dump required). J. Wenninger noted that b2 would have been more interesting; F. Roncarolo explained that b1 was easier to install. 5. Long-range beam-beam (W. Herr) The head-on (HO) MD was postponed to allow extra time for the 90m optics, it was agreed that it will be scheduled during the month of October in physics time. The LR MD was carried out, though only one ramp was performed due to lack of time. The crossing angle in IP1/5 was reduced in simultaneous steps and followed by the corresponding TCTs. The filling scheme was designed to have collisions in all 4 IPs, giving a different number of HO collisions for the different 36-bunch trains. Losses were observed mostly for bunches colliding in IP1/5. IP2 was re-separated at the end of the test, giving one less HO for some bunches: these bunches showed fewer losses, even if still dominated by the LR in IP1 and 5. A parasitic observation was done during the 1m β* setting up: a beam-beam separation of less than 6σ (for 2.5µm emittance) resulted in losses only for bunches colliding in IP1 and 5 (separation bumps not collapsed). F. Zimmermann pointed out that the relative losses of b1 and b2 were different in the two experiments. All these observations proved that losses are dominated by LR effects in IP1/5. They show a strong dependence on the separation and the number of encounters; an additional head-on encounter increases the losses slightly according to the first experiment. A bunch spacing of 25ns will make LR effects more severe, and a few trains should be collided to test the minimum separation required (trains of at least 48 bunches, scrubbing required). It was pointed out that no time was available to test the dependence on the tune working point. R. Assmann commented that a BB study with 25ns beams will make an important contribution to the decision on how to run in IR1 and IR5 aperture at 3.5 TeV (M. Giovannozzi)

4 These were the first aperture measurements at 3.5TeV and particular care was taken to minimize the losses (MPP approved): only one pilot bunch was used, with blown up transverse emittance, and the local orbit bumps were closely followed by TCT movements to measure the retraction between TCT and triplet aperture. The procedure was the following: TCT opened by 0.5σ, bumps increased by 0.25σ, BLM spikes at TCT vs at MQX/Q2 checked: if the losses were higher at the TCT, then could open more, until the losses are at the triplet. The IR1/5 H/V measurements were completed in ~4 hours. The measured aperture, until the losses were seen at the triplets, is: for IR1H 19.8σ, for IR1V 18.3σ, for IR5H 19.8σ, for IR5V >20.3σ (limited by the strength of the corrector). The findings of this MD were confirmed with a second session of measurements at 1m β* with 120µrad half crossing angle and relaxed collimator settings, and then quickly put to use for physics. An analysis is being prepared to compare these findings to the aperture measurements performed in February 2011 at injection energy (used reference orbit with additional crossing angles, measured absolute aperture by emittance blow-up and local bumps at the triplets). Preliminary results show good agreement between the two measurements (see example for IP5H in the slides, note the 2mm difference between the aperture calculated from the theoretical model and the one derived from the BPM interpolation). An error analysis is being prepared. R. Assmann pointed out that also the other side of the aperture should be measured to exclude possible offsets and find the overall size of the hole, as the results are so far in surprisingly good agreement with the mechanical aperture. M. Giovannozzi agreed, requesting more MD time. Loss maps were performed with the remaining beam (120mrad half crossing, relaxed collimator settings, β*=1m), confirming that the MQX were not exposed to beam halo (some leakage from TCT to MQX for B2 IR1L was noted). Parasitically tune and coupling were measured during the scans and might provide information on the triplet field quality. 7. Blow up with ADT (W. Hoefle) The MD was dedicated to the setup of controlled blow up with the transverse damper (b2 only). Gated noise is used (from white noise generated on the FPGA running at 40 MS/s), similar to what was prepared for abort gap and injection cleaning. Due to firmware issues this was deployed on a test crate in SR4 with gating connected to b2 H/V dampers. The noise is wideband, but can be filtered by IIR low-pass filters to have more power available per betatron band. The noise was typically triggered for a 1s duration and then repeated a number of times to achieve the desired blow up/losses. The noise generator is a 43-bit long linear feedback shift register (repetition period: 61 hours) and was implemented on the FPGA by D. Valuch. If faster losses are needed in the future, a band pass filter can be implemented to limit to a particular betatron line. In the first part of the MD, a pilot was scraped away (with two pilots in the machine) as a proof of principle that the blow up is selective. The emittances were measured for both pilots: while the first pilot kept an emittance of ~2µm, the second one was blown up to ~18µm (to be compared to collimator settings). Then, two 6-b batches spaced of 925ns were used to prove that it is possible to touch only one batch (proven by fbct and BSRT measurements). The 925ns spacing proved that the MKI gap is sufficient for the ADT risetime. S. Fartoukh asked if the blow up can be selective to single bunches, W. Hoefle answered that a spacing of 925ns is needed. Finally, loss maps at 450GeV were

5 performed with one nominal bunch, comparing the 3rd order resonance method and the excitation with the damper (with ADT feedback loop off). The loss maps give very similar results. Small differences are to be commented on by the collimator team. Note that there are differences if the noise is applied with the ADT feedback loop on or off (off: timescale similar to 3rd order resonance; if the loop is on losses are spread out on longer timescale for the same kick strength). This method opens new possibilities for loss maps at 3.5TeV: EoF physics beam can be used and the blow up applied to selected bunches (starting in abort gap and then moved into the beam). Given that the ADT feedback loop should be off for the loss maps, D. Valuch added that switching off the ADT feedback loop for selected bunches should still be tried. R. Assmann noted that the fact that the loss maps by different methods show good agreement proves that the two methods to produce them are both ok. R. Assmann also commented that this new method opens also possibilities for future MDs, e.g. on quench limits. P. Baudrenghien asked if blow up by anti-damping was tried out, D. Valuch answered that the losses would then be very fast (few turns), unless the gain was heavily lowered. D. Valuch also added that there is only 1MB of free memory left in the ADT system and a major upgrade of the system is planned to overcome that (switch to Linux, new drivers, new FESA classes), until when additional features have to wait ns injection (B. Goddard) Also this MD suffered from little availability, resulting in only 2.5h of beam time. The beam consisted of about 1e11ppb, with µm and strong SPS scraping (10-15%). No Transfer Line (TL) steering or collimator adjustment was needed between 50ns and 25ns cycle (some issues with settings copy/functions though). Trajectories were good for both transfer lines (300µm rms for all planes); losses also look very good, in fact better than for 50ns despite the larger emittances, maybe due to the large scraping, to be studied further. The injection of 12 25ns spaced bunches as intermediate intensity for TL steering worked well. Injection of 24-b trains gave no issues, a minor vacuum activity was observed. B2 48-b injections were tried twice, first with ADT on then with ADT off. In both cases the beam got dumped right away (after 1000 and 500 turns respectively) due to IR6 BPMs and IR7 BLMs. The aim of the next MD is to reach at least 72-b injected and stored, possibly injecting 36-b trains (before 48-b) and using higher chromaticity. W. Hoefle added that 4 hours/beam are required to setup the ADT for 25ns beams and are a prerequisite before the continuation of these studies ns instabilities (H. Bartosik) An analysis of ADT pickup data for the 2 48-b injections during the LHC 25ns MD was presented. The data consists of the ADT pickup bunch-by-bunch readings for the last 73 turns before the dump as recorded in the post mortem buffer. The first injection was with ADT dampers on, the beam was lost after ~1000 turns due to IR6 BPMs. A growing motion along the train is observed mostly in V, but a coupled bunch motion is not evident (as a very high frequency motion is observed). A small oscillation amplitude for the first 20 bunches is followed by increasing amplitudes for the last 28 bunches (especially in V). From a single bunch FFT analysis it is visible that the V tune appears in the H plane for the last bunches; from an FFT along the bunch train for each turn, it is shown that the low frequency part of the spectrum is suppressed by the ADT dampers.

6 The second injection was without the ADT, the beam was lost after ~500 turns (due to fast growing losses in IP7). A small oscillation amplitude is seen for the first 20 bunches, while the amplitude is significantly larger for the last 28 bunches. The single bunch FFTs shows small sidebands in H (maybe linked to large losses), while the FFT along the bunch train for each turn shows that the low frequency part of the spectrum is dominant (indication for coupled bunch motion). It can be concluded that an unstable motion of the second half of 48 bunches was observed on the ADT pickups, the low frequency part can be handled by the dampers, but the high frequency oscillation remains (mainly V). Without the dampers, a coupled bunch motion is observed in both planes. To be noted that the damper delay was not yet setup for the 25ns beam at the time of the MD. G. Arduini underlined that the headtail monitor should be available for the next MD to conclude whether it is single bunch phenomena or not (Action: BI group). E. Metral commented that the observations are consistent with F. Zimmermann s predictions of saturation of electron cloud and fast instabilities after about 20 bunches in the train. F. Zimmermann was puzzled by the complete absence of the high frequency component of the oscillation observed with the damper off, G. Arduini commented that with damper off the instability could have been due to resistive wall in addition to e-cloud. 10. RF observations with 25ns beams (T. Mastoridis) The RF team conducted parasitic measurements during the 25ns MDs. It is noted that no issues were observed on cavity beam loading or klystron power. There was no evidence of growing longitudinal dipole or quadrupole oscillations after the injections of the 25ns batches (while they have been observed with a 50ns spacing). The difference between the phase of the cavity sum and the individual bunch phase was monitored, and a clear correlation was observed between the batch spacing and the mean phase offset per batch, most probably due to electron cloud related energy losses. For bunchby-bunch measurements, the beam phase loop resolution needs to be improved. The injection phase error for the first 24-b train showed a clear correlation with the expected response of the SPS cavities. G. Papotti commented that some additional information on the relative bunch-by-bunch positions can probably be extracted by the LHC BQM. B. Goddard asked about a calibration of the phase error in terms of electron density. E. Shaposhnikova answered that a paper was published at IPAC from GSI that quoted 10-4 deg/m. P. Baudrenghien added that the mean phase over all bunches is logged, while single bunch measurements still need development. G. Arduini underlined that it would still be interesting to compare 75ns, 50ns and 25ns data at least in relative terms, e.g. beginning to end of the scrubbing runs, to compare the results to other measurements (e.g. heat load on beam screen). E. Shaposhnikova had estimated about 1 deg from heat load per 1 deg of phase, a consistent result had been acquired in the beginning of the scrubbing run (average phase data had been presented for b1; for b2 drifts had been observed that were not yet understood). E. Shaposhnikova recalled that the stable phase is a very sophisticated measurement and not fully operational yet. The next meeting is devoted to the preparation of MD#4, meeting to be held in on October 4th at 15:30. Giulia Papotti

7 List of participants ARDUINI Gianluigi BE-ABP-LIS ARGYROPOULOS Theodoros BE-RF-BR ASSMANN Ralph Wolfgang BE-ABP-LCU BAER Tobias BE-OP-LHC BARTMANN Wolfgang TE-ABT-BTP BARTOSIK Hannes BE-ABP-LIS BAUDRENGHIEN Philippe BE-RF-FB BHAT Chandrashekhara BE-ABP BRACCO Chiara TE-ABT-BTP BRUCE Roderik BE-ABP-LCU CALAGA Rama BE-ABP-LCU DEHNING Bernd BE-BI-BL DROSDAL Lene Norderhaug BE-OP-LHC ESTEBAN MULLER Juan BE-RF-BR EVANS Lyn PH-UCM FARTOUKH Stephane BE-ABP-LCU FERRO-LUZZI Massimiliano PH-LBD GIOVANNOZZI Massimo BE-ABP-LCU GODDARD Brennan TE-ABT-BTP HERR Werner BE-ABP-CC3 HOFLE Wolfgang BE-RF-FB HOLZER Bernhard BE-ABP-LCU JOWETT John BE-ABP-LCU KAIN Verena BE-OP-LHC MASTORIDIS Themistoklis BE-RF METRAL Elias BE-ABP-ICE MOLENDIJK John BE-RF-CS MUELLER Gabriel Johannes BE-OP-LHC NEBOT DEL BUSTO Eduardo BE-BI-BL PAPOTTI Giulia BE-OP-LHC RONCAROLO Federico BE-BI-PM ROSSI Adriana BE-ABP-LCU SALVANT Benoit BE-ABP-ICE SCHMIDT Frank BE-ABP-ICE SHAPOSHNIKOVA Elena BE-RF-BR TIMKO Helga BE-RF-BR TOMAS GARCIA Rogelio BE-ABP-CC3 VALUCH Daniel BE-RF-FB WENNINGER Jorg BE-OP-LHC WOLLMANN Daniel BE-ABP-LCU ZERLAUTH Markus TE-MPE-MI ZIMMERMANN Frank BE-ABP-LCU

LHC Studies Working Group Notes from the meeting held on 8 December 2011

LHC Studies Working Group Notes from the meeting held on 8 December 2011 LHC Studies Working Group Notes from the meeting held on 8 December 2011 The meeting was dedicated to the results of LHC MD#4 and floating MDs, and a first outlook to the requests for 2012. The agenda

More information

Emittance blow-up and loss maps in LHC using the transverse damper as exciter

Emittance blow-up and loss maps in LHC using the transverse damper as exciter CERN-ATS-Note-2012-034 MD (LHC) September 5, 2014 Wolfgang.Hofle@cern.ch Emittance blow-up and loss maps in LHC using the transverse damper as exciter W. Hofle, D. Valuch, R. Assmann, S. Redaelli, R. Schmidt,

More information

Main aim: Preparation for high bunch intensity operation with β*=3.5 m and crossing angle (-100 µrad in IR1 and +100 µrad in IR5)

Main aim: Preparation for high bunch intensity operation with β*=3.5 m and crossing angle (-100 µrad in IR1 and +100 µrad in IR5) Week 24 Main aim: Preparation for high bunch intensity operation with β*=3.5 m and crossing angle (-100 µrad in IR1 and +100 µrad in IR5) Commission systems required for guaranteeing beam stability as

More information

TRANSVERSE DAMPER. W. Höfle, CERN, Geneva, Switzerland. Abstract INTRODUCTION AND HIGHLIGHTS IN Controlled Transverse Blow-up

TRANSVERSE DAMPER. W. Höfle, CERN, Geneva, Switzerland. Abstract INTRODUCTION AND HIGHLIGHTS IN Controlled Transverse Blow-up TRANSVERSE DAMPER W. Höfle, CERN, Geneva, Switzerland Abstract Plans for the operation of the transverse damper in 2012 at bunch spacings of 50 ns and 25 ns and at increased collision energy will be reviewed.

More information

Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group

Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group Gianluigi Arduini CERN - Beams Dept. - Accelerator & Beam Physics Group Acknowledgements: O. Brüning, S. Fartoukh, M. Giovannozzi, G. Iadarola, M. Lamont, E. Métral, N. Mounet, G. Papotti, T. Pieloni,

More information

HL-LHC OPERATIONAL SCENARIOS

HL-LHC OPERATIONAL SCENARIOS CERN-ACC-NOTE-2015-0009 2015-05-19 Elias.Metral@cern.ch HL-LHC OPERATIONAL SCENARIOS G. Arduini, N. Biancacci, O. Brüning, R. De Maria, M. Giovannozzi, W. Höfle, K. Li, E. Métral, J.E. Muller, Y. Papaphilippou,

More information

LHC Run 2: Results and Challenges. Roderik Bruce on behalf of the CERN teams

LHC Run 2: Results and Challenges. Roderik Bruce on behalf of the CERN teams LHC Run 2: Results and Challenges Roderik Bruce on behalf of the CERN teams Acknowledgements A big thanks to all colleagues involved across various teams! Special thanks for material and discussions G.

More information

LHC commissioning. 22nd June Mike Lamont LHC commissioning - CMS 1

LHC commissioning. 22nd June Mike Lamont LHC commissioning - CMS 1 LHC commissioning Mike Lamont AB-OP nd June 005.06.05 LHC commissioning - CMS 1 Detailed planning for 7-87 8 and 8-18 005 006 Short Circuit Tests CNGS/TI8/IT1 HWC LSS.L8.06.05 LHC commissioning - CMS Sector

More information

Electron cloud observation in the LHC

Electron cloud observation in the LHC Electron cloud observation in the LHC Giovanni Rumolo IPAC 11, San Sebastian (Spain), 8 September 2011 On behalf of the large team of experimenters and simulators G. Arduini, V. Baglin, H. Bartosik, N.

More information

Beam losses versus BLM locations at the LHC

Beam losses versus BLM locations at the LHC Geneva, 12 April 25 LHC Machine Protection Review Beam losses versus BLM locations at the LHC R. Assmann, S. Redaelli, G. Robert-Demolaize AB - ABP Acknowledgements: B. Dehning Motivation - Are the proposed

More information

The MD was done at 450GeV using beam 2 only. An MD focussing on injection of bunches with nominal emittance was done in parallel on beam 1.

The MD was done at 450GeV using beam 2 only. An MD focussing on injection of bunches with nominal emittance was done in parallel on beam 1. CERN-ATS-Note-2011-065 MD 2011-08-08 Tobias.Baer@cern.ch MKI UFOs at Injection Tobias BAER, Mike BARNES, Wolfgang BARTMANN, Chiara BRACCO, Etienne CARLIER, Christophe CHANAVAT, Lene Norderhaug DROSDAL,

More information

OTHER MEANS TO INCREASE THE SPS 25 ns PERFORMANCE TRANSVERSE PLANE

OTHER MEANS TO INCREASE THE SPS 25 ns PERFORMANCE TRANSVERSE PLANE OTHER MEANS TO INCREASE THE SPS 25 ns PERFORMANCE TRANSVERSE PLANE H. Bartosik, G. Arduini, A. Blas, C. Bracco, T. Bohl, K. Cornelis, H. Damerau, S. Gilardoni, S. Hancock, B. Goddard, W. Höfle, G. Iadarola,

More information

Beam-Beam DA Simulations for HL-LHC

Beam-Beam DA Simulations for HL-LHC Beam-Beam DA Simulations for HL-LHC N. Karastathis G. Arduini, X. Buffat, S. Fartoukh, R. de Maria, Y. Papaphilippou on behalf of the HiLumi LHC WP2 Outline: Brief recap of baseline scenario at collisions

More information

BETATRON SQUEEZE: STATUS, STRATEGY AND ISSUES

BETATRON SQUEEZE: STATUS, STRATEGY AND ISSUES BETATRON SQUEEZE: STATUS, STRATEGY AND ISSUES M. Lamont, G. Müller, S. Redaelli, M. Strzelczyk CERN, Geneva, Switzerland Abstract The betatron squeeze will be one of the most critical manipulation of the

More information

BEAM TESTS OF THE LHC TRANSVERSE FEEDBACK SYSTEM

BEAM TESTS OF THE LHC TRANSVERSE FEEDBACK SYSTEM JINR BEAM TESTS OF THE LHC TRANSVERSE FEEDBACK SYSTEM W.Höfle, G.Kotzian, E.Montesinos, M.Schokker, D.Valuch (CERN) V.M. Zhabitsky (JINR) XXII Russian Particle Accelerator Conference 27.9-1.1. 21, Protvino

More information

LHC Commissioning in 2008

LHC Commissioning in 2008 LHC Commissioning in 2008 Mike Lamont AB/OP Schedule slides c/o Lyn Evans (MAC 14/6/07) Status: Installation & equipment commissioning LHC commissioning - CMS June 07 2 Procurement problems of remaining

More information

LHC ORBIT SYSTEM, PERFORMANCE AND STABILITY

LHC ORBIT SYSTEM, PERFORMANCE AND STABILITY LHC ORBIT SYSTEM, PERFORMANCE AND STABILITY Kajetan Fuchsberger Abstract During the LHC run period in 2009 the Orbit system proved to be very reliable. In the following the analysis results of the first

More information

Turn-around improvements

Turn-around improvements LHC Performance Workshop - Chamonix 2012 Hotel Les Aiglons, Chamonix, France February 6 th -10 th, 2012 Turn-around improvements S. Redaelli, BE-ABP (formerly BE-OP) and W. Venturini Delsolaro, BE-RF (formerly

More information

Commissioning of the LHC collimation system S. Redaelli, R. Assmann, C. Bracco, M. Jonker and G. Robert-Demolaize CERN, AB department

Commissioning of the LHC collimation system S. Redaelli, R. Assmann, C. Bracco, M. Jonker and G. Robert-Demolaize CERN, AB department 39 th ICFA Advance Beam dynamics Workshop High Intensity High Brightness Hadron Beams - HB 2006 Tsukuba, May 29 th - June 2 nd, 2006 Commissioning of the LHC collimation system S. Redaelli, R. Assmann,

More information

COLLECTIVE EFFECTS IN THE LHC AND ITS INJECTORS

COLLECTIVE EFFECTS IN THE LHC AND ITS INJECTORS COLLECTIVE EFFECTS IN THE LHC AND ITS INJECTORS E. Métral, G. Arduini, R. Assmann, H. Bartosik, P. Baudrenghien, T. Bohl, O. Bruning, X. Buffat, H. Damerau, S. Fartoukh, S. Gilardoni, B. Goddard, S. Hancock,

More information

MD Landau Damping: Beam Transfer Functions and diffusion mechanisms

MD Landau Damping: Beam Transfer Functions and diffusion mechanisms CERN-ACC-NOTE-2017-0026 25-04-2017 claudia.tambasco@cern.ch MD 1407 - Landau Damping: Beam Transfer Functions and diffusion mechanisms C. Tambasco, J. Barranco *, A. Boccardi, X. Buffat, M. Crouch, M.

More information

A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme

A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme LHC Project Note 03 May 007 guido.sterbini@cern.ch A Luminosity Leveling Method for LHC Luminosity Upgrade using an Early Separation Scheme G. Sterbini and J.-P. Koutchouk, CERN Keywords: LHC Luminosity

More information

Status of linear collider designs:

Status of linear collider designs: Status of linear collider designs: Main linacs Design overview, principal open issues G. Dugan March 11, 2002 Linear colliders: main linacs The main linac is the heart of the linear collider TESLA, NLC/JLC,

More information

Beam. RF antenna. RF cable

Beam. RF antenna. RF cable Status of LEP2 J. Wenninger, SL Operation for the SL division LEPC September 1998 Outline Optics and RF for 1998 Beam current limitations Injection and ramp Performance at high energy Conclusions LEPC/15-09-98

More information

Simulations and measurements of collimation cleaning with 100MJ beams in the LHC

Simulations and measurements of collimation cleaning with 100MJ beams in the LHC The 4th International Particle Accelerator Conference, IPAC13 May 13 th -17 th, 2013 Shanghai, China Simulations and measurements of collimation cleaning with 100MJ beams in the LHC R. Bruce, R.W. Assmann,

More information

Plans for 2016 and Run 2

Plans for 2016 and Run 2 Plans for 2016 and Run 2 Mike Lamont An attempt at synthesis Acknowledgements all round After LS1 It s going to be like after a war Serge Claudet Evian 2012 Where are we? 1/2 6.5 TeV, 2*80 cm, 2*levelled

More information

Status of the LHC Beam Cleaning Study Group

Status of the LHC Beam Cleaning Study Group Status of the LHC Beam Cleaning Study Group R. Assmann, SL BI Review 19.11.2001 BI Review 19.11.01, R. Assmann 1 LHC Beam Cleaning Study Group: Mandate: Study beam dynamics and operational issues for the

More information

Beam Optics & Dynamics Studies for LHC

Beam Optics & Dynamics Studies for LHC Beam Optics & Dynamics Studies for LHC Alexander Koschik ETH Zurich, Integrated Systems Laboratory (Swiss Federal Institute of Technology Zurich) SLAC, Aug. 2010 0 Background Information Master s degree

More information

Sunday morning: Beam Dynamics Issues. Session highlights and outstanding questions. M. Pivi and D. Rubin ECLOUD10 October 8-12 Cornell University

Sunday morning: Beam Dynamics Issues. Session highlights and outstanding questions. M. Pivi and D. Rubin ECLOUD10 October 8-12 Cornell University Sunday morning: Beam Dynamics Issues Session highlights and outstanding questions M. Pivi and D. Rubin ECLOUD10 October 8-12 Cornell University Summary -Electron cloud induced instabilities observed for

More information

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework

The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework The HiLumi LHC Design Study is included in the High Luminosity LHC project and is partly funded by the European Commission within the Framework Programme 7 CapaciBes Specific Programme, Grant Agreement

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

Tobias Baer February, 9 th 2012

Tobias Baer February, 9 th 2012 UFOs Will they take over? Chamonix Workshop 2012 Tobias Baer February, 9 th 2012 Acknowledgements: W. Bartmann, M. Barnes, C. Bracco, F. Cerutti, B. Dehning, L. Ducimetière, A. Ferrari, N. Fuster Martinez,

More information

Status and Outlook of the LHC

Status and Outlook of the LHC Status and Outlook of the LHC Enrico Bravin - CERN BE-BI J-PARC visit seminar 6 July 2017 Outlook Overview of LHC Objectives for run2 Parameters for 2016/2017 and differences w.r.t. 2015 Summary of commissioning

More information

DEBRIEFING AND FOLLOW-UP OF THE LPL REVIEW

DEBRIEFING AND FOLLOW-UP OF THE LPL REVIEW DEBRIEFING AND FOLLOW-UP OF THE LPL REVIEW => LPL (LHC Performance Limitations during run I) review on 25-26/09/13: https://indico.cern.ch/conferencedisplay.py? confid=267783 Debriefing More detail of

More information

LHC operation in 2015 and prospects for the future

LHC operation in 2015 and prospects for the future LHC operation in 2015 and prospects for the future Moriond Workshop La Thuile March 2016 Jörg Wenninger CERN Beams Department Operation group / LHC For the LHC commissioning and operation teams 1 Moriond

More information

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Linac Booster o 4.5-4.8e12 ppp at 0.5 Hz o Space charge (30% loss in the first 5 ms) o Main magnet field quality

More information

LHC APERTURE AND COMMISSIONING OF THE COLLIMATION SYSTEM

LHC APERTURE AND COMMISSIONING OF THE COLLIMATION SYSTEM LHC APERTURE AND COMMISSIONING OF THE COLLIMATION SYSTEM S. Redaelli, R. Aßmann, G. Robert-Demolaize, CERN, Geneva, Switzerland Abstract The design LHC aperture and its dependence on various optics imperfections

More information

LHC Collimation and Loss Locations

LHC Collimation and Loss Locations BLM Audit p. 1/22 LHC Collimation and Loss Locations BLM Audit Th. Weiler, R. Assmann, C. Bracco, V. Previtali, S Redaelli Accelerator and Beam Department, CERN BLM Audit p. 2/22 Outline Introduction /

More information

The Luminosity Upgrade at RHIC. G. Robert-Demolaize, Brookhaven National Laboratory

The Luminosity Upgrade at RHIC. G. Robert-Demolaize, Brookhaven National Laboratory The Luminosity Upgrade at RHIC G. Robert-Demolaize, Brookhaven National Laboratory RHIC accelerator complex: IPAC'15 - May 3-8, 2015 - Richmond, VA, USA 2 The Relativistic Heavy Ion Collider (RHIC) aims

More information

OPERATIONAL CHALLENGES (FEED FORWARD FROM EVIAN LHC OPERATION WORKSHOP)

OPERATIONAL CHALLENGES (FEED FORWARD FROM EVIAN LHC OPERATION WORKSHOP) OPERATIONAL CHALLENGES (FEED FORWARD FROM EVIAN LHC OPERATION WORKSHOP) M. Lamont, CERN, Geneva, Switzerland Abstract 25th Sept. 29th Sept. 4th Oct. 8th Oct. 14th Oct. 16th Oct. 25th Oct. 4th Nov. 9th

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

(Lead) Ions in the LHC

(Lead) Ions in the LHC (Lead) Ions in the LHC Large Hadrons in the Large Hadron Collider John Jowett BE-ABP J.M. Jowett, LHC Performance Workshop, Chamonix, 6/2/2009 1 Plan of talk n Simplified survey of parameter space Energy,

More information

RF System Calibration Using Beam Orbits at LEP

RF System Calibration Using Beam Orbits at LEP EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN SL DIVISION CERN-SL-22-28 OP LEP Energy Working Group 2/1 RF System Calibration Using Beam Orbits at LEP J. Wenninger Abstract The target for beam energy

More information

ILC Beam Dynamics Studies Using PLACET

ILC Beam Dynamics Studies Using PLACET ILC Beam Dynamics Studies Using PLACET Andrea Latina (CERN) July 11, 2007 John Adams Institute for Accelerator Science - Oxford (UK) Introduction Simulations Results Conclusions and Outlook PLACET Physical

More information

HL-LHC: parameter space, constraints & possible options

HL-LHC: parameter space, constraints & possible options HL-LHC: parameter space, constraints & possible options Many thanks to R. Assmann, C. Bhat, O. Brüning, R. Calaga, R. De Maria, S. Fartoukh, J.-P. Koutchouk, S. Myers, L. Rossi, W. Scandale, E. Shaposhnikova,

More information

Results of UFO dynamics studies with beam in the LHC

Results of UFO dynamics studies with beam in the LHC Journal of Physics: Conference Series PAPER OPEN ACCESS Results of UFO dynamics studies with beam in the LHC To cite this article: B Lindstrom et al 2018 J. Phys.: Conf. Ser. 1067 022001 View the article

More information

Simulations of HL halo loss and IR losses. R. Bruce, F. Cerutti, R. de Maria, A. Marsili, S. Redaelli

Simulations of HL halo loss and IR losses. R. Bruce, F. Cerutti, R. de Maria, A. Marsili, S. Redaelli Simulations of HL halo loss and IR losses R. Bruce, F. Cerutti, R. de Maria, A. Marsili, S. Redaelli 1 Outline Introduction: SixTrack Halo: ATS results Comparison with 7TeV nominal Debris tracking Halo

More information

FY04 Luminosity Plan. SAG Meeting September 22, 2003 Dave McGinnis

FY04 Luminosity Plan. SAG Meeting September 22, 2003 Dave McGinnis FY04 Luminosity Plan SAG Meeting September 22, 2003 Dave McGinnis FY03 Performance Accelerator Issues TEV Pbar Main Injector Reliability Operations Study Strategy Shot Strategy Outline FY04 Luminosity

More information

LHC Luminosity and Energy Upgrade

LHC Luminosity and Energy Upgrade LHC Luminosity and Energy Upgrade Walter Scandale CERN Accelerator Technology department EPAC 06 27 June 2006 We acknowledge the support of the European Community-Research Infrastructure Activity under

More information

Elias Métral, LHC Collimation Working Group Meeting, 15/03/ /31

Elias Métral, LHC Collimation Working Group Meeting, 15/03/ /31 Answers to Jeff and Liling concerning the simulations of trapped modes of the SLAC Phase 2 collimator, and news on impedance for the Phase 1 and 2 at CERN Reminder on the trapped modes simulations performed

More information

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals

2008 JINST 3 S Main machine layout and performance. Chapter Performance goals Chapter 2 Main machine layout and performance 2.1 Performance goals The aim of the LHC is to reveal the physics beyond the Standard Model with centre of mass collision energies of up to 14 TeV. The number

More information

Task 2.4 on LHC Collective Effects Studies

Task 2.4 on LHC Collective Effects Studies Task 2.4 on LHC Collective Effects Studies Requested info: Detailed workflow, including milestones, expected deliverables and delivery dates => See also https://espace.cern.ch/hilumi/wp2/task4/ SitePages/Home.aspx

More information

ACHIEVABLE SPACE-CHARGE TUNE SHIFT WITH LONG LIFETIME IN THE CERN PS & SPS

ACHIEVABLE SPACE-CHARGE TUNE SHIFT WITH LONG LIFETIME IN THE CERN PS & SPS Contributed talk (15 + 5 min, 30 slides) ACHIEVABLE SPACE-CHARGE TUNE SHIFT WITH LONG LIFETIME IN THE CERN PS & SPS Elias Métral Elias Métral, HB2008 workshop, Nashville, Tennessee, USA, August 25-29,

More information

Raising intensity of the LHC beam in the SPS - longitudinal plane

Raising intensity of the LHC beam in the SPS - longitudinal plane SL-Note-- MD Raising intensity of the LHC beam in the SPS - longitudinal plane Ph. Baudrenghien, T. Bohl, T. Linnecar, E. Shaposhnikova Abstract Different aspects of the LHC type beam capture and acceleration

More information

Open Issues from the SPS Long-Range Experiments

Open Issues from the SPS Long-Range Experiments Open Issues from the SPS Long-Range Experiments Frank Zimmermann US-LARP Beam-Beam Workshop SLAC, 2007 Gerard Burtin, Ulrich Dorda, Gijs de Rijk, Jean-Pierre Koutchouk, Yannis Papaphilippou, Tannaji Sen,

More information

Transverse beam stability and Landau damping in hadron colliders

Transverse beam stability and Landau damping in hadron colliders Work supported by the Swiss State Secretariat for Educa6on, Research and Innova6on SERI Transverse beam stability and Landau damping in hadron colliders C. Tambasco J. Barranco, X. Buffat, T. Pieloni Acknowledgements:

More information

Simulations of HL-LHC Crab Cavity Noise using HEADTAIL

Simulations of HL-LHC Crab Cavity Noise using HEADTAIL Simulations of HL-LHC Crab Cavity Noise using HEADTAIL A Senior Project presented to the Faculty of the Physics Department California Polytechnic State University, San Luis Obispo In Partial Fulfillment

More information

The Beam Instrumentation and Diagnostic Challenges for LHC Operation at High Energy

The Beam Instrumentation and Diagnostic Challenges for LHC Operation at High Energy IBIC14 Monterey, California, USA. The Beam Instrumentation and Diagnostic Challenges for LHC Operation at High Energy Rhodri Jones (CERN Beam Instrumentation Group) Outline LHC Performance during Run I

More information

Practical Lattice Design

Practical Lattice Design Practical Lattice Design Dario Pellegrini (CERN) dario.pellegrini@cern.ch USPAS January, 15-19, 2018 1/17 D. Pellegrini - Practical Lattice Design Lecture 5. Low Beta Insertions 2/17 D. Pellegrini - Practical

More information

Are we ready for the 2009 beam operation?

Are we ready for the 2009 beam operation? LHC Performance Workshop - Chamonix 2009 Centre de Congrès Le Majestic, Chamonix, France 2 nd -6 th February 2008 Are we ready for the 2009 beam operation? S. Redaelli, R. Alemany, R. Bailey, V. Kain,

More information

ULTIMATE LHC BEAM. G. Arduini, CERN, Geneva, Switzerland

ULTIMATE LHC BEAM. G. Arduini, CERN, Geneva, Switzerland Abstract The present status of the nominal LHC beam in the LHC injector complex and the limitations towards the achievement of the ultimate brightness are outlined. ULTIMATE LHC BEAM G. Arduini, CERN,

More information

Electron cloud effects for PS2, SPS(+) and LHC

Electron cloud effects for PS2, SPS(+) and LHC Electron cloud effects for PS2, SPS(+) and LHC G. Rumolo CERN, Geneva, Switzerland Abstract Electron cloud effects are expected to be enhanced and play a central role in limiting the performance of the

More information

LUMINOSITY LEVELLING TECHNIQUES FOR THE LHC

LUMINOSITY LEVELLING TECHNIQUES FOR THE LHC Published by CERN in the Proceedings of the ICFA Mini-Workshop on Beam Beam Effects in Hadron Colliders, CERN, Geneva, Switzerland, 18 22 March 2013, edited by W. Herr and G. Papotti, CERN 2014 004 (CERN,

More information

LHC status & 2009/2010 operations. Mike Lamont

LHC status & 2009/2010 operations. Mike Lamont LHC status & 2009/2010 operations Mike Lamont Contents 7-9-09 LHC status - CMS week 2 Consolidation brief recall Splices Operational energies Potential performance Present status Plans for 2009-2010 Consolidation

More information

Accelerator Physics. Accelerator Development

Accelerator Physics. Accelerator Development Accelerator Physics The Taiwan Light Source (TLS) is the first large accelerator project in Taiwan. The goal was to build a high performance accelerator which provides a powerful and versatile light source

More information

Energy Calibration of the LHC Beams at 4 TeV

Energy Calibration of the LHC Beams at 4 TeV EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN ACCELERATORS AND TECHNOLOGY SECTOR CERN-ATS-213-4 Energy Calibration of the LHC Beams at 4 TeV J. Wenninger Abstract The mixed proton and lead ion run in

More information

OPERATIONAL BEAMS FOR THE LHC

OPERATIONAL BEAMS FOR THE LHC OPERATIONAL BEAMS FOR THE LHC Y. Papaphilippou, H. Bartosik, G. Rumolo, D. Manglunki, CERN, Geneva, Switzerland Abstract The variety of beams, needed to set-up in the injectors as requested in the LHC,

More information

Beam Loss Monitors, Specification

Beam Loss Monitors, Specification H.Burkhardt, BI Review, Mon. 19/11/2001 Beam Loss Monitors, Specification BLM main scope and challenges types of BLM Collimation, Special, Arc Sensitivity and Time Resolution Summary largely based on work

More information

Aperture Measurements and Implications

Aperture Measurements and Implications Aperture Measurements and Implications H. Burkhardt, SL Division, CERN, Geneva, Switzerland Abstract Within short time, the 2/90 optics allowed to reach similar luminosity performance as the 90/60 optics,

More information

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Deliverable Report SIMULATION MODELS FOR ENERGY DEPOSITION

HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study. Deliverable Report SIMULATION MODELS FOR ENERGY DEPOSITION CERN-ACC-2013-011 HiLumi LHC FP7 High Luminosity Large Hadron Collider Design Study Deliverable Report SIMULATION MODELS FOR ENERGY Redaelli, Stefano (CERN) 20 November 2012 The HiLumi LHC Design Study

More information

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side

LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side LHC Upgrade Plan and Ideas - scenarios & constraints from the machine side Frank Zimmermann LHCb Upgrade Workshop Edinburgh, 11 January 2007 Frank Zimmermann, LHCb Upgrade Workshop time scale of LHC upgrade

More information

Turn-by-Turn Beam Position Measurements at ANKA with LIBERA ELECTRON

Turn-by-Turn Beam Position Measurements at ANKA with LIBERA ELECTRON Turn-by-Turn Beam Position Measurements at ANKA with LIBERA ELECTRON E.Huttel, I.Birkel, A.S.Müller, P.Wesolowski About ANKA Test by Frequency Generator Experiences in the Booster Experiences in the Storage

More information

CHALLENGES IN BEAM INSTRUMENTATION AND DIAGNOSTICS FOR LARGE RING COLLIDERS BASED ON THE LHC EXPERIENCE

CHALLENGES IN BEAM INSTRUMENTATION AND DIAGNOSTICS FOR LARGE RING COLLIDERS BASED ON THE LHC EXPERIENCE CHALLENGES IN BEAM INSTRUMENTATION AND DIAGNOSTICS FOR LARGE RING COLLIDERS BASED ON THE LHC EXPERIENCE R. Jones, M. Wendt #, J. Wenninger, CERN, Geneva, Switzerland Abstract An overview on some of the

More information

Luminosity Goals, Critical Parameters

Luminosity Goals, Critical Parameters CAS Zürich 22 nd February 2018 Luminosity Goals, Critical Parameters Bruno Muratori, STFC Daresbury Laboratory & Cockcroft Institute Werner Herr, CERN Goals At the end of this lecture you should be able

More information

HE-LHC Optics Development

HE-LHC Optics Development SLAC-PUB-17224 February 2018 HE-LHC Optics Development Yunhai Cai and Yuri Nosochkov* SLAC National Accelerator Laboratory, Menlo Park, CA, USA Mail to: yuri@slac.stanford.edu Massimo Giovannozzi, Thys

More information

Machine apertures. * Many thanks to the organizers for inviting me to give this lecture! R&D and LHC Collective Effects Section

Machine apertures. * Many thanks to the organizers for inviting me to give this lecture! R&D and LHC Collective Effects Section Machine apertures * Many thanks to the organizers for inviting me to give this lecture! Zakopane, 12.10.2006 Giovanni Rumolo, CERN 1/43 What is the machine aperture? (I) General introduction The aperture

More information

LHC Beam Operations: Past, Present and Future

LHC Beam Operations: Past, Present and Future LHC Beam Operations: Past, Present and Future Maria Kuhn CERN, Geneva, Switzerland Abstract A brief overview of LHC operations over the last 3 years is provided. Luminosity performance has been satisfactory

More information

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education Introduction Outline CESR Overview CESR Layout Injector Wigglers

More information

Status of Optics Design

Status of Optics Design 17th B2GM, February 5, 2014 Status of Optics Design Y. Ohnishi /KEK 17th B2GM KEK, February 5, 2014 Contents! Lattice parameters! Dynamic aperture under influence of beam-beam effect! Lattice preparation

More information

LHC RUN 2: RESULTS AND CHALLENGES

LHC RUN 2: RESULTS AND CHALLENGES LHC RUN 2: RESULTS AND CHALLENGES R. Bruce, G. Arduini, H. Bartosik, R. de Maria, M. Giovannozzi, G. Iadarola, J.M. Jowett, K. Li, M. Lamont, A. Lechner, E. Metral, D. Mirarchi, T. Pieloni, S. Redaelli,

More information

DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 *

DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 * SLAC PUB 17366 December 2018 DYNAMIC APERTURE STUDIES FOR HL-LHC V1.0 * Y. Cai, R. De Maria, M. Giovannozzi, Y. Nosochkov, F.F. Van der Veken ;1 CERN, CH-1211 Geneva 23, Switzerland SLAC National Accelerator

More information

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics. Absolute Luminosity from Machine Parameters

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics. Absolute Luminosity from Machine Parameters EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH European Laboratory for Particle Physics Large Hadron Collider Project LHC Project Report 1019 Absolute Luminosity from Machine Parameters H. Burkhardt,, P. Grafstrom

More information

TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER

TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER B. Mikulec, A. Findlay, V. Raginel, G. Rumolo, G. Sterbini, CERN, Geneva, Switzerland Abstract In the near future, a new

More information

Status of the LIU project and progress on space charge studies

Status of the LIU project and progress on space charge studies Status of the LIU project and progress on space charge studies S. Gilardoni CERN BE/ABP In collaboration with: J. Coupard, H. Damerau, A. Funken, B. Goddard, K. Hanke, A. Lombardi, D. Manglunki, M. Meddahi,

More information

Emittance preservation in TESLA

Emittance preservation in TESLA Emittance preservation in TESLA R.Brinkmann Deutsches Elektronen-Synchrotron DESY,Hamburg, Germany V.Tsakanov Yerevan Physics Institute/CANDLE, Yerevan, Armenia The main approaches to the emittance preservation

More information

Overview of LHC Accelerator

Overview of LHC Accelerator Overview of LHC Accelerator Mike Syphers UT-Austin 1/31/2007 Large Hadron Collider ( LHC ) Outline of Presentation Brief history... Luminosity Magnets Accelerator Layout Major Accelerator Issues U.S. Participation

More information

Interface with Experimental Detector in the High Luminosity Run

Interface with Experimental Detector in the High Luminosity Run Chapter 5 Interface with Experimental Detector in the High Luminosity Run H. Burkhardt CERN, BE Department, Genève 23, CH-1211, Switzerland This chapter describes the upgrade of the interaction regions

More information

HL-LHC ALTERNATIVES SCENARIOS

HL-LHC ALTERNATIVES SCENARIOS Proceedings of Chamonix 4 Workshop on LHC Performance HL-LHC ALTERNATIVES SCENARIOS R. Tomás, G. Arduini, D. Banfi, J. Barranco, H. Bartosik, O. Brüning, R. Calaga, O. Dominguez, H. Damerau, S. Fartoukh,

More information

Collimators and Cleaning, Could this Limit the LHC Performance?

Collimators and Cleaning, Could this Limit the LHC Performance? Collimators and Cleaning, Could this Limit the LHC Performance? R. Assmann, CERN-AB/ABP Chamonix XII March 2003 Answer is easy: You bet, collimation and cleaning can limit us! The question we are considering:

More information

LHC accelerator status and prospects. Frédérick Bordry Higgs Hunting nd September Paris

LHC accelerator status and prospects. Frédérick Bordry Higgs Hunting nd September Paris LHC accelerator status and prospects 2 nd September 2016 - Paris LHC (Large Hadron Collider) 14 TeV proton-proton accelerator-collider built in the LEP tunnel Lead-Lead (Lead-proton) collisions 1983 :

More information

CHAMONIX WORKSHOP, SESSION 5 LIU SUMMARY

CHAMONIX WORKSHOP, SESSION 5 LIU SUMMARY CHAMONIX WORKSHOP, SESSION 5 LIU SUMMARY M. Meddahi and G. Rumolo GOALS AND MEANS OF THE LIU PROJECT The goal of the LHC Injectors Upgrade project (thereafter LIU ) is to increase the intensity/brightness

More information

MULTITURN EXTRACTION BASED ON TRAPPING IN STABLE ISLANDS AT CERN PS: RECENT MEASUREMENT ADVANCES

MULTITURN EXTRACTION BASED ON TRAPPING IN STABLE ISLANDS AT CERN PS: RECENT MEASUREMENT ADVANCES MULTITURN EXTRACTION BASED ON TRAPPING IN STABLE ISLANDS AT CERN PS: RECENT MEASUREMENT ADVANCES M. Giovannozzi and R. Cappi, S. Gilardoni, M. Martini, E. Métral, M A. Sakumi, R. Steerenberg, CERN A.-S.

More information

MEASUREMENT AND SIMULATION OF LUMINOSITY LEVELING IN LHC VIA BEAM SEPARATION

MEASUREMENT AND SIMULATION OF LUMINOSITY LEVELING IN LHC VIA BEAM SEPARATION MEASUREMENT AND SIMULATION OF LUMINOSITY LEVELING IN LHC VIA BEAM SEPARATION Stefan Paret, Ji Qiang, LBNL, Berkeley, USA Reyes Alemany-Fernandez, Rama Calaga, Rossano Giachino, Werner Herr, Delphine Jacquet,

More information

STUDIES ON CONTROLLED RF NOISE FOR THE LHC

STUDIES ON CONTROLLED RF NOISE FOR THE LHC STUDIES ON CONTROLLED RF NOISE FOR THE LHC H. Timko, P. Baudrenghien, E. Shaposhnikova, CERN, Geneva, Switzerland T. Mastoridis, California Polytechnic State University, San Luis Obispo, USA Abstract RF

More information

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland Michael Böge 1 SLS Team at PSI Michael Böge 2 Layout of the SLS Linac, Transferlines Booster Storage Ring (SR) Beamlines and Insertion Devices

More information

SPACE CHARGE EXPERIMENTS AND BENCHMARKING IN THE PS

SPACE CHARGE EXPERIMENTS AND BENCHMARKING IN THE PS SPACE CHARGE EXPERIMENTS AND BENCHMARKING IN THE PS E. Métral Crossing the integer or half-integer resonance Montague resonance Static & Dynamic Benchmarking of the simulation codes Space charge driven

More information

IMPLEMENTATION AND EXPERIENCE WITH LUMINOSITY LEVELLING WITH OFFSET BEAM

IMPLEMENTATION AND EXPERIENCE WITH LUMINOSITY LEVELLING WITH OFFSET BEAM IMPLEMENTATION AND EXPERIENCE WITH LUMINOSITY LEVELLING WITH OFFSET BEAM F. Follin, D. Jacquet, CERN, Geneva, Switzerland Abstract The practice of luminosity levelling with an offset beam has been used

More information

Challenges and Plans for the Proton Injectors *

Challenges and Plans for the Proton Injectors * Chapter 16 Challenges and Plans for the Proton Injectors * R. Garoby CERN, BE Department, Genève 23, CH-12, Switzerland The flexibility of the LHC injectors combined with multiple longitudinal beam gymnastics

More information

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics ThomX Machine Advisory Committee (LAL Orsay, March 20-21 2017) Ring Beam Dynamics A. Loulergue, M. Biagini, C. Bruni, I. Chaikovska I. Debrot, N. Delerue, A. Gamelin, H. Guler, J. Zang Programme Investissements

More information

Beam-Beam Tune Spectra in RHIC and LHC

Beam-Beam Tune Spectra in RHIC and LHC Beam-Beam Tune Spectra in RHIC and LHC T. Pieloni Laboratory of Particle Accelerators Physics EPFL Lausanne and CERN - AB - ABP In collaboration with: R.Calaga and W. Fischer for RHIC BTF measurements

More information