Varanasi , India. Corresponding author

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Varanasi , India. Corresponding author"

Transcription

1 A Geeral Family of Estimators for Estimatig Populatio Mea i Systematic Samplig Usig Auxiliary Iformatio i the Presece of Missig Observatios Maoj K. Chaudhary, Sachi Malik, Jayat Sigh ad Rajesh Sigh Departmet of Statistics, Baaras Hidu Uiversity Varaasi-005, Idia Departmet of Statistics, Rajastha Uiversity, Jaipur, Idia Correspodig author Abstract This paper proposes a geeral family of estimators for estimatig the populatio mea i systematic samplig i the presece of o-respose adaptig the family of estimators proposed by Khoshevisa et al. (007). I this paper we have discussed the geeral properties of the proposed family icludig optimum property. The results have bee illustrated umerically by takig a empirical populatio cosidered i the literature. Keywords: Family of estimators, Auxiliary iformatio, Mea square error, Norespose, Systematic samplig.. Itroductio The method of systematic samplig, first studied by Madow ad Madow (944), is used widely i surveys of fiite populatios. Whe properly applied, the methods pocks up ay obvious or hidde stratificatio i the populatio ad thus ca be more precise tha radom samplig. I additio, systematic samplig is implemeted easily, thus reducig costs. I this variat of radom samplig, oly the first uit of the sample is selected at radom from the populatio. The subsequet uits are the selected by followig some defiite rule. Systematic samplig has bee cosidered i detail by Cochra (946) ad Lahiri (954). Reviews of the work doe i the field have bee give by ates (948) ad

2 Bucklad (95). The applicatio of systematic samplig to forest surveys has bee illustrated by Hasel (94), Fiey (948) ad Nair ad Bhargava (95). Use of systematic samplig i estimatig catch of fish has bee demostrated by Sukhatme et al. (958). The use of auxiliary iformatio has bee permeated the importat role to improve the efficiecy of the estimator. Kushwaha ad Sigh (989) suggested a class of almost ubiased ratio ad product type estimators for estimatig the populatio mea usig jack-kife techique iitiated by Queouille (956). Afterward Baarasi et al. (993) ad Sigh ad Sigh (998) have proposed the estimators of populatio mea usig auxiliary iformatio i systematic samplig. Khoshevisa et al. (007) suggested a geeral family of estimators for estimatig the populatios mea usig kow values of some populatio parameters i simple radom samplig, give by a + b t = y (.) α(ax + b) + ( α)(a + b) where y ad x are the sample meas of study ad auxiliary variables respectively. is the populatio mea of auxiliary variable. a 0 ad b are either real umbers or fuctios of kow parameters of auxiliary variable. α ad g are the real umbers which are to be determied. Here we would like to metio that the choice of the estimator depeds o the availability ad values of the various parameter(s) used (for choice of the parameters a ad b refer to Sigh et al. (008) ad Sigh ad Kumar(0)). I this paper we have proposed a geeral family of estimators for estimatig the populatio mea i systematic samplig usig auxiliary iformatio i the presece of o-respose followig Khoshevisa et al. (007). We have also derived the expressios for miimum mea square errors (MSE) of the family with respect to α. A comparative study is also carried out to compare the optimum estimators of the family with respect to usual mea estimator with the help of umerical data. g. Proposed Family of Estimators Let us suppose that a populatio cosists of N uits umbered from to N i some order ad a sample of size is to be draw such that N = k ( k is a iteger). Thus

3 there will be k samples each of uits ad we select oe sample from the set of k samples. Let ad be the study ad auxiliary variable with respective meas ad. Let us cosider yij(xij) be the th j observatio i the th i systematic sample uder study (auxiliary) variable ( i =...k : j =... ). Wwe assume that the o-respose is observed oly o study variable ad auxiliary variable is free from o-respose. Usig Hase-Hurwitz (946) techique of sub-samplig of o-respodets, the estimator of populatio mea, ca be defied as where y ad y y yh = (.) + y h are, respectively the meas based o respodet uits from the systematic sample of uits ad sub-sample of h uits selected from o- respodet uits i the systematic sample. The estimator of populatio mea of auxiliary variable based o the systematic sample of size uits, is give by x ij j= x = ( i =... k ) (.) Obviously, y ad x are ubiased estimators. The variace expressio for the estimators ad ( x) where y ad x are, respectively, give by N V y = L { + ρ} S + WS V = { + ( ) ρ } S (.3) (.4) ρ ad ρ are the correlatio coefficiets betwee a pair of uits withi the systematic sample for the study ad auxiliary variables respectively. S ad respectively the mea squares of the etire group for study ad auxiliary variable. S are be the mea square of o-respose group uder study variable, W is the o-respose rate i the populatio ad L =. h S

4 Let us assume that the populatio mea is kow. Thus the usual ratio ad product estimators of the populatio mea uder o-respose based o a systematic sample of size, ca be respectively defied as ad y y R = (.5) x y P = y x (.6) To obtai the biases ad mea square errors, we use large sample approximatio. y = ( + ) e 0 x = ( + ) e e such that E ( e 0 ) = ( ) ( ) E e 0 = ( ) e V y V( x) E = ad E ( e 0 e ) = where respectively. E = 0, ad L S = { + ρ } C + W, = { + } C, Cov y, x ρ = { + ρ } { + ρ} ρcc C ad C are the coefficiets of variatio of study ad auxiliary variables Expressig the equatios (.5) ad (.6) i terms of i expectatios the bias expressios of the estimators of by ad y R B = + y P { ρ}( Kρ ) C B = { + ρ} Kρ C e s ( 0,) i = ad takig y R ad y P, are respectively give (.7) (.8)

5 where, ρ = { + ρ} { + ρ } C ad K = ρ. C The mea square errors (MSE s) of y R N MSE = + ad P y MSE = + y R ad y P, are respectively, give by + ρ L C K C + W S { } ( ) ρ ρ N { } ( ) ρ ρ C + + Kρ C + L W S (.9) (.0) Motivated by Khoshevisa et al. (007), we ow defie a family of estimators of populatio mea based o a systematic sample of size i the presece of orespose as t g a + b = y (.) α( ax + b) + ( α)( a + b) This family ca geerate the o-respose versios of a umber of estimators of populatio mea icludig the usual ratio ad product estimators o differet choices of a, b, α ad g.. Properties of Expressig t t a where λ =. a + b t i terms of e i s, we get ( + e )( + αλe ) g = y 0 (.) We assume that λ e < so that the right had side of the equatio (.) is expadable i terms of power series. Expadig the right had side of the equatio (.) ad eglectig the terms i e i s havig power greater tha two, we have

6 g(g + ) t = e0 gαλe + α λ e gαλe0e (.3) Takig expectatio both the sides of equatio (.3), we get the bias of t up to the first order of approximatio, as ( t ) B = { + ρ } ( g + ) N g C α λ gαλkρ (.4) Squarig both the sides of the equatio (.3) ad the takig the expectatio, we obtai the MSE of t up to the first order of approximatio, as ( t ) N MSE = +. Optimum Choice of α { } ( ) ρ ρ C + g α λ gαλρ K C I order to obtai the miimum MSE of respect to α ad equatig the derivative to zero, we get { + ρ }[ αg λ gλρ K] C L + ( ) t, we differetiate the MSE of The equatio (.6) provides the optimum values of α as W S (.5) t with = 0 (.6) ρ K α = gλ (.7) Puttig the optimum value of α from equatio (.7) ito the equatio (.5), we get the miimum MSE of t, as ( t ) mi MSE = + { ρ }[ C K C ] ρ L + ( ) W S (.8)

7 The miimum MSE of t, is same as the mea square error of the usual regressio estimator i systematic samplig uder o-respose. 3. Empirical Study For umerical illustratio, we have cosidered the data give i Murthy (967, p. 3-3). The data are based o legth () ad timber volume () for 76 forest strips. Murthy (967, p.49) ad Kushwaha ad Sigh (989) reported the values of itraclass correlatio coefficiets ρ ad ρ approximately equal for the systematic sample of size 6 by eumeratig all possible systematic samples after arragig the data i ascedig order of strip legth. The details of populatio parameters are : N = 76, = 6, = 8.636, = , S = , S = , ρ = 0.870, 3 S = S 4 = Table shows the percetage relative efficiecy (PRE) of t (optimum) with respect to y for the differet choices of W ad L. Table : PRE of t (optimum) with respect to y W L PRE

8 Coclusio I this paper, we have proposed a geeral family of estimators of populatio mea i systematic samplig usig a auxiliary variable i the presece of o-respose. The optimum property of the family has bee discussed. The study cocludes that the suggested family coverges to the usual regressio estimator of populatio mea i systematic samplig uder o-respose if the parameter α attais its optimum value. From Table, it ca easily be see that the estimator t (optimum) performs always better tha the usual estimator y. It is also observed that the percetage relative efficiecy (PRE) of t (optimum) with respect to y decreases with icrease i orespose rate W as well as L. Refereces. Baarasi, Kushwaha, S.N.S. ad Kushwaha, K.S. (993): A class of ratio, product ad differece (RPD) estimators i systematic samplig, Microelectro. Reliab., 33, 4,

9 . Bucklad, W. R. (95): A review of the literature of systematic samplig, JRSS, (B), 3, Cochra, W. G. (946): Relative accuracy of systematic ad stratified radom samples for a certai class of populatio, AMS, 7, Fiey, D.J. (948): Radom ad systematic samplig i timber surveys, Forestry,, Hase, M. H. ad Hurwitz, W. N. (946) : The problem of o-respose i sample surveys, Jour. of The Amer. Stat. Assoc., 4, Hasel, A. A. (94): Estimatio of volume i timber stads by strip samplig, AMS, 3, Khoshevisa, M., Sigh, R., Chauha, P., Sawa, N. ad Smaradache, F. (007): A geeral family of estimators for estimatig populatio mea usig kow value of some populatio parameter(s). Far East J. Theor. Statist.,, Kushwaha, K. S. ad Sigh, H.P. (989): Class of almost ubiased ratio ad product estimators i systematic samplig, Jour. Id. Soc. Ag. Statistics, 4,, Lahiri, D. B. (954): O the questio of bias of systematic samplig, Proceedigs of World Populatio Coferece, 6, Madow, W. G. ad Madow, L.H. (944): O the theory of systematic samplig, I. A. Math. Statist., 5, -4.. Murthy, M.N. (967): Samplig Theory ad Methods. Statistical Publishig Society, Calcutta.. Nair, K. R. ad Bhargava, R. P. (95): Statistical samplig i timber surveys i Idia, Forest Research Istitute, Dehradu, Idia forest leaflet, Queouille, M. H. (956): Notes o bias i estimatio, Biometrika, 43, Sigh, R ad Sigh, H. P. (998): Almost ubiased ratio ad product type- estimators i systematic samplig, Questiio,,3, Sigh, R., Kumar, M. ad Smaradache, F. (008): Almost Ubiased Estimator for Estimatig Populatio Mea Usig Kow Value of Some Populatio Parameter(s). Pak. J. Stat. Oper. Res., 4() pp63-76.

10 6. Sigh, R. ad Kumar, M. (0): A ote o trasformatios o auxiliary variable i survey samplig. MASA, 6:, Sukhatme, P. V., Paes, V. G. ad Sastry, K. V. R. (958): Samplig techiques for estimatig the catch of sea fish i Idia, Biometrics, 4, ates, F. (948): Systematic samplig, Philosophical Trasactios of Royal Society, (A), 4,

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation

Some Exponential Ratio-Product Type Estimators using information on Auxiliary Attributes under Second Order Approximation ; [Formerly kow as the Bulleti of Statistics & Ecoomics (ISSN 097-70)]; ISSN 0975-556X; Year: 0, Volume:, Issue Number: ; It. j. stat. eco.; opyright 0 by ESER Publicatios Some Expoetial Ratio-Product

More information

A General Family of Estimators for Estimating Population Variance Using Known Value of Some Population Parameter(s)

A General Family of Estimators for Estimating Population Variance Using Known Value of Some Population Parameter(s) Rajesh Sigh, Pakaj Chauha, Nirmala Sawa School of Statistics, DAVV, Idore (M.P.), Idia Floreti Smaradache Uiversity of New Meico, USA A Geeral Family of Estimators for Estimatig Populatio Variace Usig

More information

Improved exponential estimator for population variance using two auxiliary variables

Improved exponential estimator for population variance using two auxiliary variables OCTOGON MATHEMATICAL MAGAZINE Vol. 7, No., October 009, pp 667-67 ISSN -5657, ISBN 97-973-55-5-0, www.hetfalu.ro/octogo 667 Improved expoetial estimator for populatio variace usig two auxiliar variables

More information

Estimation of the Population Mean in Presence of Non-Response

Estimation of the Population Mean in Presence of Non-Response Commuicatios of the Korea Statistical Society 0, Vol. 8, No. 4, 537 548 DOI: 0.535/CKSS.0.8.4.537 Estimatio of the Populatio Mea i Presece of No-Respose Suil Kumar,a, Sadeep Bhougal b a Departmet of Statistics,

More information

Modified Ratio Estimators Using Known Median and Co-Efficent of Kurtosis

Modified Ratio Estimators Using Known Median and Co-Efficent of Kurtosis America Joural of Mathematics ad Statistics 01, (4): 95-100 DOI: 10.593/j.ajms.01004.05 Modified Ratio s Usig Kow Media ad Co-Efficet of Kurtosis J.Subramai *, G.Kumarapadiya Departmet of Statistics, Podicherry

More information

A Family of Efficient Estimator in Circular Systematic Sampling

A Family of Efficient Estimator in Circular Systematic Sampling olumbia Iteratioal Publishig Joural of dvaced omputig (0) Vol. o. pp. 6-68 doi:0.776/jac.0.00 Research rticle Famil of Efficiet Estimator i ircular Sstematic Samplig Hemat K. Verma ad Rajesh Sigh * Received

More information

A Generalized Class of Unbiased Estimators for Population Mean Using Auxiliary Information on an Attribute and an Auxiliary Variable

A Generalized Class of Unbiased Estimators for Population Mean Using Auxiliary Information on an Attribute and an Auxiliary Variable Iteratioal Joural of Computatioal ad Applied Mathematics. ISSN 89-4966 Volume, Number 07, pp. -8 Research Idia ublicatios http://www.ripublicatio.com A Geeralized Class of Ubiased Estimators for opulatio

More information

On ratio and product methods with certain known population parameters of auxiliary variable in sample surveys

On ratio and product methods with certain known population parameters of auxiliary variable in sample surveys Statistics & Operatios Research Trasactios SORT 34 July-December 010, 157-180 ISSN: 1696-81 www.idescat.cat/sort/ Statistics & Operatios Research c Istitut d Estadística de Cataluya Trasactios sort@idescat.cat

More information

Chapter 13, Part A Analysis of Variance and Experimental Design

Chapter 13, Part A Analysis of Variance and Experimental Design Slides Prepared by JOHN S. LOUCKS St. Edward s Uiversity Slide 1 Chapter 13, Part A Aalysis of Variace ad Eperimetal Desig Itroductio to Aalysis of Variace Aalysis of Variace: Testig for the Equality of

More information

Properties and Hypothesis Testing

Properties and Hypothesis Testing Chapter 3 Properties ad Hypothesis Testig 3.1 Types of data The regressio techiques developed i previous chapters ca be applied to three differet kids of data. 1. Cross-sectioal data. 2. Time series data.

More information

Estimation of Population Mean in Presence of Non-Response in Double Sampling

Estimation of Population Mean in Presence of Non-Response in Double Sampling J. Stat. Appl. Pro. 6, No. 2, 345-353 (2017) 345 Joural of Statistics Applicatios & Probability A Iteratioal Joural http://dx.doi.org/10.18576/jsap/060209 Estimatio of Populatio Mea i Presece of No-Respose

More information

New Ratio Estimators Using Correlation Coefficient

New Ratio Estimators Using Correlation Coefficient New atio Estimators Usig Correlatio Coefficiet Cem Kadilar ad Hula Cigi Hacettepe Uiversit, Departmet of tatistics, Betepe, 06800, Akara, Turke. e-mails : kadilar@hacettepe.edu.tr ; hcigi@hacettepe.edu.tr

More information

Estimation of Gumbel Parameters under Ranked Set Sampling

Estimation of Gumbel Parameters under Ranked Set Sampling Joural of Moder Applied Statistical Methods Volume 13 Issue 2 Article 11-2014 Estimatio of Gumbel Parameters uder Raked Set Samplig Omar M. Yousef Al Balqa' Applied Uiversity, Zarqa, Jorda, abuyaza_o@yahoo.com

More information

Estimation of Population Ratio in Post-Stratified Sampling Using Variable Transformation

Estimation of Population Ratio in Post-Stratified Sampling Using Variable Transformation Ope Joural o Statistics, 05, 5, -9 Published Olie Februar 05 i SciRes. http://www.scirp.org/joural/ojs http://dx.doi.org/0.436/ojs.05.500 Estimatio o Populatio Ratio i Post-Stratiied Samplig Usig Variable

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

More information

Unbiased Estimation. February 7-12, 2008

Unbiased Estimation. February 7-12, 2008 Ubiased Estimatio February 7-2, 2008 We begi with a sample X = (X,..., X ) of radom variables chose accordig to oe of a family of probabilities P θ where θ is elemet from the parameter space Θ. For radom

More information

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

More information

ON POINTWISE BINOMIAL APPROXIMATION

ON POINTWISE BINOMIAL APPROXIMATION Iteratioal Joural of Pure ad Applied Mathematics Volume 71 No. 1 2011, 57-66 ON POINTWISE BINOMIAL APPROXIMATION BY w-functions K. Teerapabolar 1, P. Wogkasem 2 Departmet of Mathematics Faculty of Sciece

More information

Activity 3: Length Measurements with the Four-Sided Meter Stick

Activity 3: Length Measurements with the Four-Sided Meter Stick Activity 3: Legth Measuremets with the Four-Sided Meter Stick OBJECTIVE: The purpose of this experimet is to study errors ad the propagatio of errors whe experimetal data derived usig a four-sided meter

More information

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable. Chapter 10 Variace Estimatio 10.1 Itroductio Variace estimatio is a importat practical problem i survey samplig. Variace estimates are used i two purposes. Oe is the aalytic purpose such as costructig

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

Generalized Exponential Type Estimator for Population Variance in Survey Sampling

Generalized Exponential Type Estimator for Population Variance in Survey Sampling Revista Colombiaa de Estadística Juio 2014, volume 37, o. 1, pp. 211 a 222 Geeralized Expoetial Type Estimator for Populatio Variace i Survey Samplig Estimadores tipo expoecial geeralizado para la variaza

More information

On an Application of Bayesian Estimation

On an Application of Bayesian Estimation O a Applicatio of ayesia Estimatio KIYOHARU TANAKA School of Sciece ad Egieerig, Kiki Uiversity, Kowakae, Higashi-Osaka, JAPAN Email: ktaaka@ifokidaiacjp EVGENIY GRECHNIKOV Departmet of Mathematics, auma

More information

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter Output Aalysis for a Sigle Model Baks, Carso, Nelso & Nicol Discrete-Evet System Simulatio Error Estimatio If {,, } are ot statistically idepedet, the S / is a biased estimator of the true variace.

More information

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1.

Econ 325/327 Notes on Sample Mean, Sample Proportion, Central Limit Theorem, Chi-square Distribution, Student s t distribution 1. Eco 325/327 Notes o Sample Mea, Sample Proportio, Cetral Limit Theorem, Chi-square Distributio, Studet s t distributio 1 Sample Mea By Hiro Kasahara We cosider a radom sample from a populatio. Defiitio

More information

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series Applied Mathematical Scieces, Vol. 7, 03, o. 6, 3-337 HIKARI Ltd, www.m-hikari.com http://d.doi.org/0.988/ams.03.3430 Compariso Study of Series Approimatio ad Covergece betwee Chebyshev ad Legedre Series

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

More information

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals

7-1. Chapter 4. Part I. Sampling Distributions and Confidence Intervals 7-1 Chapter 4 Part I. Samplig Distributios ad Cofidece Itervals 1 7- Sectio 1. Samplig Distributio 7-3 Usig Statistics Statistical Iferece: Predict ad forecast values of populatio parameters... Test hypotheses

More information

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity

LINEAR REGRESSION ANALYSIS. MODULE IX Lecture Multicollinearity LINEAR REGRESSION ANALYSIS MODULE IX Lecture - 9 Multicolliearity Dr Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Multicolliearity diagostics A importat questio that

More information

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions

KLMED8004 Medical statistics. Part I, autumn Estimation. We have previously learned: Population and sample. New questions We have previously leared: KLMED8004 Medical statistics Part I, autum 00 How kow probability distributios (e.g. biomial distributio, ormal distributio) with kow populatio parameters (mea, variace) ca give

More information

Statistical inference: example 1. Inferential Statistics

Statistical inference: example 1. Inferential Statistics Statistical iferece: example 1 Iferetial Statistics POPULATION SAMPLE A clothig store chai regularly buys from a supplier large quatities of a certai piece of clothig. Each item ca be classified either

More information

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss

ECE 901 Lecture 12: Complexity Regularization and the Squared Loss ECE 90 Lecture : Complexity Regularizatio ad the Squared Loss R. Nowak 5/7/009 I the previous lectures we made use of the Cheroff/Hoeffdig bouds for our aalysis of classifier errors. Hoeffdig s iequality

More information

Section 11.8: Power Series

Section 11.8: Power Series Sectio 11.8: Power Series 1. Power Series I this sectio, we cosider geeralizig the cocept of a series. Recall that a series is a ifiite sum of umbers a. We ca talk about whether or ot it coverges ad i

More information

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn

Review Questions, Chapters 8, 9. f(y) = 0, elsewhere. F (y) = f Y(1) = n ( e y/θ) n 1 1 θ e y/θ = n θ e yn Stat 366 Lab 2 Solutios (September 2, 2006) page TA: Yury Petracheko, CAB 484, yuryp@ualberta.ca, http://www.ualberta.ca/ yuryp/ Review Questios, Chapters 8, 9 8.5 Suppose that Y, Y 2,..., Y deote a radom

More information

Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals

Sampling Error. Chapter 6 Student Lecture Notes 6-1. Business Statistics: A Decision-Making Approach, 6e. Chapter Goals Chapter 6 Studet Lecture Notes 6-1 Busiess Statistics: A Decisio-Makig Approach 6 th Editio Chapter 6 Itroductio to Samplig Distributios Chap 6-1 Chapter Goals After completig this chapter, you should

More information

Discrete Orthogonal Moment Features Using Chebyshev Polynomials

Discrete Orthogonal Moment Features Using Chebyshev Polynomials Discrete Orthogoal Momet Features Usig Chebyshev Polyomials R. Mukuda, 1 S.H.Og ad P.A. Lee 3 1 Faculty of Iformatio Sciece ad Techology, Multimedia Uiversity 75450 Malacca, Malaysia. Istitute of Mathematical

More information

STATISTICAL method is one branch of mathematical

STATISTICAL method is one branch of mathematical 40 INTERNATIONAL JOURNAL OF COMPUTING SCIENCE AND APPLIED MATHEMATICS, VOL 3, NO, AUGUST 07 Optimizig Forest Samplig by usig Lagrage Multipliers Suhud Wahyudi, Farida Agustii Widjajati ad Dea Oktaviati

More information

Basis for simulation techniques

Basis for simulation techniques Basis for simulatio techiques M. Veeraraghava, March 7, 004 Estimatio is based o a collectio of experimetal outcomes, x, x,, x, where each experimetal outcome is a value of a radom variable. x i. Defiitios

More information

Final Examination Solutions 17/6/2010

Final Examination Solutions 17/6/2010 The Islamic Uiversity of Gaza Faculty of Commerce epartmet of Ecoomics ad Political Scieces A Itroductio to Statistics Course (ECOE 30) Sprig Semester 009-00 Fial Eamiatio Solutios 7/6/00 Name: I: Istructor:

More information

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State Bayesia Cotrol Charts for the Two-parameter Expoetial Distributio if the Locatio Parameter Ca Take o Ay Value Betwee Mius Iity ad Plus Iity R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com

More information

Some Properties of the Exact and Score Methods for Binomial Proportion and Sample Size Calculation

Some Properties of the Exact and Score Methods for Binomial Proportion and Sample Size Calculation Some Properties of the Exact ad Score Methods for Biomial Proportio ad Sample Size Calculatio K. KRISHNAMOORTHY AND JIE PENG Departmet of Mathematics, Uiversity of Louisiaa at Lafayette Lafayette, LA 70504-1010,

More information

A LARGER SAMPLE SIZE IS NOT ALWAYS BETTER!!!

A LARGER SAMPLE SIZE IS NOT ALWAYS BETTER!!! A LARGER SAMLE SIZE IS NOT ALWAYS BETTER!!! Nagaraj K. Neerchal Departmet of Mathematics ad Statistics Uiversity of Marylad Baltimore Couty, Baltimore, MD 2250 Herbert Lacayo ad Barry D. Nussbaum Uited

More information

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m?

(b) What is the probability that a particle reaches the upper boundary n before the lower boundary m? MATH 529 The Boudary Problem The drukard s walk (or boudary problem) is oe of the most famous problems i the theory of radom walks. Oe versio of the problem is described as follows: Suppose a particle

More information

Research Article Health Monitoring for a Structure Using Its Nonstationary Vibration

Research Article Health Monitoring for a Structure Using Its Nonstationary Vibration Hidawi Publishig Corporatio Advaces i Acoustics ad Vibratio Volume 2, Article ID 69652, 5 pages doi:.55/2/69652 Research Article Health Moitorig for a Structure Usig Its Nostatioary Vibratio Yoshimutsu

More information

ARIMA Models. Dan Saunders. y t = φy t 1 + ɛ t

ARIMA Models. Dan Saunders. y t = φy t 1 + ɛ t ARIMA Models Da Sauders I will discuss models with a depedet variable y t, a potetially edogeous error term ɛ t, ad a exogeous error term η t, each with a subscript t deotig time. With just these three

More information

Linear Regression Models

Linear Regression Models Liear Regressio Models Dr. Joh Mellor-Crummey Departmet of Computer Sciece Rice Uiversity johmc@cs.rice.edu COMP 528 Lecture 9 15 February 2005 Goals for Today Uderstad how to Use scatter diagrams to ispect

More information

3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N.

3/3/2014. CDS M Phil Econometrics. Types of Relationships. Types of Relationships. Types of Relationships. Vijayamohanan Pillai N. 3/3/04 CDS M Phil Old Least Squares (OLS) Vijayamohaa Pillai N CDS M Phil Vijayamoha CDS M Phil Vijayamoha Types of Relatioships Oly oe idepedet variable, Relatioship betwee ad is Liear relatioships Curviliear

More information

Chapter 1 (Definitions)

Chapter 1 (Definitions) FINAL EXAM REVIEW Chapter 1 (Defiitios) Qualitative: Nomial: Ordial: Quatitative: Ordial: Iterval: Ratio: Observatioal Study: Desiged Experimet: Samplig: Cluster: Stratified: Systematic: Coveiece: Simple

More information

Analysis of Experimental Data

Analysis of Experimental Data Aalysis of Experimetal Data 6544597.0479 ± 0.000005 g Quatitative Ucertaity Accuracy vs. Precisio Whe we make a measuremet i the laboratory, we eed to kow how good it is. We wat our measuremets to be both

More information

Introducing Sample Proportions

Introducing Sample Proportions Itroducig Sample Proportios Probability ad statistics Aswers & Notes TI-Nspire Ivestigatio Studet 60 mi 7 8 9 0 Itroductio A 00 survey of attitudes to climate chage, coducted i Australia by the CSIRO,

More information

Statisticians use the word population to refer the total number of (potential) observations under consideration

Statisticians use the word population to refer the total number of (potential) observations under consideration 6 Samplig Distributios Statisticias use the word populatio to refer the total umber of (potetial) observatios uder cosideratio The populatio is just the set of all possible outcomes i our sample space

More information

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to:

STA Learning Objectives. Population Proportions. Module 10 Comparing Two Proportions. Upon completing this module, you should be able to: STA 2023 Module 10 Comparig Two Proportios Learig Objectives Upo completig this module, you should be able to: 1. Perform large-sample ifereces (hypothesis test ad cofidece itervals) to compare two populatio

More information

Summary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram.

Summary: CORRELATION & LINEAR REGRESSION. GC. Students are advised to refer to lecture notes for the GC operations to obtain scatter diagram. Key Cocepts: 1) Sketchig of scatter diagram The scatter diagram of bivariate (i.e. cotaiig two variables) data ca be easily obtaied usig GC. Studets are advised to refer to lecture otes for the GC operatios

More information

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function Iteratioal Joural of Statistics ad Systems ISSN 973-2675 Volume 12, Number 4 (217), pp. 791-796 Research Idia Publicatios http://www.ripublicatio.com Bayesia ad E- Bayesia Method of Estimatio of Parameter

More information

Session 5. (1) Principal component analysis and Karhunen-Loève transformation

Session 5. (1) Principal component analysis and Karhunen-Loève transformation 200 Autum semester Patter Iformatio Processig Topic 2 Image compressio by orthogoal trasformatio Sessio 5 () Pricipal compoet aalysis ad Karhue-Loève trasformatio Topic 2 of this course explais the image

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.436J/15.085J Fall 2008 Lecture 19 11/17/2008 LAWS OF LARGE NUMBERS II THE STRONG LAW OF LARGE NUMBERS MASSACHUSTTS INSTITUT OF TCHNOLOGY 6.436J/5.085J Fall 2008 Lecture 9 /7/2008 LAWS OF LARG NUMBRS II Cotets. The strog law of large umbers 2. The Cheroff boud TH STRONG LAW OF LARG NUMBRS While the weak

More information

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence

Chapter 3. Strong convergence. 3.1 Definition of almost sure convergence Chapter 3 Strog covergece As poited out i the Chapter 2, there are multiple ways to defie the otio of covergece of a sequece of radom variables. That chapter defied covergece i probability, covergece i

More information

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2.

The variance of a sum of independent variables is the sum of their variances, since covariances are zero. Therefore. V (xi )= n n 2 σ2 = σ2. SAMPLE STATISTICS A radom sample x 1,x,,x from a distributio f(x) is a set of idepedetly ad idetically variables with x i f(x) for all i Their joit pdf is f(x 1,x,,x )=f(x 1 )f(x ) f(x )= f(x i ) The sample

More information

Solutions to Odd Numbered End of Chapter Exercises: Chapter 4

Solutions to Odd Numbered End of Chapter Exercises: Chapter 4 Itroductio to Ecoometrics (3 rd Updated Editio) by James H. Stock ad Mark W. Watso Solutios to Odd Numbered Ed of Chapter Exercises: Chapter 4 (This versio July 2, 24) Stock/Watso - Itroductio to Ecoometrics

More information

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise

First Year Quantitative Comp Exam Spring, Part I - 203A. f X (x) = 0 otherwise First Year Quatitative Comp Exam Sprig, 2012 Istructio: There are three parts. Aswer every questio i every part. Questio I-1 Part I - 203A A radom variable X is distributed with the margial desity: >

More information

The Sample Variance Formula: A Detailed Study of an Old Controversy

The Sample Variance Formula: A Detailed Study of an Old Controversy The Sample Variace Formula: A Detailed Study of a Old Cotroversy Ky M. Vu PhD. AuLac Techologies Ic. c 00 Email: kymvu@aulactechologies.com Abstract The two biased ad ubiased formulae for the sample variace

More information

P1 Chapter 8 :: Binomial Expansion

P1 Chapter 8 :: Binomial Expansion P Chapter 8 :: Biomial Expasio jfrost@tiffi.kigsto.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 6 th August 7 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

Estimation of the ratio, product and mean using multi auxiliary variables in the presence of non-response

Estimation of the ratio, product and mean using multi auxiliary variables in the presence of non-response Chilea Joural of Statistics Vol. 5, No. 1, April 014, 49 7 Samplig Theory Research Paper Estimatio of the ratio, prouct a mea usig multi auxiliary variables i the presece of o-respose Suil Kumar Alliace

More information

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 +

62. Power series Definition 16. (Power series) Given a sequence {c n }, the series. c n x n = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + 62. Power series Defiitio 16. (Power series) Give a sequece {c }, the series c x = c 0 + c 1 x + c 2 x 2 + c 3 x 3 + is called a power series i the variable x. The umbers c are called the coefficiets of

More information

Riemann Sums y = f (x)

Riemann Sums y = f (x) Riema Sums Recall that we have previously discussed the area problem I its simplest form we ca state it this way: The Area Problem Let f be a cotiuous, o-egative fuctio o the closed iterval [a, b] Fid

More information

THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS

THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS R775 Philips Res. Repts 26,414-423, 1971' THE SYSTEMATIC AND THE RANDOM. ERRORS - DUE TO ELEMENT TOLERANCES OF ELECTRICAL NETWORKS by H. W. HANNEMAN Abstract Usig the law of propagatio of errors, approximated

More information

Zeros of Polynomials

Zeros of Polynomials Math 160 www.timetodare.com 4.5 4.6 Zeros of Polyomials I these sectios we will study polyomials algebraically. Most of our work will be cocered with fidig the solutios of polyomial equatios of ay degree

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

CURRICULUM INSPIRATIONS: INNOVATIVE CURRICULUM ONLINE EXPERIENCES: TANTON TIDBITS:

CURRICULUM INSPIRATIONS:  INNOVATIVE CURRICULUM ONLINE EXPERIENCES:  TANTON TIDBITS: CURRICULUM INSPIRATIONS: wwwmaaorg/ci MATH FOR AMERICA_DC: wwwmathforamericaorg/dc INNOVATIVE CURRICULUM ONLINE EXPERIENCES: wwwgdaymathcom TANTON TIDBITS: wwwjamestatocom TANTON S TAKE ON MEAN ad VARIATION

More information

Subject: Differential Equations & Mathematical Modeling-III

Subject: Differential Equations & Mathematical Modeling-III Power Series Solutios of Differetial Equatios about Sigular poits Subject: Differetial Equatios & Mathematical Modelig-III Lesso: Power series solutios of differetial equatios about Sigular poits Lesso

More information

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE Vol. 8 o. Joural of Systems Sciece ad Complexity Apr., 5 MOMET-METHOD ESTIMATIO BASED O CESORED SAMPLE I Zhogxi Departmet of Mathematics, East Chia Uiversity of Sciece ad Techology, Shaghai 37, Chia. Email:

More information

Stability Analysis of the Euler Discretization for SIR Epidemic Model

Stability Analysis of the Euler Discretization for SIR Epidemic Model Stability Aalysis of the Euler Discretizatio for SIR Epidemic Model Agus Suryato Departmet of Mathematics, Faculty of Scieces, Brawijaya Uiversity, Jl Vetera Malag 6545 Idoesia Abstract I this paper we

More information

On Bayesian Shrinkage Estimator of Parameter of Exponential Distribution with Outliers

On Bayesian Shrinkage Estimator of Parameter of Exponential Distribution with Outliers Pujab Uiversity Joural of Mathematics ISSN 1016-2526) Vol. 502)2018) pp. 11-19 O Bayesia Shrikage Estimator of Parameter of Expoetial Distributio with Outliers P. Nasiri Departmet of Statistics, Uiversity

More information

EDGEWORTH SIZE CORRECTED W, LR AND LM TESTS IN THE FORMATION OF THE PRELIMINARY TEST ESTIMATOR

EDGEWORTH SIZE CORRECTED W, LR AND LM TESTS IN THE FORMATION OF THE PRELIMINARY TEST ESTIMATOR Joural of Statistical Research 26, Vol. 37, No. 2, pp. 43-55 Bagladesh ISSN 256-422 X EDGEORTH SIZE CORRECTED, AND TESTS IN THE FORMATION OF THE PRELIMINARY TEST ESTIMATOR Zahirul Hoque Departmet of Statistics

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

Dimension-free PAC-Bayesian bounds for the estimation of the mean of a random vector

Dimension-free PAC-Bayesian bounds for the estimation of the mean of a random vector Dimesio-free PAC-Bayesia bouds for the estimatio of the mea of a radom vector Olivier Catoi CREST CNRS UMR 9194 Uiversité Paris Saclay olivier.catoi@esae.fr Ilaria Giulii Laboratoire de Probabilités et

More information

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11

Machine Learning Theory Tübingen University, WS 2016/2017 Lecture 11 Machie Learig Theory Tübige Uiversity, WS 06/07 Lecture Tolstikhi Ilya Abstract We will itroduce the otio of reproducig kerels ad associated Reproducig Kerel Hilbert Spaces (RKHS). We will cosider couple

More information

Parameter, Statistic and Random Samples

Parameter, Statistic and Random Samples Parameter, Statistic ad Radom Samples A parameter is a umber that describes the populatio. It is a fixed umber, but i practice we do ot kow its value. A statistic is a fuctio of the sample data, i.e.,

More information

(all terms are scalars).the minimization is clearer in sum notation:

(all terms are scalars).the minimization is clearer in sum notation: 7 Multiple liear regressio: with predictors) Depedet data set: y i i = 1, oe predictad, predictors x i,k i = 1,, k = 1, ' The forecast equatio is ŷ i = b + Use matrix otatio: k =1 b k x ik Y = y 1 y 1

More information

Binomial Distribution

Binomial Distribution 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0 1 2 3 4 5 6 7 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Overview Example: coi tossed three times Defiitio Formula Recall that a r.v. is discrete if there are either a fiite umber of possible

More information

The Random Walk For Dummies

The Random Walk For Dummies The Radom Walk For Dummies Richard A Mote Abstract We look at the priciples goverig the oe-dimesioal discrete radom walk First we review five basic cocepts of probability theory The we cosider the Beroulli

More information

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A)

REGRESSION (Physics 1210 Notes, Partial Modified Appendix A) REGRESSION (Physics 0 Notes, Partial Modified Appedix A) HOW TO PERFORM A LINEAR REGRESSION Cosider the followig data poits ad their graph (Table I ad Figure ): X Y 0 3 5 3 7 4 9 5 Table : Example Data

More information

How to Maximize a Function without Really Trying

How to Maximize a Function without Really Trying How to Maximize a Fuctio without Really Tryig MARK FLANAGAN School of Electrical, Electroic ad Commuicatios Egieerig Uiversity College Dubli We will prove a famous elemetary iequality called The Rearragemet

More information

Symmetric Division Deg Energy of a Graph

Symmetric Division Deg Energy of a Graph Turkish Joural of Aalysis ad Number Theory, 7, Vol, No 6, -9 Available olie at http://pubssciepubcom/tat//6/ Sciece ad Educatio Publishig DOI:69/tat--6- Symmetric Divisio Deg Eergy of a Graph K N Prakasha,

More information

Monte Carlo Integration

Monte Carlo Integration Mote Carlo Itegratio I these otes we first review basic umerical itegratio methods (usig Riema approximatio ad the trapezoidal rule) ad their limitatios for evaluatig multidimesioal itegrals. Next we itroduce

More information

Solutions: Homework 3

Solutions: Homework 3 Solutios: Homework 3 Suppose that the radom variables Y,...,Y satisfy Y i = x i + " i : i =,..., IID where x,...,x R are fixed values ad ",...," Normal(0, )with R + kow. Fid ˆ = MLE( ). IND Solutio: Observe

More information

Some New Iterative Methods for Solving Nonlinear Equations

Some New Iterative Methods for Solving Nonlinear Equations World Applied Scieces Joural 0 (6): 870-874, 01 ISSN 1818-495 IDOSI Publicatios, 01 DOI: 10.589/idosi.wasj.01.0.06.830 Some New Iterative Methods for Solvig Noliear Equatios Muhammad Aslam Noor, Khalida

More information

Bootstrap Intervals of the Parameters of Lognormal Distribution Using Power Rule Model and Accelerated Life Tests

Bootstrap Intervals of the Parameters of Lognormal Distribution Using Power Rule Model and Accelerated Life Tests Joural of Moder Applied Statistical Methods Volume 5 Issue Article --5 Bootstrap Itervals of the Parameters of Logormal Distributio Usig Power Rule Model ad Accelerated Life Tests Mohammed Al-Ha Ebrahem

More information

Sequences of Definite Integrals, Factorials and Double Factorials

Sequences of Definite Integrals, Factorials and Double Factorials 47 6 Joural of Iteger Sequeces, Vol. 8 (5), Article 5.4.6 Sequeces of Defiite Itegrals, Factorials ad Double Factorials Thierry Daa-Picard Departmet of Applied Mathematics Jerusalem College of Techology

More information

Introduction to Machine Learning DIS10

Introduction to Machine Learning DIS10 CS 189 Fall 017 Itroductio to Machie Learig DIS10 1 Fu with Lagrage Multipliers (a) Miimize the fuctio such that f (x,y) = x + y x + y = 3. Solutio: The Lagragia is: L(x,y,λ) = x + y + λ(x + y 3) Takig

More information

SEQUENCES AND SERIES

SEQUENCES AND SERIES 9 SEQUENCES AND SERIES INTRODUCTION Sequeces have may importat applicatios i several spheres of huma activities Whe a collectio of objects is arraged i a defiite order such that it has a idetified first

More information

Mechanical Efficiency of Planetary Gear Trains: An Estimate

Mechanical Efficiency of Planetary Gear Trains: An Estimate Mechaical Efficiecy of Plaetary Gear Trais: A Estimate Dr. A. Sriath Professor, Dept. of Mechaical Egieerig K L Uiversity, A.P, Idia E-mail: sriath_me@klce.ac.i G. Yedukodalu Assistat Professor, Dept.

More information

Number of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day

Number of fatalities X Sunday 4 Monday 6 Tuesday 2 Wednesday 0 Thursday 3 Friday 5 Saturday 8 Total 28. Day LECTURE # 8 Mea Deviatio, Stadard Deviatio ad Variace & Coefficiet of variatio Mea Deviatio Stadard Deviatio ad Variace Coefficiet of variatio First, we will discuss it for the case of raw data, ad the

More information

Sequences I. Chapter Introduction

Sequences I. Chapter Introduction Chapter 2 Sequeces I 2. Itroductio A sequece is a list of umbers i a defiite order so that we kow which umber is i the first place, which umber is i the secod place ad, for ay atural umber, we kow which

More information

Bernoulli numbers and the Euler-Maclaurin summation formula

Bernoulli numbers and the Euler-Maclaurin summation formula Physics 6A Witer 006 Beroulli umbers ad the Euler-Maclauri summatio formula I this ote, I shall motivate the origi of the Euler-Maclauri summatio formula. I will also explai why the coefficiets o the right

More information