April 1990 T. Watanabe and J. Kondo 227. The Influence of Canopy Structure and Density. upon the Mixing Length within and above Vegetation

Size: px
Start display at page:

Download "April 1990 T. Watanabe and J. Kondo 227. The Influence of Canopy Structure and Density. upon the Mixing Length within and above Vegetation"

Transcription

1 April 1990 T. Watanabe and J. Kondo 227 The Influence of Canopy Structure and Density upon the Mixing Length within and above Vegetation By Tsutomu Watanabe and Junsei Kondo Geophysical Institute, Tohoku University, Sendai 980, Japan (Manuscript received 30 November 1989, in revised form 29 January 1990) Abstract Taking into account the intermittent gust motion within a canopy layer and the influence of both the canopy elements and the underlying ground surface on the turbulent motion within the layer, a new mixing-length model was developed to simulate the exchange of momentum, sensible heat and water vapor between the atmosphere and the vegetated surfaces. It was found that traditional models overestimate the mixing length when the canopy density is neither dense nor sparse, since these models assume that the mixing length is limited by either the canopy elements or the height from the underlying ground surface. According to the present model, for the case of a vertically uniform canopy, the mixing length within the canopy layer is approximately equal to kz (k : von Karman constant, z : height) near the underlying ground surface. It remains approximately constant far enough from the ground surface, decreasing gradually as the canopy density increases. The validity of the model was determined by comparing model results with observed data. 1. Introduction K-theory (flux-gradient theory) is often used to express the exchange of momentum, sensible heat and water vapor between the atmosphere and vegetated surfaces (e.g., Inoue, 1963; Cionco, 1965; Cowan, 1968; Seginer, 1974; Kondo and Akashi, 1976; Li et al., 1985; Kondo and Kawanaka, 1986; Massman, 1987a, b). According to Corrsin (1974), K-theory is applicable under the condition that the length scale associated with the transporting mechanism is small enough and changes slowly with height. However, flow statistics change rapidly with height within a real canopy layer, so that the above condition is often violated (Shaw, 1977). In addition, K-theory cannot explain the "secondary wind speed maxima" observed in forest canopies (Shaw, 1977; Wilson and Shaw, 1977). For these reasons, many investigators have adopted a higher-order closure model (Shaw, 1977; Wilson and Shaw, 1977; Inoue, 1981; Meyers and PawU, 1986; Shaw and Seginer, 1987). For estimating the fluxes transported through the canopy top, however, it is not necessary to precisely simulate the wind field in the entire canopy layer. For example, for the case of a forest canopy which has a dense crown, the exchange is limited to within the upper portion of the canopy layer. Therefore, it C1990, Meteorological Society of Japan is sufficient to simulate the wind field only in this portion. The turbulence in the upper portion of the canopy layer is produced by the local wind shear (Shaw, 1977; Raupach et al., 1986; Raupach, 1988), which allows K-theory to be applicable. Also, this scheme has the advantage of computational simplicity. For these reasons, it is worth while developing a canopy model based on K-theory. In order to estimate the turbulent diffusivity used in K-theory, the mixing length must be evaluated. Similarly, in higher-order closure models, the length scale is often used to parameterize the higher-order moments. Nevertheless, knowledge of the mixing length within a canopy layer has been insufficient. Several models have been developed on certain assumptions (Uchijima, 1962; Inoue, 1963; Cowan, 1968; Seginer, 1974; Kondo and Akashi, 1976; Inoue and Uchijima, 1979). The purpose of this study is to formulate the mixing length within a canopy layer on the basis of recent experimental and theoretical studies (e.g., Wilson and Shaw, 1977; Finnigan, 1979; Raupach et al., 1986; Baldocchi and Meyers, 1988a, b; Raupach, 1988). In these studies, the turbulence within a canopy layer is mainly produced by the intermittent gust motion. We are now interested in parameterizing the turbulent transport between the atmosphere and vegetated surfaces by means of a simple model. From

2 228 Journal of the Meteorological Society of Japan Vol. 68, No. 2 recent experience, it has been known that the most difficult case in parameterizing the exchange occurs when the canopy density has a moderate value. This is a preliminary study to remove this difficulty. The present results will be applied to the evapotranspiration model in our successive study. and the boundary condition 2. Several mixing-length models K-theory relates the shear stress * to the local shear of the mean wind speed u as where * is the air density, KM is the turbulent diffusivity and z is the height. KM is conventionally described by the mixing length l, i.e., Here, zg is the aerodynamic roughness of the underlying ground surface and li is the intrinsic mixing length-the mixing length within a vertically homogeneous canopy that has the same internal structure as the level under consideration. Kondo and Akashi (1976) and Kondo and Kawanaka (1986) adopted this model. According to this model, l within a vertically homogeneous canopy is expressed as,* The budget of the shear stress within and above the canopy layer is where cd is the effective drag coefficient of each leaf element, a is the leaf area density (one-sided), and h is the canopy height. If l can be expressed by the known parameters cd and a(z), profiles of the mean wind speed and the shear stress within and above the canopy layer can be derived from Eqs. (1) to (3) numerically. Uchijima (1962) proposed that l is proportional to the height within a canopy layer, and formulated l such as where d is the zero-plane displacement and k is the von Karman constant. This formulation is applicable to a sparse canopy, but fails for a dense canopy, since the turbulent motion in a dense canopy layer is strongly affected by the canopy elements rather than by the ground surface. On the other hand, Inoue (1963) suggested that is constant throughout the canopy layer. This l model, however, cannot be applied to a sparse canopy; even when the canopy is dense, it cannot be applied near the ground surface. In these cases, the turbulent motion is limited by the ground surface, so that l may depend upon z. Some field experiments support this dependence (e.g., Uchijima and Wright, 1964; Cionco, 1965). Also, within a vertically inhomogeneous canopy, l may depend upon z. In order to overcome the difficulty of these models, Seginer (1974) supposed that the value of l is the maximum possible under the two constraints This formula implies that the mixing length in a sparse canopy is as large as that in the atmospheric surface layer, even though the canopy elements modify the turbulent motion. Consequently, the fluxes of momentum, sensible heat and water vapor are overestimated, especially when the canopy density has a moderate value. In the present study, a new model is suggested (Section 4), which can be applied to all casessparse, moderate and dense canopies. 3. Dimensional analysis The properties of the mixing length are preliminarily investigated by means of dimensional analysis. In this section, only a vertically homogeneous canopy will be considered. a) Surface layer without a canopy The turbulent motion is limited by the ground surface only, and thus the characteristic length scale consists only of the height z. Dimensional analysis predicts that In fact, many experimental data have supported the result that b) Tall and dense canopy-the case of the intrinsic mixing length In this case, the turbulent motion is modified by the canopy elements through the action of the form drag. Thus, z is no longer important. However, the term (cda0)-1 where a0 is the leaf area density, is the significant length scale. From dimensional analysis, it is predicted that

3 April 1990 T. Watanabe and J. Kondo 229 where * is a constant that must be determined experimentally. Kondo and Akashi (1976) applied von Karman's similarity hypotheses to the exponential wind profile (Inoue, 1963), and obtained a value of *=2k3 (=0.128) for a general canopy. Wilson and Shaw (1977) found that a value of *=0.06 was needed in order to obtain the best fit between simulated and observed profiles within and above a corn canopy. c) Vertically homogeneous canopy-the general case Turbulent motion is limited by the ground surface as well as the canopy elements, so that both z and li are significant. In this case, the mixing length must be expressed as, where f is a universal function and * is the nondimensional height defined as, As * increases, the limitation due to the canopy elements becomes dominant, and the mixing length approaches its intrinsic value. As * decreases, on the other hand, the limitation due to the ground surface becomes dominant, and the mixing length approaches the value of the atmospheric surface layer. These are expressed by where dlocal is the local displacement height which is dependent on the canopy-density profile. Above the canopy layer, the local displacement height corresponds to the zero-plane displacement, i. e., The length {z - dlocal (z)} can be regarded as the mean distance through which an air parcel can move freely without being limited by the canopy elements and/or the ground surface. This distance can be evaluated as follows. The limitation imposed by the canopy elements is proportional to the product of the drag coefficient of each canopy element cd and the canopy density a(z). Therefore, the probability that an air parcel will be limited by the canopy elements when it moves downward from the level z to z - dr, is expressed as Acda(z)dr, where A is a constant. Next, Pz(r) is assigned to be the probability that an air parcel can move downward through the distance r from the level z without being limited. Then Pz (r + dr), the probability that an air parcel can reach the level z-(r+dr) without limitations, is less than Pz(r) by a factor of the probability that the air parcel will be affected by the canopy elements between the level z - r and z - (r + dr), i.e.*, e., where and The form of f (*) will be determined in the next section. 4. The new mixing-length model According to recent experimental and theoretical studies (e.g., Wilson and Shaw, 1977; Finnigan, 1979; Raupach et al., 1986; Baldocchi and Meyers, 1988a, b; Raupach, 1988), the turbulence within a canopy layer is produced through the following process. First, large scale turbulence is produced by the mean wind shear near the top of the canopy layer. This turbulence is transported into the canopy layer by the intermittent gust motion. The transported turbulence is then modified by the canopy elements through the action of the form drag, and limited by the ground surface. On the basis of this modification process, it is assumed that the mixing length within and above a canopy layer can be expressed as follows, Since the quantity on the left-hand side Pz (r + dr) can be rewritten as Pz(r) + (dpz/dr)dr, Eq. (15) yields, After integrating, the following is obtained and since Pz(0)=1, On the other hand, the probability of an air parcel that started from level z may encounter limits between z - r and z - (r + dr) for the first time is Pz(r)µ*(z - r)dr. Also, the probability that an air parcel may be limited by the ground surface without being limited by the canopy elements is Pz(z). As a result, z - dlocal (z) is expressed in the following, using the definition of the mean value;

4 230 Journal of the Meteorological Society of Japan Vol. 68, No. 2 <case a> Vertically homogeneous canopy If the canopy density has a constant value of a0, then the mixing length within this canopy layer can be expressed by Eqs. (13) and (18) as where * is the non-dimensional height (see Eq. (11)). To satisfy the demand on the mixing length Eq. (12a), it is necessary that Combining Eq. (9) and Eq. (20) yields Fig. 1. Profiles of the mixing length within and above an ideal canopy, in which leaves exist only in the upper half portion (shaded area), for six different values of cda0. Substituting Eq. (21) into Eq. (19) results in Table 1. Best fit value of the effective drag coefficient cd and the source of the observed data for each canopy This equation satisfies the demands of Eqs. (12b), (12c) and (12d). <case b> General canopy For the general profile of a(z), the mixing length can be calculated from Eqs. (13), (14), (18) and (21). But in a canopy with a dense crown, such as that of a forest, the calculated mixing length increases quickly with depth, near the bottom of the crown. To avoid this, the following restriction, such as that found in Seginer (1974), is imposed ; Note that the calculation of the l(z)-profile must originate at the level z = h, since the turbulence within a canopy layer results from the large scale eddy produced near the top of the canopy layer. If the calculation begins from level z = 0, an incorrect result will be obtained. Figure 1 shows the l(z)-profiles calculated from Eqs. (13), (14), (18), (21) and (23) for an ideal canopy with a crown, of which a(z)-profile is expressed by 5. Testing of the model 5.1 Profiles within a canopy layer The simulated profiles of the mean wind speed and the shear stress within and above a canopy layer (Eqs. (1) to (3)) are compared with observed data from a corn field, a deciduous forest and a pine forest. The sources of these data are indicated in Table 1. Each profile of the leaf area density was approximated by a smooth function and incorporated into the model (Fig. 2a-c). The effective drag coefficient cd was assumed to be constant throughout each canopy layer, and was determined so as to fit the simulated wind and shear-stress profiles to those observed (Table 1).

5 April 1990 T. Watanabe and J. Kondo 231 Fig. 2. Profiles of the leaf area density, assumed (curves) and measured (histogram or plotted points), for the corn field (a), deciduous forest (b), and pine forest (c). Fig. 3. Calculated profiles of the mixing length (solid lines) and measured Eulerian length scale (open circle: Lu, closed circle: Lw), for the corn field (a) and deciduous forest (b). Uchijima and Wright (1964) calculated a value of cd= from data observed in a corn field, while Grant (1983) measured cd= for a coniferous twig in a wind tunnel. The results indicated in Table 1 fall within the observed range. For the deciduous forest, an experimentally determined cd was not available for comparison. The profiles of the mixing length calculated by means of the present scheme for the corn field and the deciduous forest are shown in Fig. 3. In this calculation, a value of * = 2k3 (Kondo and Akashi, 1976) was adopted for Eq. (21). The plotted points denote observed values of the Eulerian length scale; Lu, Lw, which were computed by Here, *w is the standard deviation of the vertical velocity, and Tw is the Eulerian time scale, defined as the integral of the autocovariance function, i. e., where Rww (*) is the autocovariance of the vertical velocity with a time lag *. The calculated profile of the mixing length has a maximum within these canopies. This represents that the turbulence within

6 232 Journal of the Meteorological Society of Japan Vol. 68, No. 2 Fig. 4. Calculated profiles (solid lines) and measured values (plotted points) of the normalized mean wind speed, for the corn field (a), deciduous forest (b), and pine forest (c). uh denotes the mean wind speed at the top of the canopy layer and u* the friction velocity (see Section 5). these canopies is maintained by the downward transport of the large-scale turbulent kinetic energy. In the atmospheric surface layer, the mixing length is often considered to coincide with the Eulerian length scale (e.g., Tennekes and Lumley, 1972). However, as can be seen in Fig. 3, both do not coincide within the canopy layer. Similarly, Saito et al. (1970) in a corn canopy and Seginer et al. (1976) in a model canopy, found that the mixing length and the Eulerian length scale were not coincident. Figure 4 shows a comparison between the calculated and measured mean wind speed. Good agreement is found for the corn canopy (Fig. 4a), which supports the notion that K-theory can be applied to a low canopy, such as cereal crops. On the other hand, for a canopy which has a dense crown such as forests, this scheme cannot describe the secondary wind-speed maximum (Fig. 4b, c). However, it is sufficient for the present purpose to simulate the upper part of the wind profile within a canopy layer, as was mentioned in Section 1. The calculated shear-stress profile is shown in Fig. 5, along with experimental data for comparison. The agreement is good in each case, except for data at two points above the deciduous forest. Regarding this discrepancy, it should be noted that the observers commented that the instrument errors and the inhomogeneity of the topography and the treeheight affected these data. 5.2 Zero-plane displacement and the bulk momentum transfer coefficient The calculation of the zero-plane displacement and the bulk momentum transfer coefficient for a rice paddy field are compared with the present experimental data. The experiments were performed during the summers of , at the atmospheric boundarylayer observatory of Tohoku University, located in Kitaura, Miyagi Prefecture, Japan. A horizontally homogeneous rice paddy field surrounds this observatory. Sensitive cup-anemometers and ventilated psychrometers were mounted at six different levels on a 10 m-tall tower, and profiles of wind speed, air temperature and specific humidity above the canopy layer were obtained. Simultaneously, the downward shortwave and longwave radiation, along with the infrared radiative temperature of the canopy layer were measured. Fitting the profile function described by Kondo (1975) to these data, the fluxes of momentum, sensible heat and water vapor, the zero-plane displacement d and aerodynamic roughness z0 were obtained. The bulk momentum transfer coefficient CM is defined as where u* is the friction velocity, and ua is the mean wind speed at a reference level (za =10h, h : canopy height ). Above a canopy layer, the logarithmic wind

7 April 1990 T. Watanabe and J. Kondo 233 Fig. 6. Profile of the leaf area density in the rice paddy field, normalized by LAI (leaf area index). Fig. 5. Calculated profiles (solid lines) and measured values (plotted points) of the normalized shear stress, for the corn field (a) and deciduous forest (b). Fig. 7. Calculated the paddy field, friction compared velocity with u* above measure- ments. profile by formed in neutral stability conditions is given In the model simulation, Eq. (29) was fitted to the calculated wind profile, and u*, d and z0 were evaluated. CM under neutral stability conditions is derived from Eqs. (28) and (29) as Figure 6 illustrates the profile of leaf area density in the rice paddy field, which approximates the measurements by photographic techniques. This profile was incorporated into the model. The effective drag coefficient (Cd=0.18) was determined to minimize the error between the measured and calculated values of u* (Fig. 7). This value of cd is similar to the value of cd=0.21, obtained by Inoue and Uchijima (1979) also from a rice paddy field. The normalized zero-plane displacement and the bulk momentum transfer coefficientare plotted versus cd LAI (LAI : leaf area index) in Fig. 8 and Fig. 9 respectively. The solid line indicates the present model, while the dashed line indicates the previous model (Eqs. (5) and (9)). Even though the observed values are scattered in both figures, due to the difficulty in determining a precise value of d from the profile data, the present model simulates the obser-

8 234 Journal of the Meteorological Society of Japan Vol. 68, No. 2 Fig. 8. Normalized zero-plane displacement d as function of cd LAI (solid line : present mixing-length model, dashed line : Eqs. (5) and (9), plotted points: measurements). The mixing-length model within a canopy layer was presented, which can be adopted for all casesfrom a low sparse canopy to a tall dense canopy. This model is based on the fact that the turbulence within a canopy layer is modified by both the canopy elements and the underlying ground surface. For a vertically homogeneous canopy, the present model predicts that l is approximately equal to kz near the ground surface and is fairly constant at distances far enough away from the ground surface. Also, l decreases gradually as the canopy density increases. The present model was tested with field data of the wind speed and shear-stress profiles from three different canopies, along with the zero-plane displacement and the bulk momentum transfer coefficient from a rice paddy field. Good agreement between simulated and measured wind and shearstress profiles was found for all canopies, especially in the upper portion of the canopy layer. Also, some improvement was found in simulation of the zero-plane displacement and the bulk momentum transfer coefficient, in comparison with the previous model. These results support the validity of using this model to express the exchange between the atmosphere and vegetated surfaces. In the successive report, the exchange of sensible heat and water vapor will be parameterized by means of the present model. Acknowledgments We would like to thank Dr. T. Sato of Shinjyo Branch of Snow and Ice Studies, National Research Center for Disaster Prevention and our colleagues of Tohoku University for their assistance in the field observations. References Fig. 9. Same as Fig. 8, except for the bulk momentum transfer coefficient CM. vations relatively well. Especially, some improvement is apparent for the moderate leaf area density (Cd LAI=10-1 to 100). 6. Conclusions Baldocchi, D.D. and T.P. Meyers, 1988a: Thrbulence structure in a deciduous forest. Boundary-Layer Meteor., 43, Baldocchi, D.D. and T.P. Meyers, 1988b: A spectral and lag-correlation analysis of turbulence in a deciduous forest canopy. Boundary-Layer Meteor., 45, Cionco, R.M., 1965: A mathematical model for air flow in a vegetative canopy. J. Appl. Meteor., 4, Corrsin, S., 1974: Limitations of gradient transport models in random walks and in turbulence. Adv. Geophys., 18A, Cowan, I.R., 1968: Mass, heat and momentum exchange between stands of plants and their atmospheric environment. Quart. J. Roy. Meteor. Soc., 94, Finnigan, J.J., 1979: Turbulence in waving wheat. II: Structure of momentum transfer. Boundary-Layer Meteor., 16, Grant, R.H., 1983: The scaling of flow in vegetative structures. Boundary-Layer Meteor., 27, Halldin, S. and A. Lindroth, 1986: Pine forest microclimate simulation using different diffusivities. Boundary-Layer Meteor., 35, Inoue, E., 1963: On the turbulent structure of airflow within crop canopies. J. Meteor. Soc. Japan, 41, Inoue, K., 1981: A model study of microstructure of wind turbulence of plant canopy flow. Bull. Natl. Inst. Agric. Sci., Ser. A27, Inoue, K. and Z. Uchijima, 1979: Experimental study of microstructure of wind turbulence in rice and maize canopies. Bull. Natl. Inst. Agric. Sci., Ser. A26, Kondo, J., 1975: Air-sea bulk transfer coefficients in diabatic conditions. Boundary-Layer Meteor., 9, Kondo, J. and S. Akashi, 1976: Numerical studies on the two-dimensional flow in horizontally homogeneous canopy layers. Boundary-Layer Meteor., 10, Kondo, J. and A. Kawanaka, 1986: Numerical study of the bulk heat transfer coefficient for a variety of vege-

9 April 1990 T. Watanabe and J. Kondo 235 tation types and densities. Boundary-Layer Meteor., 37, Li, Z.J., D.R. Miller and J.D. Lin, 1985: A first-order closure scheme to describe counter-gradient momentum transport in plant canopies. Boundary-Layer Meteor., 33, Massman, W., 1987a: A comparative study of some mathematical models of the mean wind structure and aerodynamic drag of plant canopies. Boundary-Layer Meteor., 40, Massman, W., 1987b: Heat transfer to and from vegetated surfaces: an analytical method for the bulk exchange coefficients. Boundary-Layer Meteor., 40, Meyers, T. and K.T. PawU, 1986: Testing of a higherorder closure model for modeling airflow within and above plant canopies. Boundary-Layer Meteor., 37, Raupach, M.R., 1988: Canopy transport processes. Flow and transport in the natural environment : advances and applications, W.L. Steffen and O.T. Denmead (eds.), Springer-Verlag. Berlin, Raupach, MR., P.A. Coppin and B.J. Legg, 1986: Experiments on scalar dispersion within a model plant canopy. part I: The turbulence structure. Boundary- Layer Meteor., 35, Saito, T., Y. Nagai, S. Isobe and Y. Horibe, 1970: An investigation of turbulence within a crop canopy. J. Agr. Meteor. (Japan), 25, (in Japanese, with English summary.) Seginer, I., 1974: Aerodynamic roughness of vegetated surfaces. Boundary-Layer Meteor., 5, Seginer, I., P.J. Mulhearn, E.F. Bradley and J.J. Finnigan, 1976: Turbulent flow in a model plant canopy. Boundary-Layer Meteor., 10, Shaw, R.H., 1977: Secondary wind speed maxima inside plant canopies. J. Appl. Meteor., 16, Shaw, R.H. and I. Seginer, 1987: Calculation of velocity skewness in real and artificial plant canopies. Boundary-Layer Meteor., 39, Tennekes, H. and J.L. Lumley,1972: A first course in turbulence. The MIT Press. Cambridge, Mass., 300pp. Uchijima, Z., 1962: Studies on the micro-climate within plant communities. (2) The scale of turbulence and the momentum transfer within plant layers. J. Agr. Meteor. (Japan), 18, (in Japanese, with English summary). Uchijima, Z. and J.L. Wright, 1964: An experimental study of air flow in a corn plant-air layer. Bull. Natl. Inst. Agric. Sci., Ser. A11, Wilson, N.R. and R.H. Shaw, 1977: A higher order closure model for canopy flow. J. Appl. Meteor., 16, Wilson, J.D., D.P. Ward, G.W. Thurtell and G.E. Kidd, 1982: Statistics of atmospheric turbulence within and above a corn canopy. Boundary-Layer Meteor., 24,

Wind and turbulence experience strong gradients in vegetation. How do we deal with this? We have to predict wind and turbulence profiles through the

Wind and turbulence experience strong gradients in vegetation. How do we deal with this? We have to predict wind and turbulence profiles through the 1 2 Wind and turbulence experience strong gradients in vegetation. How do we deal with this? We have to predict wind and turbulence profiles through the canopy. 3 Next we discuss turbulence in the canopy.

More information

On Roughness Length and Zero-Plane Displacement in the Wind Profile of the Lowest Air Layer

On Roughness Length and Zero-Plane Displacement in the Wind Profile of the Lowest Air Layer April 1966 @ Kyoiti Takeda @ 101 On Roughness Length and Zero-Plane Displacement in the Wind Profile of the Lowest Air Layer By Kyoiti Takeda Faculty of Agriculture, Kyushu University, Fukuoka (Manuscript

More information

Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman

Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman Roughness Sub Layers John Finnigan, Roger Shaw, Ned Patton, Ian Harman 1. Characteristics of the Roughness Sub layer With well understood caveats, the time averaged statistics of flow in the atmospheric

More information

The plant canopy layer and roughness sublayer. 16 Oct., 2012

The plant canopy layer and roughness sublayer. 16 Oct., 2012 The plant canopy layer and roughness sublayer 16 Oct., 2012 the surface layer over a rough boundary must be considered in two parts: an inertial sublayer in which height above the effective surface provides

More information

TURBULENT STATISTICS OF NEUTRALLY STRATIFIED FLOW WITHIN AND ABOVE A SPARSE FOREST FROM LARGE-EDDY SIMULATION AND FIELD OBSERVATIONS

TURBULENT STATISTICS OF NEUTRALLY STRATIFIED FLOW WITHIN AND ABOVE A SPARSE FOREST FROM LARGE-EDDY SIMULATION AND FIELD OBSERVATIONS TURBULENT STATISTICS OF NEUTRALLY STRATIFIED FLOW WITHIN AND ABOVE A SPARSE FOREST FROM LARGE-EDDY SIMULATION AND FIELD OBSERVATIONS HONG-BING SU 1,, ROGER H. SHAW 1,KYAWTHAPAWU 1, CHIN-HOH MOENG 2 and

More information

AN INVESTIGATION OF HIGHER-ORDER CLOSURE MODELS FOR A FORESTED CANOPY

AN INVESTIGATION OF HIGHER-ORDER CLOSURE MODELS FOR A FORESTED CANOPY AN INVESTIGATION OF HIGHER-ORDER CLOSURE MODELS FOR A FORESTED CANOPY GABRIEL G. KATUL 1 and JOHN D. ALBERTSON 2 1 School of the Environment, Duke University, Durham, NC 27708-0328; 2 Department of Environmental

More information

Lecture 20 Wind and Turbulence, Part 1, Canopy Air Space: Observations and Principles

Lecture 20 Wind and Turbulence, Part 1, Canopy Air Space: Observations and Principles Lecture 20 Wind and Turbulence, Part 1, Canopy Air Space: Observations and Principles Instructor: Dennis Baldocchi Professor of Biometeorology Ecosystem Science Division Department of Environmental Science,

More information

ESPM 129 Biometeorology Wind and Turbulence, Part 2, Canopy Air Space: Observations and Principles

ESPM 129 Biometeorology Wind and Turbulence, Part 2, Canopy Air Space: Observations and Principles Lecture 21 Wind and Turbulence, Part 2, Canopy Air Space: Observations and Principles Instructor: Dennis Baldocchi Professor of Biometeorology Ecosystem Science Division Department of Environmental Science,

More information

A Note on the Estimation of Eddy Diffusivity and Dissipation Length in Low Winds over a Tropical Urban Terrain

A Note on the Estimation of Eddy Diffusivity and Dissipation Length in Low Winds over a Tropical Urban Terrain Pure appl. geophys. 160 (2003) 395 404 0033 4553/03/020395 10 Ó Birkhäuser Verlag, Basel, 2003 Pure and Applied Geophysics A Note on the Estimation of Eddy Diffusivity and Dissipation Length in Low Winds

More information

Land/Atmosphere Interface: Importance to Global Change

Land/Atmosphere Interface: Importance to Global Change Land/Atmosphere Interface: Importance to Global Change Chuixiang Yi School of Earth and Environmental Sciences Queens College, City University of New York Outline Land/atmosphere interface Fundamental

More information

This is the first of several lectures on flux measurements. We will start with the simplest and earliest method, flux gradient or K theory techniques

This is the first of several lectures on flux measurements. We will start with the simplest and earliest method, flux gradient or K theory techniques This is the first of several lectures on flux measurements. We will start with the simplest and earliest method, flux gradient or K theory techniques 1 Fluxes, or technically flux densities, are the number

More information

October 1991 J. Wang and Y. Mitsuta 587 NOTES AND CORRESPONDENCE. Turbulence Structure and Transfer Characteristics

October 1991 J. Wang and Y. Mitsuta 587 NOTES AND CORRESPONDENCE. Turbulence Structure and Transfer Characteristics October 1991 J. Wang and Y. Mitsuta 587 NOTES AND CORRESPONDENCE Turbulence Structure and Transfer Characteristics in the Surface Layer of the HEIFE Gobi Area By Jiemin Wang Lanzhou Institute of Plateau

More information

Atm S 547 Boundary Layer Meteorology

Atm S 547 Boundary Layer Meteorology Lecture 5. The logarithmic sublayer and surface roughness In this lecture Similarity theory for the logarithmic sublayer. Characterization of different land and water surfaces for surface flux parameterization

More information

Footprints: outline Üllar Rannik University of Helsinki

Footprints: outline Üllar Rannik University of Helsinki Footprints: outline Üllar Rannik University of Helsinki -Concept of footprint and definitions -Analytical footprint models -Model by Korman and Meixner -Footprints for fluxes vs. concentrations -Footprints

More information

Canopy flow. Acknowledged contribution from Corey Markfort, Iowa State U

Canopy flow. Acknowledged contribution from Corey Markfort, Iowa State U Canopy flow Examples of canopy flows canopy characterization Failure of log-law and K-theory in and over canopies Roughness sublayer and canopy flow dynamics Mixing layer analogy for canopies Potential

More information

(Wind profile) Chapter five. 5.1 The Nature of Airflow over the surface:

(Wind profile) Chapter five. 5.1 The Nature of Airflow over the surface: Chapter five (Wind profile) 5.1 The Nature of Airflow over the surface: The fluid moving over a level surface exerts a horizontal force on the surface in the direction of motion of the fluid, such a drag

More information

Approaches in modelling tritium uptake by crops

Approaches in modelling tritium uptake by crops Approaches in modelling tritium uptake by crops EMRAS II Approaches for Assessing Emergency Situations Working Group 7 Tritium Accidents Vienna 25-29 January 2010 D. Galeriu, A Melintescu History Different

More information

Thermal Crop Water Stress Indices

Thermal Crop Water Stress Indices Page 1 of 12 Thermal Crop Water Stress Indices [Note: much of the introductory material in this section is from Jackson (1982).] The most established method for detecting crop water stress remotely is

More information

A GENERAL MODEL FOR THE ENERGY EXCHANGE AND MICROCLIMATE OF PLANT COMMUNITIES

A GENERAL MODEL FOR THE ENERGY EXCHANGE AND MICROCLIMATE OF PLANT COMMUNITIES A GENERAL MODEL FOR THE ENERGY EXCHANGE AND MICROCLIMATE OF PLANT COMMUNITIES Charles E. Murphy Jr., Research Associate and Kenneth R. Knoerr, Associate Professor School of Forestry, Duke University Durham,

More information

A NOTE ON THE CONTRIBUTION OF DISPERSIVE FLUXES TO MOMENTUM TRANSFER WITHIN CANOPIES. Research Note

A NOTE ON THE CONTRIBUTION OF DISPERSIVE FLUXES TO MOMENTUM TRANSFER WITHIN CANOPIES. Research Note A NOTE ON THE CONTRIBUTION OF DISPERSIVE FLUXES TO MOMENTUM TRANSFER WITHIN CANOPIES Research Note D. POGGI Dipartimento di Idraulica, Trasporti ed Infrastrutture Civili, Politecnico di Torino, Torino,

More information

A NUMERICAL MODEL-BASED METHOD FOR ESTIMATING WIND SPEED REGIME IN OUTDOOR AND SEMI-OUTDOOR SITES IN THE URBAN ENVIRONMENT

A NUMERICAL MODEL-BASED METHOD FOR ESTIMATING WIND SPEED REGIME IN OUTDOOR AND SEMI-OUTDOOR SITES IN THE URBAN ENVIRONMENT Proceedings of the 13 th International Conference on Environmental Science and Technology Athens, Greece, 5-7 September 2013 A NUMERICAL MODEL-BASED METHOD FOR ESTIMATING WIND SPEED REGIME IN OUTDOOR AND

More information

The structure of canopy turbulence and its implication to scalar dispersion

The structure of canopy turbulence and its implication to scalar dispersion The structure of canopy turbulence and its implication to scalar dispersion Gabriel Katul 1,2,3 & Davide Poggi 3 1 Nicholas School of the Environment and Earth Sciences, Duke University, USA 2 Department

More information

Aerodynamic Studies of Falling Snowflakes

Aerodynamic Studies of Falling Snowflakes June 1965 Choji Magono and Tsutomu Nakamura 139 Aerodynamic Studies of Falling Snowflakes 551. 578.41 By Choji Magono Faculty of Science, Hokkaido University, Sapporo and Tsutomu Nakamura Institute of

More information

Contents. 1. Evaporation

Contents. 1. Evaporation Contents 1 Evaporation 1 1a Evaporation from Wet Surfaces................... 1 1b Evaporation from Wet Surfaces in the absence of Advection... 4 1c Bowen Ratio Method........................ 4 1d Potential

More information

Consistent Parameterization of Roughness Length and Displacement Height for Sparse and Dense Canopies in Land Models

Consistent Parameterization of Roughness Length and Displacement Height for Sparse and Dense Canopies in Land Models 730 J O U R N A L O F H Y D R O M E T E O R O L O G Y S P E C I A L S E C T I O N VOLUME 8 Consistent Parameterization of Roughness Length and Displacement Height for Sparse and Dense Canopies in Land

More information

2.1 OBSERVATIONS AND THE PARAMETERISATION OF AIR-SEA FLUXES DURING DIAMET

2.1 OBSERVATIONS AND THE PARAMETERISATION OF AIR-SEA FLUXES DURING DIAMET 2.1 OBSERVATIONS AND THE PARAMETERISATION OF AIR-SEA FLUXES DURING DIAMET Peter A. Cook * and Ian A. Renfrew School of Environmental Sciences, University of East Anglia, Norwich, UK 1. INTRODUCTION 1.1

More information

A model for scalar advection inside canopies and application to footprint investigation

A model for scalar advection inside canopies and application to footprint investigation Agricultural and Forest Meteorology 127 (24) 131 141 www.elsevier.com/locate/agrformet A model for scalar advection inside canopies and application to footprint investigation Xuhui Lee School of Forestry

More information

The role of soil moisture in influencing climate and terrestrial ecosystem processes

The role of soil moisture in influencing climate and terrestrial ecosystem processes 1of 18 The role of soil moisture in influencing climate and terrestrial ecosystem processes Vivek Arora Canadian Centre for Climate Modelling and Analysis Meteorological Service of Canada Outline 2of 18

More information

First order turbulence closure for modelling complex canopy flows

First order turbulence closure for modelling complex canopy flows First order turbulence closure for modelling complex canopy flows Article Accepted Version Finnigan, J., Harman, I., Ross, A. and Belcher, S. (015) Firstorder turbulence closure for modelling complex canopy

More information

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2)

The Atmospheric Boundary Layer. The Surface Energy Balance (9.2) The Atmospheric Boundary Layer Turbulence (9.1) The Surface Energy Balance (9.2) Vertical Structure (9.3) Evolution (9.4) Special Effects (9.5) The Boundary Layer in Context (9.6) Atm S 547 Lecture 4,

More information

The Von Kármán constant retrieved from CASES-97 dataset using a variational method

The Von Kármán constant retrieved from CASES-97 dataset using a variational method Atmos. Chem. Phys., 8, 7045 7053, 2008 Authors 2008. This work is distributed under the Creative Commons Attribution 3.0 icense. Atmospheric Chemistry Physics The Von Kármán constant retrieved from CASES-97

More information

Environmental Fluid Dynamics

Environmental Fluid Dynamics Environmental Fluid Dynamics ME EN 7710 Spring 2015 Instructor: E.R. Pardyjak University of Utah Department of Mechanical Engineering Definitions Environmental Fluid Mechanics principles that govern transport,

More information

Lecture 10 Lagrangian Models

Lecture 10 Lagrangian Models ESPM 8 Advanced Topics on Biometeorology and Micrometeorology Lecture 1 Lagrangian Models ESPM 8, Advanced Topics on Micrometeorology and Biometeorology Dennis Baldocchi Professor of Biometeorology Ecosystem

More information

Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica

Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica Characteristics of the night and day time atmospheric boundary layer at Dome C, Antarctica S. Argentini, I. Pietroni,G. Mastrantonio, A. Viola, S. Zilitinchevich ISAC-CNR Via del Fosso del Cavaliere 100,

More information

Local Meteorology. Changes In Geometry

Local Meteorology. Changes In Geometry Energy Balance Climate Local Meteorology Surface Mass And Energy Exchange Net Mass Balance Dynamic Response Effect on Landscape Changes In Geometry Water Flow Climate Local Meteorology Surface Mass And

More information

Lecture 18, Wind and Turbulence, Part 3, Surface Boundary Layer: Theory and Principles, Cont

Lecture 18, Wind and Turbulence, Part 3, Surface Boundary Layer: Theory and Principles, Cont Lecture 18, Wind and Turbulence, Part 3, Surface Boundary Layer: Theory and Principles, Cont Instructor: Dennis Baldocchi Professor of Biometeorology Ecosystem Science Division Department of Environmental

More information

A Note on Spatial Averaging and Shear Stresses Within Urban Canopies

A Note on Spatial Averaging and Shear Stresses Within Urban Canopies Boundary-Layer Meteorol (2018) 167:171 179 https://doi.org/10.1007/s10546-017-0321-7 NOTES AND COMMENTS A Note on Spatial Averaging and Shear Stresses Within Urban Canopies Zheng-Tong Xie 1 Vladimir Fuka

More information

1 The Richardson Number 1 1a Flux Richardson Number b Gradient Richardson Number c Bulk Richardson Number The Obukhov Length 3

1 The Richardson Number 1 1a Flux Richardson Number b Gradient Richardson Number c Bulk Richardson Number The Obukhov Length 3 Contents 1 The Richardson Number 1 1a Flux Richardson Number...................... 1 1b Gradient Richardson Number.................... 2 1c Bulk Richardson Number...................... 3 2 The Obukhov

More information

Disturbed micrometeorological flows example local advection

Disturbed micrometeorological flows example local advection Disturbed micrometeorological flows example local advection Horizontal gradients of mean properties ( u, T, u ' w ', w ' T ' etc.) in the atmospheric surface layer may be generated by inhomogeneity in

More information

Evapotranspiration. Here, liquid water on surfaces or in the very thin surface layer of the soil that evaporates directly to the atmosphere

Evapotranspiration. Here, liquid water on surfaces or in the very thin surface layer of the soil that evaporates directly to the atmosphere Evapotranspiration Evaporation (E): In general, the change of state from liquid to gas Here, liquid water on surfaces or in the very thin surface layer of the soil that evaporates directly to the atmosphere

More information

May 3, :41 AOGS - AS 9in x 6in b951-v16-ch13 LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING DATA

May 3, :41 AOGS - AS 9in x 6in b951-v16-ch13 LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING DATA Advances in Geosciences Vol. 16: Atmospheric Science (2008) Eds. Jai Ho Oh et al. c World Scientific Publishing Company LAND SURFACE ENERGY BUDGET OVER THE TIBETAN PLATEAU BASED ON SATELLITE REMOTE SENSING

More information

Lecture notes: Interception and evapotranspiration

Lecture notes: Interception and evapotranspiration Lecture notes: Interception and evapotranspiration I. Vegetation canopy interception (I c ): Portion of incident precipitation (P) physically intercepted, stored and ultimately evaporated from vegetation

More information

Reynolds Averaging. Let u and v be two flow variables (which might or might not be velocity components), and suppose that. u t + x uv ( ) = S u,

Reynolds Averaging. Let u and v be two flow variables (which might or might not be velocity components), and suppose that. u t + x uv ( ) = S u, ! Revised January 23, 208 7:7 PM! Reynolds Averaging David Randall Introduction It is neither feasible nor desirable to consider in detail all of the small-scale fluctuations that occur in the atmosphere.

More information

FLUX FOOTPRINTS WITHIN AND OVER FOREST CANOPIES. 1. Introduction

FLUX FOOTPRINTS WITHIN AND OVER FOREST CANOPIES. 1. Introduction FLUX FOOTPRINTS WITHIN AND OVER FOREST CANOPIES DENNIS BALDOCCHI Atmospheric Turbulence and Diffusion Division, NOAA P.O. Box 2456 Oak Ridge, TN 37831, U.S.A. (Received in final form 20 June, 1997) Abstract.

More information

REQUEST FOR ISFF SUPPORT FLOSS NCAR/ATD- April 2001OFAP Meeting

REQUEST FOR ISFF SUPPORT FLOSS NCAR/ATD- April 2001OFAP Meeting REQUEST FOR ISFF SUPPORT FLOSS NCAR/ATD- April 2001OFAP Meeting Submitted on 16 January 2001 Corresponding Principal Investigator Name Institution Address Corvallis, OR 97331 Phone 541-737-5691 Larry Mahrt

More information

IN THE PRESENCE OF A GRADIENT IN

IN THE PRESENCE OF A GRADIENT IN CALCULATION OF PARTICLE TRAJECTORIES IN THE PRESENCE OF A GRADIENT IN TURBULENT-VELOCITY VARIANCE J. D. WILSON New Zealand Meteorological Service, P.O. Box 722 Wellington, New Zealand (Present address,

More information

15.2 AREA-AVERAGED PROFILES OVER THE MOCK URBAN SETTING TEST ARRAY

15.2 AREA-AVERAGED PROFILES OVER THE MOCK URBAN SETTING TEST ARRAY 15.2 AREA-AVERAGED PROFILES OVER THE MOCK URBAN SETTING TEST ARRAY Matthew A. Nelson*, Michael J. Brown Los Alamos National Laboratory, Los Alamos, NM Eric R. Pardyjak, Joseph C. Klewicki University of

More information

Sub-canopy. measurements in. Turbulenssista ja turbulenttisista pystyvoista mäntymetsän n latvuston alapuolella

Sub-canopy. measurements in. Turbulenssista ja turbulenttisista pystyvoista mäntymetsän n latvuston alapuolella Sub-canopy measurements in Hyytiälä,, SMEAR II station Samuli Launiainen s Master thesis Turbulenssista ja turbulenttisista pystyvoista mäntymetsän n latvuston alapuolella TKE-yht yhtälö latvuston sisäll

More information

Lecture 10. Surface Energy Balance (Garratt )

Lecture 10. Surface Energy Balance (Garratt ) Lecture 10. Surface Energy Balance (Garratt 5.1-5.2) The balance of energy at the earth s surface is inextricably linked to the overlying atmospheric boundary layer. In this lecture, we consider the energy

More information

Convective Fluxes: Sensible and Latent Heat Convective Fluxes Convective fluxes require Vertical gradient of temperature / water AND Turbulence ( mixing ) Vertical gradient, but no turbulence: only very

More information

Observation of Falling Motion of Columnar Snow Crystals

Observation of Falling Motion of Columnar Snow Crystals 276 Journal of the Meteorological Society of Japan Vol. 54, No. 5 Observation of Falling Motion of Columnar Snow Crystals By Masahiro Kajikawa Department of Earth Science, Akita University, Akita, Japan

More information

Flux Tower Data Quality Analysis in the North American Monsoon Region

Flux Tower Data Quality Analysis in the North American Monsoon Region Flux Tower Data Quality Analysis in the North American Monsoon Region 1. Motivation The area of focus in this study is mainly Arizona, due to data richness and availability. Monsoon rains in Arizona usually

More information

Papers. Sea salt emission from the coastal zone. 1. Introduction

Papers. Sea salt emission from the coastal zone. 1. Introduction Papers Sea salt emission from the coastal zone OCEANOLOGIA, 42 (4), 2000. pp. 399 4. 2000, by Institute of Oceanology PAS. KEYWORDS Aerosol Sea salt Fluxes Emission Coastal zone Tomasz Petelski Maria Chomka

More information

A WIND TUNNEL STUDY OF THE VELOCITY FIELD ABOVE A MODEL PLANT CANOPY

A WIND TUNNEL STUDY OF THE VELOCITY FIELD ABOVE A MODEL PLANT CANOPY CSI RO AUST RALIA CSIRO LAN D and WATER A WIND TUNNEL STUDY OF THE VELOCITY FIELD ABOVE A MODEL PLANT CANOPY Julie M. Styles Technical Report No.36-97 (November 997) A Wind Tunnel Study of the Velocity

More information

Atmospheric stability parameters and sea storm severity

Atmospheric stability parameters and sea storm severity Coastal Engineering 81 Atmospheric stability parameters and sea storm severity G. Benassai & L. Zuzolo Institute of Meteorology & Oceanography, Parthenope University, Naples, Italy Abstract The preliminary

More information

Air Temperature at Ocean Surface Derived from Surface-Level Humidity

Air Temperature at Ocean Surface Derived from Surface-Level Humidity Journal of Oceanography Vol. 51, pp. 619 to 634. 1995 Air Temperature at Ocean Surface Derived from Surface-Level Humidity MASAHISA KUBOTA* and AKIRA SHIKAUCHI** School of Marine Science and Technology,

More information

Sergej S. Zilitinkevich 1,2,3. Division of Atmospheric Sciences, University of Helsinki, Finland

Sergej S. Zilitinkevich 1,2,3. Division of Atmospheric Sciences, University of Helsinki, Finland Atmospheric Planetary Boundary Layers (ABLs / PBLs) in stable, neural and unstable stratification: scaling, data, analytical models and surface-flux algorithms Sergej S. Zilitinkevich 1,,3 1 Division of

More information

A new lidar for water vapor and temperature measurements in the Atmospheric Boundary Layer

A new lidar for water vapor and temperature measurements in the Atmospheric Boundary Layer A new lidar for water vapor and temperature measurements in the Atmospheric Boundary Layer M. Froidevaux 1, I. Serikov 2, S. Burgos 3, P. Ristori 1, V. Simeonov 1, H. Van den Bergh 1, and M.B. Parlange

More information

First-order turbulence closure for modelling complex canopy flows

First-order turbulence closure for modelling complex canopy flows QuarterlyJournalof theroyalmeteorologicalsociety Q. J. R. Meteorol. Soc. 141: 2907 2916, October 2015 A DOI:10.1002/qj.2577 First-order turbulence closure for modelling complex canopy flows John Finnigan,

More information

Analysis of Near-Surface Oceanic Measurements Obtained During CBLAST-Low

Analysis of Near-Surface Oceanic Measurements Obtained During CBLAST-Low Analysis of Near-Surface Oceanic Measurements Obtained During CBLAST-Low John H. Trowbridge Woods Hole Oceanographic Institution, MS#12, Woods Hole, MA 02543 phone: (508) 289-2296 fax: (508) 457-2194 email:

More information

The Extremely Low Temperature in Hokkaido, Japan during Winter and its Numerical Simulation. By Chikara Nakamura* and Choji Magono**

The Extremely Low Temperature in Hokkaido, Japan during Winter and its Numerical Simulation. By Chikara Nakamura* and Choji Magono** 956 Journal of the Meteorological Society of Japan Vol. 60, No. 4 The Extremely Low Temperature in Hokkaido, Japan during 1976-77 Winter and its Numerical Simulation By Chikara Nakamura* and Choji Magono**

More information

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean

Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean Radiative Climatology of the North Slope of Alaska and the Adjacent Arctic Ocean C. Marty, R. Storvold, and X. Xiong Geophysical Institute University of Alaska Fairbanks, Alaska K. H. Stamnes Stevens Institute

More information

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4

Atmospheric Sciences 321. Science of Climate. Lecture 13: Surface Energy Balance Chapter 4 Atmospheric Sciences 321 Science of Climate Lecture 13: Surface Energy Balance Chapter 4 Community Business Check the assignments HW #4 due Wednesday Quiz #2 Wednesday Mid Term is Wednesday May 6 Practice

More information

A NOTE ON BULK AERODYNAMIC COEFFICIENTS FOR SENSIBLE HEAT AND MOISTURE FLUXES

A NOTE ON BULK AERODYNAMIC COEFFICIENTS FOR SENSIBLE HEAT AND MOISTURE FLUXES A NOTE ON BULK AERODYNAMIC COEFFICIENTS FOR SENSIBLE HEAT AND MOISTURE FLUXES S. POND and D. B. FISSEL University of British Columbia, Canada and C. A. PAULSON Oregon State University, U.S.A. (Received

More information

TWO-POINT CORRELATION ANALYSIS OF NEUTRALLY STRATIFIED FLOW WITHIN AND ABOVE A FOREST FROM LARGE-EDDY SIMULATION

TWO-POINT CORRELATION ANALYSIS OF NEUTRALLY STRATIFIED FLOW WITHIN AND ABOVE A FOREST FROM LARGE-EDDY SIMULATION TWO-POINT CORRELATION ANALYSIS OF NEUTRALLY STRATIFIED FLOW WITHIN AND ABOVE A FOREST FROM LARGE-EDDY SIMULATION HONG-BING SU 1,2, ROGER H. SHAW 1 and KYAW THA PAW U 1 1 Atmospheric Science Program, University

More information

Surface layer parameterization in WRF

Surface layer parameterization in WRF Surface layer parameteriation in WRF Laura Bianco ATOC 7500: Mesoscale Meteorological Modeling Spring 008 Surface Boundary Layer: The atmospheric surface layer is the lowest part of the atmospheric boundary

More information

Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths

Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness lengths JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jd009124, 2008 Analysis of the land surface heterogeneity and its impact on atmospheric variables and the aerodynamic and thermodynamic roughness

More information

Discussion Reply to comment by Rannik on A simple method for estimating frequency response corrections for eddy covariance systems. W.J.

Discussion Reply to comment by Rannik on A simple method for estimating frequency response corrections for eddy covariance systems. W.J. Agricultural and Forest Meteorology 07 (200) 247 25 Discussion Reply to comment by Rannik on A simple method for estimating frequency response corrections for eddy covariance systems W.J. Massman USDA/Forest

More information

Assimitron, A Newly Devised Instrument for Measuring CO2 Flux in the Surface Air Layer

Assimitron, A Newly Devised Instrument for Measuring CO2 Flux in the Surface Air Layer Assimitron, A Newly Devised nstrument for Measuring CO2 Flux in the Surface Air Layer By ZENBE UCHJMA Researcher, 1st Laboratory of Physics, Division of Meteorology, Department of Physics and Statistics,

More information

The Arctic Energy Budget

The Arctic Energy Budget The Arctic Energy Budget The global heat engine [courtesy Kevin Trenberth, NCAR]. Differential solar heating between low and high latitudes gives rise to a circulation of the atmosphere and ocean that

More information

Benefits of NT over CT. Water conservation in the NT benefits from reduced ET and runoff, and increased infiltration.

Benefits of NT over CT. Water conservation in the NT benefits from reduced ET and runoff, and increased infiltration. Benefits of NT over CT Water conservation in the NT benefits from reduced ET and runoff, and increased infiltration. Weed control. Increased water and root penetration Uniform stands. Typically 4 to 8

More information

Inclusion of a Drag Approach in the Town Energy Balance (TEB) Scheme: Offline 1D Evaluation in a Street Canyon

Inclusion of a Drag Approach in the Town Energy Balance (TEB) Scheme: Offline 1D Evaluation in a Street Canyon OCTOBER 2008 H A M D I A N D M A S S O N 2627 Inclusion of a Drag Approach in the Town Energy Balance (TEB) Scheme: Offline 1D Evaluation in a Street Canyon R. HAMDI Royal Meteorological Institute, Brussels,

More information

PALM group. last update: 21st September 2015

PALM group. last update: 21st September 2015 PALM s Canopy Model PALM group Institute of Meteorology and Climatology, Leibniz Universität Hannover last update: 21st September 2015 PALM group PALM Seminar 1 / 14 Overview The canopy model embedded

More information

LIDAR OBSERVATIONS OF FINE-SCALE ATMOSPHERIC GRAVITY WAVES IN THE NOCTURNAL BOUNDARY LAYER ABOVE AN ORCHARD CANOPY

LIDAR OBSERVATIONS OF FINE-SCALE ATMOSPHERIC GRAVITY WAVES IN THE NOCTURNAL BOUNDARY LAYER ABOVE AN ORCHARD CANOPY LIDAR OBSERVATIONS OF FINE-SCALE ATMOSPHERIC GRAVITY WAVES IN THE NOCTURNAL BOUNDARY LAYER ABOVE AN ORCHARD CANOPY Tyson N. Randall, Elizabeth R. Jachens, Shane D. Mayor California State University, Chico

More information

On the Velocity Gradient in Stably Stratified Sheared Flows. Part 2: Observations and Models

On the Velocity Gradient in Stably Stratified Sheared Flows. Part 2: Observations and Models Boundary-Layer Meteorol (2010) 135:513 517 DOI 10.1007/s10546-010-9487-y RESEARCH NOTE On the Velocity Gradient in Stably Stratified Sheared Flows. Part 2: Observations and Models Rostislav D. Kouznetsov

More information

The Urban Canopy and the Plant Canopy

The Urban Canopy and the Plant Canopy The Urban Canopy and the Plant Canopy John Finnigan: CSIRO Australia Margi Bohm: University of Canberra Roger Shaw: U C Davis Ned Patton: NCAR Ian Harman: CSIRO Australia www.csiro.au Properties of turbulent

More information

Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land Atmosphere Schemes for Environmental Modeling

Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land Atmosphere Schemes for Environmental Modeling 1498 JOURNAL OF APPLIED METEOROLOGY Turbulent Transfer Coefficients and Calculation of Air Temperature inside Tall Grass Canopies in Land Atmosphere Schemes for Environmental Modeling D. T. MIHAILOVIC

More information

Modeling CO 2 sources, sinks, and fluxes within a forest canopy

Modeling CO 2 sources, sinks, and fluxes within a forest canopy JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. D6, PAGES 6081 6091, MARCH 27, 1999 Modeling CO 2 sources, sinks, and fluxes within a forest canopy Gabriel G. Katul School of the Environment, Duke University,

More information

Evapotranspiration: Theory and Applications

Evapotranspiration: Theory and Applications Evapotranspiration: Theory and Applications Lu Zhang ( 张橹 ) CSIRO Land and Water Evaporation: part of our everyday life Evapotranspiration Global Land: P = 800 mm Q = 315 mm E = 485 mm Evapotranspiration

More information

3.12 NUMERICAL SIMULATION OF CANOPY FLOW AND CARBON DIOXIDE FLUX AT THE WEST COAST FLUX STATION

3.12 NUMERICAL SIMULATION OF CANOPY FLOW AND CARBON DIOXIDE FLUX AT THE WEST COAST FLUX STATION 3.12 NUMERICAL SIMULATION OF CANOPY FLOW AND CARBON DIOXIDE FLUX AT THE WEST COAST FLUX STATION Haizhen Sun, Terry L. Clark, Roland B. Stull and Andy T. Black University of British Columbia, Vancouver,

More information

THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS

THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS CHAPTER 7: THE LAND SURFACE SCHEME OF THE UNIFIED MODEL AND RELATED CONSIDERATIONS 7.1: Introduction The atmosphere is sensitive to variations in processes at the land surface. This was shown in the earlier

More information

A dynamic analysis of windthrow of trees

A dynamic analysis of windthrow of trees A dynamic analysis of windthrow of trees A.H. ENGLAND 1, C.J. BAKER 2 AND S.E.T. SAUNDERSON 1 1 Division of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, England 2 School of Civil

More information

P1M.4 COUPLED ATMOSPHERE, LAND-SURFACE, HYDROLOGY, OCEAN-WAVE, AND OCEAN-CURRENT MODELS FOR MESOSCALE WATER AND ENERGY CIRCULATIONS

P1M.4 COUPLED ATMOSPHERE, LAND-SURFACE, HYDROLOGY, OCEAN-WAVE, AND OCEAN-CURRENT MODELS FOR MESOSCALE WATER AND ENERGY CIRCULATIONS P1M.4 COUPLED ATMOSPHERE, LAND-SURFACE, HYDROLOGY, OCEAN-WAVE, AND OCEAN-CURRENT MODELS FOR MESOSCALE WATER AND ENERGY CIRCULATIONS Haruyasu NAGAI *, Takuya KOBAYASHI, Katsunori TSUDUKI, and Kyeongok KIM

More information

Supplement of Upside-down fluxes Down Under: CO 2 net sink in winter and net source in summer in a temperate evergreen broadleaf forest

Supplement of Upside-down fluxes Down Under: CO 2 net sink in winter and net source in summer in a temperate evergreen broadleaf forest Supplement of Biogeosciences, 15, 3703 3716, 2018 https://doi.org/10.5194/bg-15-3703-2018-supplement Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement

More information

$%&i&fr 4e. ?s~ /zy REPORT DOCUMENTATION PAGE. tw'*/<?/ //s. VS^/I'M /V'9%s>lJ /I F5^c#>c7^ Crf /f^z-e^st^sy

$%&i&fr 4e. ?s~ /zy REPORT DOCUMENTATION PAGE. tw'*/<?/ //s. VS^/I'M /V'9%s>lJ /I F5^c#>c7^ Crf /f^z-e^st^sy REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 9^^^ «or rlw.no Instructions, searchmg.,,,, data ^ - collection of information, including suggestions for reducing this burden to Washmotor«2,?nl?

More information

Estimation of Surface Roughness Length and Displacement Height from Single-Level Sonic Anemometer Data

Estimation of Surface Roughness Length and Displacement Height from Single-Level Sonic Anemometer Data 708 JOURNAL OF APPLIED METEOROLOGY VOLUME 39 Estimation of Surface Roughness Length and Displacement Height from Single-Level Sonic Anemometer Data PAOLO MARTANO CNR-ISIATA, Lecce, Italy (Manuscript received

More information

Multichoice (22 x 1 2 % = 11%)

Multichoice (22 x 1 2 % = 11%) EAS572, The Atmospheric Boundary Layer Final Exam 7 Dec. 2010 Professor: J.D. Wilson Time available: 150 mins Value: 35% Notes: Indices j = (1, 2, 3) are to be interpreted as denoting respectively the

More information

Measuring Carbon Using Micrometeorological Methods

Measuring Carbon Using Micrometeorological Methods Measuring Carbon Using Micrometeorological Methods Theory Theory Sink = Vertical Transport + Change in Horizontal Transport + Change in Storage + Diffusion Storage within walls Diffusion across walls Transport

More information

Fall Colloquium on the Physics of Weather and Climate: Regional Weather Predictability and Modelling. 29 September - 10 October, 2008

Fall Colloquium on the Physics of Weather and Climate: Regional Weather Predictability and Modelling. 29 September - 10 October, 2008 1966-10 Fall Colloquium on the Physics of Weather and Climate: Regional Weather Predictability and Modelling 9 September - 10 October, 008 Physic of stable ABL and PBL? Possible improvements of their parameterizations

More information

Alexander, D., Hang,C., Pardyjak, E.R., Lothon, M., Lohou, F., Derrien, S., de Coster, O., Pietersen, H., and Pique, E.

Alexander, D., Hang,C., Pardyjak, E.R., Lothon, M., Lohou, F., Derrien, S., de Coster, O., Pietersen, H., and Pique, E. Examination of turbulence decay and the role of mechanical and buoyant forcing over a forest during the Boundary Layer Late Afternoon and Sunset (BLLAST) Experiment Alexander, D., Hang,C., Pardyjak, E.R.,

More information

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model W. O Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California

More information

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1

ESS Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 ESS5203.03 - Turbulence and Diffusion in the Atmospheric Boundary-Layer : Winter 2017: Notes 1 Text: J.R.Garratt, The Atmospheric Boundary Layer, 1994. Cambridge Also some material from J.C. Kaimal and

More information

Dynamical and Thermal Effects of Gravity Waves in the Terrestrial Thermosphere-Ionosphere

Dynamical and Thermal Effects of Gravity Waves in the Terrestrial Thermosphere-Ionosphere 1/25 Dynamical and Thermal Effects of Gravity Waves in the Terrestrial Thermosphere-Ionosphere Erdal Yiğit 1,3, Alexander S. Medvedev 2, and Aaron J. Ridley 1 1 University of Michigan, Ann Arbor, USA 2

More information

The Ocean-Atmosphere System II: Oceanic Heat Budget

The Ocean-Atmosphere System II: Oceanic Heat Budget The Ocean-Atmosphere System II: Oceanic Heat Budget C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth MAR 555 Lecture 2: The Oceanic Heat Budget Q

More information

6.4 EXPERIMENTAL DETERMINATION OF THE TURBULENT KINETIC ENERGY BUDGET WITHIN AND ABOVE AN URBAN CANOPY

6.4 EXPERIMENTAL DETERMINATION OF THE TURBULENT KINETIC ENERGY BUDGET WITHIN AND ABOVE AN URBAN CANOPY 6.4 EXPERIMENTAL DETERMINATION OF THE TURBULENT KINETIC ENERGY BUDGET WITHIN AND ABOVE AN URBAN CANOPY Andreas Christen () *, Mathias W. Rotach (), Roland Vogt () () University of Basel, Institute of Meteorology,

More information

Treatment of Land-Use and Urbanization

Treatment of Land-Use and Urbanization Treatment of Land-Use and Urbanization LECTURE 9 Alexander Mahura Danish Meteorological Institute, DMI, Copenhagen, Denmark NetFAM Summer School on Integrated Modelling 7-12 July 2008, Zelenogorsk, Russia

More information

Keywords: Large-eddy simulation, Turbulent coherent structure, Four quadrant analysis, Integral scale

Keywords: Large-eddy simulation, Turbulent coherent structure, Four quadrant analysis, Integral scale The Eighth Asia-Pacific Conference on Wind Engineering, December 4, 3, Chennai, India NUMERICAL ANALYSIS OF THE MOMENTUM TRANSPORT AND TEMPORAL AND SPATIAL SCALES OF TURBULENT COHERENT STRUCTURES IN THE

More information

Spring Semester 2011 March 1, 2011

Spring Semester 2011 March 1, 2011 METR 130: Lecture 3 - Atmospheric Surface Layer (SL - Neutral Stratification (Log-law wind profile - Stable/Unstable Stratification (Monin-Obukhov Similarity Theory Spring Semester 011 March 1, 011 Reading

More information

On flow separation under stable conditions: results from flow visualization in MATERHORN-X

On flow separation under stable conditions: results from flow visualization in MATERHORN-X On flow separation under stable conditions: results from flow visualization in MATERHORN-X Michael Thompson September 6 th 2013 4:45pm McKenna Hall, Notre Dame University of Notre Dame Notre Dame Environmental

More information

A GROUND-BASED PROCEDURE FOR ESTIMATING LATENT HEAT ENERGY FLUXES 1 Eric Harmsen 2, Richard Díaz 3 and Javier Chaparro 3

A GROUND-BASED PROCEDURE FOR ESTIMATING LATENT HEAT ENERGY FLUXES 1 Eric Harmsen 2, Richard Díaz 3 and Javier Chaparro 3 A GROUND-BASED PROCEDURE FOR ESTIMATING LATENT HEAT ENERGY FLUXES 1 Eric Harmsen 2, Richard Díaz 3 and Javier Chaparro 3 1. This material is based on research supported by NOAA-CREST and NASA-EPSCoR (NCC5-595).

More information