Example of MC for Continuous State Space

Size: px
Start display at page:

Download "Example of MC for Continuous State Space"

Transcription

1 Example of MC for Continuous State Space Notes 2, Sta624 The MC we discussed so far are discrete state space, i.e. the random variable take values in a discrete space. We shall discuss here briefl MC with continuous state space, in particular, the random variables take value in the real line R 1. Recall: A Markov Chain is a sequence of random variables X 0, X 1, X 2,... taking values in a space X. The main propert of the chain is that the past is conditionall independent of the future given the present. Here X = R 1 Transition probabilit matrix needs to be replaced b a transition probabilit function/kernel: p ij becomes p(x ); which is a probabilit densit function for an given value. Or a conditional densit. Interpretation: p(x )dx is the probabilit of going to x given it is at now. Example 1 MC for continuous state space (take values as continuous random variables). But still discrete time (i.e. a chain). In the following example p(x ) is taken to be Uniform (1, 1). State space is the interval (0, 1). X 0 an number between 0 and 1 (or could be from an distribution on (0,1) interval) X 1 Unif (1 X 0, 1) X 2 Unif (1 X 1, 1)... X n Unif (1 X n 1, 1);... This is an MC. If the distribution of X n is convergent at all (here it does), the stationar/limiting distribution (densit f(x)) must satisf the following (integral) equation: f(x) = f()p(x )d for an x (1) We ma check that the probabilit densit function f(x) = 2xI[0 < x < 1] solves the above equation. [with p(x ) = U(1, 1)]. Therefore X n, when n large, will have a densit approximatel equal to f(x) = 2x for 0 < x < 1. Remark: Compare (1) to the equation for a discrete limiting distribution π j = lim Pij: n π j = i π i P ij for an j we see that (1) is just the continuous version of the above equation. 1

2 Detail verifications: Since We compute, using f() = 2, 1 0 p(x )f()d = p(x ) = I [1 <x<1] 1 I [1 <x<1] 2d = 2 d = 2x. 1 x Notice here we onl used the random variables from uniform distributions and end up with a random variable with densit f(x) = 2x. The idea of MCMC is to use an eas p(x ) in the iteration but end up with a random variable with (complicated) f(x) that we desire. Example 2 Suppose X 0 an number between 0 and 1 X 1 Unif (0, 1 X 0 ) X 2 Unif (0, 1 X 1 )... X n Unif (0, 1 X n 1 ), Find the stationar distribution f(x) of this MC. This will also be the approximate distribution of X n for large n. 2

3 Usuall the checking or solving of the equation (1) is not eas. But the following Theorem offers a special easier case. Theorem 1 If a probabilit densit function f(x) and a transition probabilit kernel p(x ) satisf the so called detailed balance equation : then the equation (1) above is satisfied. f(x)p( x) = f()p(x ) (2) We usuall shall check (2) instead of (1). In the example 1, f(x) = 2xI[0 < x < 1] and p(x ) = I [1 <x<1], therefore and I[1 x < < 1] f(x)p( x) = 2xI[0 < x < 1] x f()p(x ) = 2I[0 < < 1] I [1 <x<1] = 2I[0 < x < 1; 1 x < < 1], = 2I[0 < < 1, 1 < x < 1]. Draw two pictures, and ou will convince ourself the two right hand side are the same region. 3

4 Metropollis Tpe Chains: At stage n, suppose a MC takes value n. We generate the candidate value Y using the uniform random walk: Y Unif[ n a, n + a]. Finall we accept the generated Y value as n+1 if f( n ) > U(0, 1) (where U(0, 1) denote another independentl generated random variable) otherwise the MC do not move, i.e. n+1 = n. We can show that this transition kernel function, and densit function f( ) pair satisf the detailed balance equation. The transition probabilit densit function is ( ) 1 2a I[ n a < Y < n + a]p r f( n ) > U since U is from uniform (0,1), therefore we have = 1 { 2a I[ Y n < a] min 1, } f( n ) From here ou can proof the detailed balance equation hold. Remark: If we want to construct an MC that has limiting distribution f( ) b Metropollis, we need to be able to compute the ratio f( n ). This impl we do not need to worr about the constant if f(t) = Cg(t). 4

5 Application in Baesian Analsis In statistical problem of Baesian inference, we are interested in the posterior distribution/densit, or the mean of the posterior etc. posterior densit = constant prior densit function likelihood function. Example 0: X i N(θ, σ 2 ) and the prior on θ is N(µ, τ 2 ). Here σ 2, τ 2, µ are all known. Example 1: Using the R package mcmc. Two dim parameter. In the package, we input the posterior as log of un-normalized posterior. Here prior densit is g(α, λ) = C α trigamma(α) 1 and the likelihood function is a two parameter gamma distribution i λ λ α Γ(α) xα 1 i exp( λx i ). > lupost <- function(theta) { + stopifnot(is.numeric(theta)) + stopifnot(is.finite(theta)) + stopifnot(length(theta) == 2) + alpha <- theta[1] + lambda <- theta[2] + if (alpha <= 0) return(- Inf) + if (lambda <= 0) return(- Inf) + logl <- sum(dgamma(x, shape = alpha, rate = lambda, log = TRUE)) + lpri <- (1 / 2) * log(alpha * trigamma(alpha) - 1) - log(lambda) + return(logl + lpri) + } The onl trick bit is that we define this function to be when parameter is off the allowed space. > out <- metrop(out, blen = 200, nbatch = 500) > alpha <- out$batch[, 1] > lambda <- out$batch[, 2] > t.test(alpha) 5

Stat 5102 Notes: Markov Chain Monte Carlo and Bayesian Inference

Stat 5102 Notes: Markov Chain Monte Carlo and Bayesian Inference Stat 5102 Notes: Markov Chain Monte Carlo and Bayesian Inference Charles J. Geyer April 6, 2009 1 The Problem This is an example of an application of Bayes rule that requires some form of computer analysis.

More information

Stat 5102 Notes: Markov Chain Monte Carlo and Bayesian Inference

Stat 5102 Notes: Markov Chain Monte Carlo and Bayesian Inference Stat 5102 Notes: Markov Chain Monte Carlo and Bayesian Inference Charles J. Geyer March 30, 2012 1 The Problem This is an example of an application of Bayes rule that requires some form of computer analysis.

More information

Monte Carlo integration

Monte Carlo integration Monte Carlo integration Eample of a Monte Carlo sampler in D: imagine a circle radius L/ within a square of LL. If points are randoml generated over the square, what s the probabilit to hit within circle?

More information

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007

Sequential Monte Carlo and Particle Filtering. Frank Wood Gatsby, November 2007 Sequential Monte Carlo and Particle Filtering Frank Wood Gatsby, November 2007 Importance Sampling Recall: Let s say that we want to compute some expectation (integral) E p [f] = p(x)f(x)dx and we remember

More information

Computer intensive statistical methods

Computer intensive statistical methods Lecture 13 MCMC, Hybrid chains October 13, 2015 Jonas Wallin jonwal@chalmers.se Chalmers, Gothenburg university MH algorithm, Chap:6.3 The metropolis hastings requires three objects, the distribution of

More information

Computational statistics

Computational statistics Computational statistics Markov Chain Monte Carlo methods Thierry Denœux March 2017 Thierry Denœux Computational statistics March 2017 1 / 71 Contents of this chapter When a target density f can be evaluated

More information

CHAPTER 5. Jointly Probability Mass Function for Two Discrete Distributed Random Variables:

CHAPTER 5. Jointly Probability Mass Function for Two Discrete Distributed Random Variables: CHAPTER 5 Jointl Distributed Random Variable There are some situations that experiment contains more than one variable and researcher interested in to stud joint behavior of several variables at the same

More information

Recall Discrete Distribution. 5.2 Continuous Random Variable. A probability histogram. Density Function 3/27/2012

Recall Discrete Distribution. 5.2 Continuous Random Variable. A probability histogram. Density Function 3/27/2012 3/7/ Recall Discrete Distribution 5. Continuous Random Variable For a discrete distribution, for eample Binomial distribution with n=5, and p=.4, the probabilit distribution is f().7776.59.3456.34.768.4.3

More information

Continuous Random Variables 1

Continuous Random Variables 1 Continuous Random Variables 1 STA 256: Fall 2018 1 This slide show is an open-source document. See last slide for copyright information. 1 / 32 Continuous Random Variables: The idea Probability is area

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 4 EXAINATIONS SOLUTIONS GRADUATE DIPLOA PAPER I STATISTICAL THEORY & ETHODS The Societ provides these solutions to assist candidates preparing for the examinations in future

More information

Markov Chain Monte Carlo (MCMC)

Markov Chain Monte Carlo (MCMC) Markov Chain Monte Carlo (MCMC Dependent Sampling Suppose we wish to sample from a density π, and we can evaluate π as a function but have no means to directly generate a sample. Rejection sampling can

More information

Statistics/Mathematics 310 Larget April 14, Solution to Assignment #9

Statistics/Mathematics 310 Larget April 14, Solution to Assignment #9 Solution to Assignment #9 1. A sample s = (753.0, 1396.9, 1528.2, 1646.9, 717.6, 446.5, 848.0, 1222.0, 748.5, 610.1) is modeled as an i.i.d sample from a Gamma(α, λ) distribution. You may think of this

More information

STA 294: Stochastic Processes & Bayesian Nonparametrics

STA 294: Stochastic Processes & Bayesian Nonparametrics MARKOV CHAINS AND CONVERGENCE CONCEPTS Markov chains are among the simplest stochastic processes, just one step beyond iid sequences of random variables. Traditionally they ve been used in modelling a

More information

CSC 2541: Bayesian Methods for Machine Learning

CSC 2541: Bayesian Methods for Machine Learning CSC 2541: Bayesian Methods for Machine Learning Radford M. Neal, University of Toronto, 2011 Lecture 3 More Markov Chain Monte Carlo Methods The Metropolis algorithm isn t the only way to do MCMC. We ll

More information

Weakness of Beta priors (or conjugate priors in general) They can only represent a limited range of prior beliefs. For example... There are no bimodal beta distributions (except when the modes are at 0

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

Math Stochastic Processes & Simulation. Davar Khoshnevisan University of Utah

Math Stochastic Processes & Simulation. Davar Khoshnevisan University of Utah Math 5040 1 Stochastic Processes & Simulation Davar Khoshnevisan University of Utah Module 1 Generation of Discrete Random Variables Just about every programming language and environment has a randomnumber

More information

Statistics 3858 : Maximum Likelihood Estimators

Statistics 3858 : Maximum Likelihood Estimators Statistics 3858 : Maximum Likelihood Estimators 1 Method of Maximum Likelihood In this method we construct the so called likelihood function, that is L(θ) = L(θ; X 1, X 2,..., X n ) = f n (X 1, X 2,...,

More information

Introduction to Markov Chain Monte Carlo

Introduction to Markov Chain Monte Carlo Introduction to Markov Chain Monte Carlo Jim Albert March 18, 2018 A Selected Data Problem Here is an interesting problem with selected data. Suppose you are measuring the speeds of cars driving on an

More information

Part 7: Hierarchical Modeling

Part 7: Hierarchical Modeling Part 7: Hierarchical Modeling!1 Nested data It is common for data to be nested: i.e., observations on subjects are organized by a hierarchy Such data are often called hierarchical or multilevel For example,

More information

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007

Particle Filtering a brief introductory tutorial. Frank Wood Gatsby, August 2007 Particle Filtering a brief introductory tutorial Frank Wood Gatsby, August 2007 Problem: Target Tracking A ballistic projectile has been launched in our direction and may or may not land near enough to

More information

SC7/SM6 Bayes Methods HT18 Lecturer: Geoff Nicholls Lecture 2: Monte Carlo Methods Notes and Problem sheets are available at http://www.stats.ox.ac.uk/~nicholls/bayesmethods/ and via the MSc weblearn pages.

More information

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis

(5) Multi-parameter models - Gibbs sampling. ST440/540: Applied Bayesian Analysis Summarizing a posterior Given the data and prior the posterior is determined Summarizing the posterior gives parameter estimates, intervals, and hypothesis tests Most of these computations are integrals

More information

Bayesian GLMs and Metropolis-Hastings Algorithm

Bayesian GLMs and Metropolis-Hastings Algorithm Bayesian GLMs and Metropolis-Hastings Algorithm We have seen that with conjugate or semi-conjugate prior distributions the Gibbs sampler can be used to sample from the posterior distribution. In situations,

More information

Markov Chain Monte Carlo

Markov Chain Monte Carlo Markov Chain Monte Carlo Recall: To compute the expectation E ( h(y ) ) we use the approximation E(h(Y )) 1 n n h(y ) t=1 with Y (1),..., Y (n) h(y). Thus our aim is to sample Y (1),..., Y (n) from f(y).

More information

The mcmc Package. July 27, metrop... 1 olbm Index 5. Metropolis Algorithm

The mcmc Package. July 27, metrop... 1 olbm Index 5. Metropolis Algorithm The mcmc Package July 27, 2006 Version 0.5-1 Date 2 Apr 2005 Title Markov Chain Monte Carlo Author Charles J. Geyer . Maintainer Charles J. Geyer Depends R

More information

Markov chain Monte Carlo and Reversible Markov chains

Markov chain Monte Carlo and Reversible Markov chains Markov chain Monte Carlo and Reversible Markov chains STK30 Monday February 8 Problem Want to evaluate(estimate), for some discrete random variable X N θ = E[h(X)] = h(j)π j Theparameterθ mayforinstancebeanapproximationtosome

More information

Bayesian Graphical Models

Bayesian Graphical Models Graphical Models and Inference, Lecture 16, Michaelmas Term 2009 December 4, 2009 Parameter θ, data X = x, likelihood L(θ x) p(x θ). Express knowledge about θ through prior distribution π on θ. Inference

More information

MCMC 2: Lecture 3 SIR models - more topics. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham

MCMC 2: Lecture 3 SIR models - more topics. Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham MCMC 2: Lecture 3 SIR models - more topics Phil O Neill Theo Kypraios School of Mathematical Sciences University of Nottingham Contents 1. What can be estimated? 2. Reparameterisation 3. Marginalisation

More information

Introduction to Bayesian Computation

Introduction to Bayesian Computation Introduction to Bayesian Computation Dr. Jarad Niemi STAT 544 - Iowa State University March 20, 2018 Jarad Niemi (STAT544@ISU) Introduction to Bayesian Computation March 20, 2018 1 / 30 Bayesian computation

More information

MCMC algorithms for fitting Bayesian models

MCMC algorithms for fitting Bayesian models MCMC algorithms for fitting Bayesian models p. 1/1 MCMC algorithms for fitting Bayesian models Sudipto Banerjee sudiptob@biostat.umn.edu University of Minnesota MCMC algorithms for fitting Bayesian models

More information

Introduction to Bayesian Statistics 1

Introduction to Bayesian Statistics 1 Introduction to Bayesian Statistics 1 STA 442/2101 Fall 2018 1 This slide show is an open-source document. See last slide for copyright information. 1 / 42 Thomas Bayes (1701-1761) Image from the Wikipedia

More information

Lecture 7 and 8: Markov Chain Monte Carlo

Lecture 7 and 8: Markov Chain Monte Carlo Lecture 7 and 8: Markov Chain Monte Carlo 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering University of Cambridge http://mlg.eng.cam.ac.uk/teaching/4f13/ Ghahramani

More information

Bayesian Networks in Educational Assessment

Bayesian Networks in Educational Assessment Bayesian Networks in Educational Assessment Estimating Parameters with MCMC Bayesian Inference: Expanding Our Context Roy Levy Arizona State University Roy.Levy@asu.edu 2017 Roy Levy MCMC 1 MCMC 2 Posterior

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee University of Minnesota July 20th, 2008 1 Bayesian Principles Classical statistics: model parameters are fixed and unknown. A Bayesian thinks of parameters

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

36-720: Latent Class Models

36-720: Latent Class Models 36-720: Latent Class Models Brian Junker October 17, 2007 Latent Class Models and Simpson s Paradox Latent Class Model for a Table of Counts An Intuitive E-M Algorithm for Fitting Latent Class Models Deriving

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

17 : Markov Chain Monte Carlo

17 : Markov Chain Monte Carlo 10-708: Probabilistic Graphical Models, Spring 2015 17 : Markov Chain Monte Carlo Lecturer: Eric P. Xing Scribes: Heran Lin, Bin Deng, Yun Huang 1 Review of Monte Carlo Methods 1.1 Overview Monte Carlo

More information

18.175: Lecture 30 Markov chains

18.175: Lecture 30 Markov chains 18.175: Lecture 30 Markov chains Scott Sheffield MIT Outline Review what you know about finite state Markov chains Finite state ergodicity and stationarity More general setup Outline Review what you know

More information

INTRODUCTION TO BAYESIAN STATISTICS

INTRODUCTION TO BAYESIAN STATISTICS INTRODUCTION TO BAYESIAN STATISTICS Sarat C. Dass Department of Statistics & Probability Department of Computer Science & Engineering Michigan State University TOPICS The Bayesian Framework Different Types

More information

Bayesian Inference. Sudhir Shankar Raman Translational Neuromodeling Unit, UZH & ETH. The Reverend Thomas Bayes ( )

Bayesian Inference. Sudhir Shankar Raman Translational Neuromodeling Unit, UZH & ETH. The Reverend Thomas Bayes ( ) The Reverend Thomas Baes (1702-1761) Baesian Inference Sudhir Shankar Raman Translational Neuromodeling Unit, UZH & ETH With man thanks for some slides to: Klaas Enno Stephan & Ka H. Brodersen Wh do I

More information

Sampling from complex probability distributions

Sampling from complex probability distributions Sampling from complex probability distributions Louis J. M. Aslett (louis.aslett@durham.ac.uk) Department of Mathematical Sciences Durham University UTOPIAE Training School II 4 July 2017 1/37 Motivation

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 1. General Background 2. Constructing Prior Distributions 3. Properties of Bayes Estimators and Tests 4. Bayesian Analysis of the Multiple Regression Model 5. Bayesian

More information

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 How Random Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 1 Center for Complex Systems Research and Department of Physics University

More information

SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH68181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question A1 a) The joint cdf of X Y is F X,Y x, ) x 0 0 4uv + u + v + 1 dudv 4 u v + u + uv + u ] x dv 0 1 4 0 1 x v + x + xv

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections Chapter 3 - continued 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions

More information

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018

Markov Chain Monte Carlo Inference. Siamak Ravanbakhsh Winter 2018 Graphical Models Markov Chain Monte Carlo Inference Siamak Ravanbakhsh Winter 2018 Learning objectives Markov chains the idea behind Markov Chain Monte Carlo (MCMC) two important examples: Gibbs sampling

More information

Monte Carlo-based statistical methods (MASM11/FMS091)

Monte Carlo-based statistical methods (MASM11/FMS091) Monte Carlo-based statistical methods (MASM11/FMS091) Jimmy Olsson Centre for Mathematical Sciences Lund University, Sweden Lecture 12 MCMC for Bayesian computation II March 1, 2013 J. Olsson Monte Carlo-based

More information

USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL*

USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL* USEFUL PROPERTIES OF THE MULTIVARIATE NORMAL* 3 Conditionals and marginals For Bayesian analysis it is very useful to understand how to write joint, marginal, and conditional distributions for the multivariate

More information

David Giles Bayesian Econometrics

David Giles Bayesian Econometrics David Giles Bayesian Econometrics 5. Bayesian Computation Historically, the computational "cost" of Bayesian methods greatly limited their application. For instance, by Bayes' Theorem: p(θ y) = p(θ)p(y

More information

10. Exchangeability and hierarchical models Objective. Recommended reading

10. Exchangeability and hierarchical models Objective. Recommended reading 10. Exchangeability and hierarchical models Objective Introduce exchangeability and its relation to Bayesian hierarchical models. Show how to fit such models using fully and empirical Bayesian methods.

More information

Likelihood-free MCMC

Likelihood-free MCMC Bayesian inference for stable distributions with applications in finance Department of Mathematics University of Leicester September 2, 2011 MSc project final presentation Outline 1 2 3 4 Classical Monte

More information

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n =

Spring 2012 Math 541A Exam 1. X i, S 2 = 1 n. n 1. X i I(X i < c), T n = Spring 2012 Math 541A Exam 1 1. (a) Let Z i be independent N(0, 1), i = 1, 2,, n. Are Z = 1 n n Z i and S 2 Z = 1 n 1 n (Z i Z) 2 independent? Prove your claim. (b) Let X 1, X 2,, X n be independent identically

More information

Control Variates for Markov Chain Monte Carlo

Control Variates for Markov Chain Monte Carlo Control Variates for Markov Chain Monte Carlo Dellaportas, P., Kontoyiannis, I., and Tsourti, Z. Dept of Statistics, AUEB Dept of Informatics, AUEB 1st Greek Stochastics Meeting Monte Carlo: Probability

More information

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017

Markov Chain Monte Carlo (MCMC) and Model Evaluation. August 15, 2017 Markov Chain Monte Carlo (MCMC) and Model Evaluation August 15, 2017 Frequentist Linking Frequentist and Bayesian Statistics How can we estimate model parameters and what does it imply? Want to find the

More information

Exponential families also behave nicely under conditioning. Specifically, suppose we write η = (η 1, η 2 ) R k R p k so that

Exponential families also behave nicely under conditioning. Specifically, suppose we write η = (η 1, η 2 ) R k R p k so that 1 More examples 1.1 Exponential families under conditioning Exponential families also behave nicely under conditioning. Specifically, suppose we write η = η 1, η 2 R k R p k so that dp η dm 0 = e ηt 1

More information

Using the R package polyapost

Using the R package polyapost Using the R package polyapost As described in class the R package polyapost lets one simulate complete copies of a population give the values in the sample. Here will well give a couple of examples. More

More information

Test Code: STA/STB (Short Answer Type) 2013 Junior Research Fellowship for Research Course in Statistics

Test Code: STA/STB (Short Answer Type) 2013 Junior Research Fellowship for Research Course in Statistics Test Code: STA/STB (Short Answer Type) 2013 Junior Research Fellowship for Research Course in Statistics The candidates for the research course in Statistics will have to take two shortanswer type tests

More information

Package BayesS5. February 24, 2017

Package BayesS5. February 24, 2017 Tpe Package Package BaesS5 Februar 24, 2017 Title Baesian Variable Selection Using Simplified Shotgun Stochastic Search with Screening (S5) Version 1.30 Date 2017-02-24 Author Minsuk Shin and Ruoxuan Tian

More information

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D.

Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Web Appendix for Hierarchical Adaptive Regression Kernels for Regression with Functional Predictors by D. B. Woodard, C. Crainiceanu, and D. Ruppert A. EMPIRICAL ESTIMATE OF THE KERNEL MIXTURE Here we

More information

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009

Likelihood NIPS July 30, Gaussian Process Regression with Student-t. Likelihood. Jarno Vanhatalo, Pasi Jylanki and Aki Vehtari NIPS-2009 with with July 30, 2010 with 1 2 3 Representation Representation for Distribution Inference for the Augmented Model 4 Approximate Laplacian Approximation Introduction to Laplacian Approximation Laplacian

More information

Introduction to Linear Models

Introduction to Linear Models Introduction to Linear Models STA721 Linear Models Duke Universit Merlise Clde August 25, 2015 Coordinates Instructor: Merlise Clde 214 Old Chemistr Office Hours MWF 1:00-2:0 or right after class (or b

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

1 Solution to Problem 2.1

1 Solution to Problem 2.1 Solution to Problem 2. I incorrectly worked this exercise instead of 2.2, so I decided to include the solution anyway. a) We have X Y /3, which is a - function. It maps the interval, ) where X lives) onto

More information

Principles of Bayesian Inference

Principles of Bayesian Inference Principles of Bayesian Inference Sudipto Banerjee 1 and Andrew O. Finley 2 1 Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, U.S.A. 2 Department of Forestry & Department

More information

Bayesian Estimation with Sparse Grids

Bayesian Estimation with Sparse Grids Bayesian Estimation with Sparse Grids Kenneth L. Judd and Thomas M. Mertens Institute on Computational Economics August 7, 27 / 48 Outline Introduction 2 Sparse grids Construction Integration with sparse

More information

Hyperparameter estimation in Dirichlet process mixture models

Hyperparameter estimation in Dirichlet process mixture models Hyperparameter estimation in Dirichlet process mixture models By MIKE WEST Institute of Statistics and Decision Sciences Duke University, Durham NC 27706, USA. SUMMARY In Bayesian density estimation and

More information

Computer Practical: Metropolis-Hastings-based MCMC

Computer Practical: Metropolis-Hastings-based MCMC Computer Practical: Metropolis-Hastings-based MCMC Andrea Arnold and Franz Hamilton North Carolina State University July 30, 2016 A. Arnold / F. Hamilton (NCSU) MH-based MCMC July 30, 2016 1 / 19 Markov

More information

Bayesian Methods with Monte Carlo Markov Chains II

Bayesian Methods with Monte Carlo Markov Chains II Bayesian Methods with Monte Carlo Markov Chains II Henry Horng-Shing Lu Institute of Statistics National Chiao Tung University hslu@stat.nctu.edu.tw http://tigpbp.iis.sinica.edu.tw/courses.htm 1 Part 3

More information

Bayesian Inference and MCMC

Bayesian Inference and MCMC Bayesian Inference and MCMC Aryan Arbabi Partly based on MCMC slides from CSC412 Fall 2018 1 / 18 Bayesian Inference - Motivation Consider we have a data set D = {x 1,..., x n }. E.g each x i can be the

More information

Statistical Inference

Statistical Inference Statistical Inference Robert L. Wolpert Institute of Statistics and Decision Sciences Duke University, Durham, NC, USA Week 12. Testing and Kullback-Leibler Divergence 1. Likelihood Ratios Let 1, 2, 2,...

More information

eqr094: Hierarchical MCMC for Bayesian System Reliability

eqr094: Hierarchical MCMC for Bayesian System Reliability eqr094: Hierarchical MCMC for Bayesian System Reliability Alyson G. Wilson Statistical Sciences Group, Los Alamos National Laboratory P.O. Box 1663, MS F600 Los Alamos, NM 87545 USA Phone: 505-667-9167

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond Department of Biomedical Engineering and Computational Science Aalto University January 26, 2012 Contents 1 Batch and Recursive Estimation

More information

INF Introduction to classifiction Anne Solberg

INF Introduction to classifiction Anne Solberg INF 4300 8.09.17 Introduction to classifiction Anne Solberg anne@ifi.uio.no Introduction to classification Based on handout from Pattern Recognition b Theodoridis, available after the lecture INF 4300

More information

36-463/663Multilevel and Hierarchical Models

36-463/663Multilevel and Hierarchical Models 36-463/663Multilevel and Hierarchical Models From Bayes to MCMC to MLMs Brian Junker 132E Baker Hall brian@stat.cmu.edu 1 Outline Bayesian Statistics and MCMC Distribution of Skill Mastery in a Population

More information

March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS

March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS March 10, 2017 THE EXPONENTIAL CLASS OF DISTRIBUTIONS Abstract. We will introduce a class of distributions that will contain many of the discrete and continuous we are familiar with. This class will help

More information

SAMPLING ALGORITHMS. In general. Inference in Bayesian models

SAMPLING ALGORITHMS. In general. Inference in Bayesian models SAMPLING ALGORITHMS SAMPLING ALGORITHMS In general A sampling algorithm is an algorithm that outputs samples x 1, x 2,... from a given distribution P or density p. Sampling algorithms can for example be

More information

STA205 Probability: Week 8 R. Wolpert

STA205 Probability: Week 8 R. Wolpert INFINITE COIN-TOSS AND THE LAWS OF LARGE NUMBERS The traditional interpretation of the probability of an event E is its asymptotic frequency: the limit as n of the fraction of n repeated, similar, and

More information

Dynamic models. Dependent data The AR(p) model The MA(q) model Hidden Markov models. 6 Dynamic models

Dynamic models. Dependent data The AR(p) model The MA(q) model Hidden Markov models. 6 Dynamic models 6 Dependent data The AR(p) model The MA(q) model Hidden Markov models Dependent data Dependent data Huge portion of real-life data involving dependent datapoints Example (Capture-recapture) capture histories

More information

Supplementary Material: A Robust Approach to Sequential Information Theoretic Planning

Supplementary Material: A Robust Approach to Sequential Information Theoretic Planning Supplementar aterial: A Robust Approach to Sequential Information Theoretic Planning Sue Zheng Jason Pacheco John W. Fisher, III. Proofs of Estimator Properties.. Proof of Prop. Here we show how the bias

More information

Lecture 2: From Linear Regression to Kalman Filter and Beyond

Lecture 2: From Linear Regression to Kalman Filter and Beyond Lecture 2: From Linear Regression to Kalman Filter and Beyond January 18, 2017 Contents 1 Batch and Recursive Estimation 2 Towards Bayesian Filtering 3 Kalman Filter and Bayesian Filtering and Smoothing

More information

Who was Bayes? Bayesian Phylogenetics. What is Bayes Theorem?

Who was Bayes? Bayesian Phylogenetics. What is Bayes Theorem? Who was Bayes? Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 The Reverand Thomas Bayes was born in London in 1702. He was the

More information

Advanced Statistical Modelling

Advanced Statistical Modelling Markov chain Monte Carlo (MCMC) Methods and Their Applications in Bayesian Statistics School of Technology and Business Studies/Statistics Dalarna University Borlänge, Sweden. Feb. 05, 2014. Outlines 1

More information

Markov chain Monte Carlo

Markov chain Monte Carlo 1 / 26 Markov chain Monte Carlo Timothy Hanson 1 and Alejandro Jara 2 1 Division of Biostatistics, University of Minnesota, USA 2 Department of Statistics, Universidad de Concepción, Chile IAP-Workshop

More information

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued

Chapter 3 sections. SKIP: 3.10 Markov Chains. SKIP: pages Chapter 3 - continued Chapter 3 sections 3.1 Random Variables and Discrete Distributions 3.2 Continuous Distributions 3.3 The Cumulative Distribution Function 3.4 Bivariate Distributions 3.5 Marginal Distributions 3.6 Conditional

More information

Bayesian Phylogenetics

Bayesian Phylogenetics Bayesian Phylogenetics Bret Larget Departments of Botany and of Statistics University of Wisconsin Madison October 6, 2011 Bayesian Phylogenetics 1 / 27 Who was Bayes? The Reverand Thomas Bayes was born

More information

Data Analysis and Uncertainty Part 2: Estimation

Data Analysis and Uncertainty Part 2: Estimation Data Analysis and Uncertainty Part 2: Estimation Instructor: Sargur N. University at Buffalo The State University of New York srihari@cedar.buffalo.edu 1 Topics in Estimation 1. Estimation 2. Desirable

More information

Master s Written Examination

Master s Written Examination Master s Written Examination Option: Statistics and Probability Spring 05 Full points may be obtained for correct answers to eight questions Each numbered question (which may have several parts) is worth

More information

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC

Stat 451 Lecture Notes Markov Chain Monte Carlo. Ryan Martin UIC Stat 451 Lecture Notes 07 12 Markov Chain Monte Carlo Ryan Martin UIC www.math.uic.edu/~rgmartin 1 Based on Chapters 8 9 in Givens & Hoeting, Chapters 25 27 in Lange 2 Updated: April 4, 2016 1 / 42 Outline

More information

Lecture 8: Bayesian Estimation of Parameters in State Space Models

Lecture 8: Bayesian Estimation of Parameters in State Space Models in State Space Models March 30, 2016 Contents 1 Bayesian estimation of parameters in state space models 2 Computational methods for parameter estimation 3 Practical parameter estimation in state space

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Jonathan Marchini Department of Statistics University of Oxford MT 2013 Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 27 Course arrangements Lectures M.2

More information

Gradient Estimation for Attractor Networks

Gradient Estimation for Attractor Networks Gradient Estimation for Attractor Networks Thomas Flynn Department of Computer Science Graduate Center of CUNY July 2017 1 Outline Motivations Deterministic attractor networks Stochastic attractor networks

More information

An ABC interpretation of the multiple auxiliary variable method

An ABC interpretation of the multiple auxiliary variable method School of Mathematical and Physical Sciences Department of Mathematics and Statistics Preprint MPS-2016-07 27 April 2016 An ABC interpretation of the multiple auxiliary variable method by Dennis Prangle

More information

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2

Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, Jeffreys priors. exp 1 ) p 2 Stat260: Bayesian Modeling and Inference Lecture Date: February 10th, 2010 Jeffreys priors Lecturer: Michael I. Jordan Scribe: Timothy Hunter 1 Priors for the multivariate Gaussian Consider a multivariate

More information

Answers to the 8th problem set. f(x θ = θ 0 ) L(θ 0 )

Answers to the 8th problem set. f(x θ = θ 0 ) L(θ 0 ) Answers to the 8th problem set The likelihood ratio with which we worked in this problem set is: Λ(x) = f(x θ = θ 1 ) L(θ 1 ) =. f(x θ = θ 0 ) L(θ 0 ) With a lower-case x, this defines a function. With

More information

Lecture 13 Fundamentals of Bayesian Inference

Lecture 13 Fundamentals of Bayesian Inference Lecture 13 Fundamentals of Bayesian Inference Dennis Sun Stats 253 August 11, 2014 Outline of Lecture 1 Bayesian Models 2 Modeling Correlations Using Bayes 3 The Universal Algorithm 4 BUGS 5 Wrapping Up

More information

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function

MAT 1275: Introduction to Mathematical Analysis. Graphs and Simplest Equations for Basic Trigonometric Functions. y=sin( x) Function MAT 275: Introduction to Mathematical Analsis Dr. A. Rozenblum Graphs and Simplest Equations for Basic Trigonometric Functions We consider here three basic functions: sine, cosine and tangent. For them,

More information

Weakness of Beta priors (or conjugate priors in general) They can only represent a limited range of prior beliefs. For example... There are no bimodal beta distributions (except when the modes are at 0

More information