Chapter 3 LAMINATED MODEL DERIVATION


 Kristina Clemence Anthony
 1 years ago
 Views:
Transcription
1 17 Chapter 3 LAMINATED MODEL DERIVATION 3.1 Fundamental Poisson Equation The simplest version of the frictionless laminated model was originally introduced in 1961 by Salamon, and more recently explored in 1991 (Salamon, 1962; Salamon, 1991b; Yang, 1992). In this model, the media consists of a stack of strata laminations where the interfaces between beds, including the ground surface, are all horizontal, and free of shear stresses and cohesion (see Figure 3.1). In the general version of this model, the elastic modulus, Poisson s Ratio, and thickness of the jth bed are E j, v j, and t j, respectively. The theory of thin plates is used as the basis of the model (Ugural and Fenster, 1975). From this theory, the relationship between the vertical deflection (w) of Figure 3.1 Schematic of laminated overburden.
2 18 the middle plane of a horizontal plate and the resultant transverse pressure (p) acting on the plate is defined by: (3.1) where D is the flexural rigidity of a plate: (3.2) and 4 denotes the biharmonic operator in the xy plane, specifically: (3.3) Throughout this thesis, positive normal stresses and strains signify compression, and the positive zaxis points vertically downward. This sign convention necessitates that vertical displacement in the upward direction is taken to be positive. As shown in Figure 3.1, the resultant transverse pressure on the (j+1)th plate can be written as: (3.4) where b and t denote the induced vertical stress at the bottom and the top of the (j+1)th plate, respectively. It should be noted that in the first approximation, the thickness (t) of the plate will not change provided that no traction acts on the face of the bent plate and that the stretching of the middle plane is neglected (Ugural and Fenster, 1975). Thus, the change in thickness of an individual plate can be attributed solely to the effect of the vertical stress.
3 19 If we assume that the compressive stress acting across the top half of layer j+1 and the bottom half of layer j is t, then the change in distance between the middle planes of the two layers is: (3.5) Solving for the stress on the top of the (j+1)th layer: (3.6) Similarly, the stress on the bottom of the (j+1)th layer is: (3.7) Substituting equations 3.6 and 3.7 into equation 3.4 gives: (3.8) Factoring out common terms: (3.9)
4 20 Adding a few additional terms in preparation for a finitedifference representation: (3.10) and rearranging: (3.11) If we use to represent the finitedifference operator such that: (3.12) Then, the previous equation 3.11 can be written as: (3.13) This equation controls the strata pressure for a frictionless laminated model containing distinct layers. If we consider the simplification where the overburden is composed of
5 21 homogeneous stratifications such that the thickness (t), elastic modulus (E) and Poisson s Ratio (v) are identical for each layer, then the above equation (3.13) simplifies greatly to: (3.14) Substituting back into equation 3.1 we get: (3.15) Now, if the thickness of the layers are small in respect to the areal extent of the problem, the finitedifference approximation in equation 3.15 can be represented as a differential operator: (3.16) Substituting this differential operator into 3.15, simplifying and rearranging gives: (3.17) Making a substitution of: (3.18)
6 22 we get: (3.19) This is a fourthorder, partialdifferential equation, which mathematically transforms the homogeneous, layered medium into a quasicontinuum that maintains the flexibility of the laminated rock mass. In order to eliminate the biharmonic operator ( 4 ) and solve equation 3.19, a double Fourier integral transform is used. The Fourier transform of the vertical displacement, w(x,y,z), with respect to x and y is defined as (Weinberger, 1965): (3.20) where w is the transformed vertical displacement function and 1 and 2 are the transformation variables. In conjunction with the Fourier transform, the inverse Fourier transform is defined as: (3.21) The feature of the Fourier integral transform that makes it useful for solving higher order differential equations and for reducing partial differential equations to ordinary differential equations is that the transform of the derivative of the original function is simply the transform of the original equation multiplied by i. In our case, this feature can be expressed as: (3.22)
7 23 If the double Fourier transform is applied to equation 3.19, the result is the transformed equation: (3.23) where: (3.24) The general solution for equation 3.23 takes the form: (3.25) where C 1 and C 2 are the constants of integration to be determined from boundary conditions. To solve this equation (3.25), an infinite laminated medium is assumed, and the origin of the zaxis is set to be at the seam level with the positive zaxis pointing downward. Also, compression on the seam is specified as positive and upward movement of the overburden is specified as positive. Next, the domain of the vertical displacement is broken into two parts; above the seam where z is negative (w () ) and below the seam where z is positive (w (+) ). Then, applying the boundary condition that the vertical displacement must go to 0 (w 0) as the distance from the seam goes to infinity (z ± ), the solution for the displacements in the roof and floor takes the form: (3.26) where symmetry between the roof and floor displacements dictates that the constant of integration, C, is the same for both equations. Also, knowing that the vertical stress,, is related to the change in displacement by the elastic modulus, E;
8 24 (3.27) the equations for the vertical stress can be written as: (3.28) By examination of equation 3.26, it can be seen that: (3.29) Rearranging these equations we get: (3.30) Now, using the critical identity that the inverse Fourier transform of: (3.31) where 2 is the Laplace operator in the xy plane: (3.32)
9 25 the inverse transform can be taken of equations 3.30: (3.33) (3.34) Then, since at the seam level the stresses on the roof and floor are equal: and the convergence, s, can be represented as: (3.35) the equations 3.33 can be rearranged as: (3.36) Now expanding the Laplace operator and realizing that the seam level stresses are induced stresses, the fundamental equation for a laminated overburden with homogeneous stratifications can be written: (3.37) This secondorder, partialdifferential equation relates the convergence in the seam to the induced stress at the seam level in a layered media.
10 Displacement and Stress Influence Functions Equation 3.37 can be used to solve for the displacements at the seam level once the lamination properties are determined. However, in order to solve for displacements and/or stresses remote from the seam, an influence or kernel function which relates the seam convergence to the remote displacement needs to be derived. Following Yang s (1992) derivation, the boundary conditions for a concentrated unit convergence,, applied at (0, 0, 0) are: (3.38) Then the Fourier transform of the first boundary condition is: (3.39) Taking equations 3.26 at z = 0, and substituting these into equation 3.39, the value of C can be found as: (3.40) Substituting this result back into equations 3.26 and then taking the inverse Fourier transform results in the influence function for vertical displacement (W) from a unit point seam convergence: (3.41)
11 27 Using the identity in equation 3.27, the above equation can be used to determine the influence function for vertical stress from a unit point seam convergence: (3.42) 3.3 Numerical Solution of Fundamental Equation The fundamental differential equation which relates the convergence (s) in the seam to the induced stress ( i ) at the seam level in a layered media was derived in equation 3.37 and is repeated here: (3.43) This is a classic secondorder, elliptical, partialdifferential equation, and many numerical techniques have been developed for solving this type of equation. Examining the right side of this equation, it is found that the induced stress is the only variable which is not a material constant. In the simplest case of an opening in the seam, the induced stress ( i ) is equal to the negative of the primitive ( q ), or overburden stress. However, when there is material in the seam supporting the roof, the induced stress in the surrounding laminations is reduced by the support of the coal or other seam material ( c ). In general, the amount of support provided by the seam material is a function of the seam convergence, c (s), and in the case of failed material or gob, this support would typically be a nonlinear function of the seam convergence. The calculation of surfaceeffect stresses ( s ) are more complicated. For calculating the effects of a tractionfree plane at the ground surface, the technique of a mirrorimage seam is used (Yang, 1992; Salamon 1991b). Initially, the seam is considered to
12 28 be in an infinite medium and the appropriate seam displacements are determined. Then, a fictitious mirrorimage seam is placed above the ground surface at a distance equal to the depth (see Figure 3.2). This fictitious seam is also assumed to be in an infinite medium; however, the calculated convergence in the actual seam is exactly mirrored as divergence in the mirrorimage seam. Thus, the distributions of convergence and divergence are identical in magnitude but opposite in sign. Consequently, the sum of the propagated displacements and stresses (after equations 3.41 and 3.42) from the two seams is zero at a plane midway between the two seams, at the ground surface. Thus, the union of the two infinite media solutions corresponds to the effect of the actual seam at finite depth. Figure 3.2 Schematic of mirrorimage and multipleseam stress calculation.
13 29 However, at the level of the actual seam, the propagated stresses from the mirrorimage seam contribute to the total induced stress on the actual seam elements. In fact, every element in the mirrorimage seam propagates a small incremental stress to every element in the actual seam based on equation So, the surface effect stress ( s ) on any given seam element is equal to the numerical integration of the incremental stresses propagated from the mirrorimage seam. (The details of the surfaceeffect stress calculation are explained further in section ) The calculation of multipleseam stresses ( m ) is very similar to the calculation of surfaceeffect stresses. However, instead of a mirrorimage seam with mirrored divergence, for the multipleseam stress calculation, the second seam has an independent mine plan and therefore, an independent displacement distribution (see Figure 3.2). Once again, every element in the second seam propagates a small incremental stress to every element in the actual seam (and vice versa). Therefore, the multipleseam stress ( m ) on any given seam element in the actual seam is the numerical sum of the incremental stresses propagated from every element of the second seam. (The details of the multipleseam stress calculation are explained further in section ). From the proceeding paragraphs, it is seen that the surfaceeffect and multipleseam components of the induced stress are extremely complicated functions of inseam and offseam convergence. Thus, in general, the total induced stress can be the sum of many factors, some of which may be nonlinear functions of the seam convergence. (3.44) Once it is determined that the induced stress can be a nonlinear function of the seam convergence, the choice of solution techniques is generally limited to iterative procedures. Also, from a practical perspective, a robust solution algorithm with accelerated convergence is desirable, and to stay compatible with MULSIM it is desired to solve the seam convergence distribution on an even grid. Considering these factors, a
14 30 centraldifference approximation using a GaussSiedel iterative scheme with Successive OverRelaxation (SOR) was chosen as the solution technique (Ames, 1992). With this numerical technique, equation 3.43 can be solved over a gridded area using successive iterations of the kernel equation: (3.45) where: O is the overrelaxation factor (between 1 and 2); x is the grid dimension; the superscript r refers to the iteration number; and the subscripts j and k refer to the horizontal and vertical grid locations, respectively, on the finitedifference grid such that s 2,2 is the convergence value at the grid intersection 2 over and 2 up from the origin. This GaussSiedel solution scheme with SOR provides a number of numerical and computational advantages for the practical solution of equation Adjustment of the overrelaxation factor (O) allows the number of iterations for the convergence of the finitedifference solution to be minimized. Using the convergence values that were recently updated during the present iteration improves the speed of convergence and allows the convergence values to be stored in a single array that is updated as the solution progresses through the grid. Finally, the iterative solution technique allows the calculation of the nonlinear induced stress to be smoothly incorporated into the normal iteration cycle.
Stresses and Strains in flexible Pavements
Stresses and Strains in flexible Pavements Multi Layered Elastic System Assumptions in Multi Layered Elastic Systems The material properties of each layer are homogeneous property at point A i is the same
More informationModule 4 : Deflection of Structures Lecture 4 : Strain Energy Method
Module 4 : Deflection of Structures Lecture 4 : Strain Energy Method Objectives In this course you will learn the following Deflection by strain energy method. Evaluation of strain energy in member under
More informationBending of Simply Supported Isotropic and Composite Laminate Plates
Bending of Simply Supported Isotropic and Composite Laminate Plates Ernesto GutierrezMiravete 1 Isotropic Plates Consider simply a supported rectangular plate of isotropic material (length a, width b,
More informationLevel 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method
9210203 Level 7 Postgraduate Diploma in Engineering Computational mechanics using finite element method You should have the following for this examination one answer book No additional data is attached
More information1. classic definition = study of deformed rocks in the upper crust
Structural Geology I. Introduction 1. classic definition = study of deformed rocks in the upper crust deformed includes translation, rotation, and strain (change of shape) All rocks are deformed in some
More informationBENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION
BENCHMARK LINEAR FINITE ELEMENT ANALYSIS OF LATERALLY LOADED SINGLE PILE USING OPENSEES & COMPARISON WITH ANALYTICAL SOLUTION Ahmed Elgamal and Jinchi Lu October 07 Introduction In this study: I) The response
More informationLecture 2: Stresses in Pavements
Lecture 2: Stresses in Pavements Stresses in Layered Systems At any point, 9 stresses exist. They are 3 normal stresses (s z, s r, s t ) and 6 shearing stresses ( t rz = t zr, t rt = t tr, and t tz = t
More informationRocking behaviour of a rigid foundation with an arbitrary embedment
Rocking behaviour of a rigid foundation with an arbitrary embedment H. Moghaddasi Islamic Azad University, Qazvin, Iran. M. Kalantari University of Tehran, Tehran, Iran N. Chouw The University of Auckland,
More informationSoft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies
SoftBody Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed
More informationCHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES
CHAPTER THREE SYMMETRIC BENDING OF CIRCLE PLATES * Governing equations in beam and plate bending ** Solution by superposition 1.1 From Beam Bending to Plate Bending 1.2 Governing Equations For Symmetric
More informationGLY Geomorphology Notes
GLY 5705  Geomorphology Notes Dr. Peter N. Adams Revised: Sept. 2012 10 Flexure of the Lithosphere Associated Readings: Anderson and Anderson (2010), pp. 8692 Here we ask the question: What is the response
More informationProblem " Â F y = 0. ) R A + 2R B + R C = 200 kn ) 2R A + 2R B = 200 kn [using symmetry R A = R C ] ) R A + R B = 100 kn
Problem 0. Three cables are attached as shown. Determine the reactions in the supports. Assume R B as redundant. Also, L AD L CD cos 60 m m. uation of uilibrium: + " Â F y 0 ) R A cos 60 + R B + R C cos
More informationChapter 2 CONTINUUM MECHANICS PROBLEMS
Chapter 2 CONTINUUM MECHANICS PROBLEMS The concept of treating solids and fluids as though they are continuous media, rather thancomposedofdiscretemolecules, is one that is widely used in most branches
More informationNumerical modelling for estimation of first weighting distance in longwall coal mining  A case study
University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2012 Numerical modelling for estimation of first weighting distance in longwall coal
More informationMechanics PhD Preliminary Spring 2017
Mechanics PhD Preliminary Spring 2017 1. (10 points) Consider a body Ω that is assembled by gluing together two separate bodies along a flat interface. The normal vector to the interface is given by n
More informationSTRESSES WITHIN CURVED LAMINATED BEAMS OF DOUGLASFIR
UNITED STATES DEPARTMENT OF AGRICULTURE. FOREST SERVICE  FOREST PRODUCTS LABORATORY  MADISON, WIS. STRESSES WITHIN CURVED LAMINATED BEAMS OF DOUGLASFIR NOVEMBER 1963 FPL020 STRESSES WITHIN CURVED LAMINATED
More informationDownloaded 09/04/13 to Redistribution subject to SEG license or copyright; see Terms of Use at
Channel wave propagation analysis of the 3D tunnel model in isotropic viscoelastic medium Hui Li*, University of Houston, Peimin Zhu, China University of Geoscieces, Guangzhong Ji, Xi an Branch of China
More informationFinite Element Method in Geotechnical Engineering
Finite Element Method in Geotechnical Engineering Short Course on + Dynamics Boulder, Colorado January 58, 2004 Stein Sture Professor of Civil Engineering University of Colorado at Boulder Contents Steps
More informationFLEXIBILITY METHOD FOR INDETERMINATE FRAMES
UNIT  I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These
More informationChapter 12 Partial Differential Equations
Chapter 12 Partial Differential Equations Advanced Engineering Mathematics WeiTa Chu National Chung Cheng University wtchu@cs.ccu.edu.tw 1 2 12.1 Basic Concepts of PDEs Partial Differential Equation A
More informationACCURATE FREE VIBRATION ANALYSIS OF POINT SUPPORTED MINDLIN PLATES BY THE SUPERPOSITION METHOD
Journal of Sound and Vibration (1999) 219(2), 265 277 Article No. jsvi.1998.1874, available online at http://www.idealibrary.com.on ACCURATE FREE VIBRATION ANALYSIS OF POINT SUPPORTED MINDLIN PLATES BY
More informationGame Physics. Game and Media Technology Master Program  Utrecht University. Dr. Nicolas Pronost
Game and Media Technology Master Program  Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit
More informationINTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011
Interlaminar failure analysis of FRP cross ply laminate with elliptical cutout Venkateswara Rao.S 1, Sd. Abdul Kalam 1, Srilakshmi.S 1, Bala Krishna Murthy.V 2 1 Mechanical Engineering Department, P. V.
More informationMethods of Interpreting Ground Stress Based on Underground Stress Measurements and Numerical Modelling
University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2006 Methods of Interpreting Ground Stress Based on Underground Stress Measurements and
More informationMechanics in Energy Resources Engineering  Chapter 5 Stresses in Beams (Basic topics)
Week 7, 14 March Mechanics in Energy Resources Engineering  Chapter 5 Stresses in Beams (Basic topics) KiBok Min, PhD Assistant Professor Energy Resources Engineering i Seoul National University Shear
More informationSuccessful Construction of a Complex 3D Excavation Using 2D and 3D Modelling
University of Wollongong Research Online Coal Operators' Conference Faculty of Engineering and Information Sciences 2015 Successful Construction of a Complex 3D Excavation Using 2D and 3D Modelling Yvette
More informationLimit analysis of brick masonry shear walls with openings under later loads by rigid block modeling
Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling F. Portioli, L. Cascini, R. Landolfo University of Naples Federico II, Italy P. Foraboschi IUAV University,
More information7.2.1 Seismic waves. Waves in a mass spring system
7..1 Seismic waves Waves in a mass spring system Acoustic waves in a liquid or gas Seismic waves in a solid Surface waves Wavefronts, rays and geometrical attenuation Amplitude and energy Waves in a mass
More informationChapter 2 Governing Equations
Chapter Governing Equations Abstract In this chapter fundamental governing equations for propagation of a harmonic disturbance on the surface of an elastic halfspace is presented. The elastic media is
More information16. Mininginduced surface subsidence
16. Mininginduced surface subsidence 16.1 Types and effects of mininginduced subsidence Subsidence  Lowering of the ground surface following underground extraction of an orebody.  Types: continuous
More informationFigure 21: Stresses under axisymmetric circular loading
. Stresses in Pavements.1. Stresses in Fleible Pavements.1.1. Stresses in Homogeneous Mass Boussinesq formulated models for the stresses inside an elastic halfspace due to a concentrated load applied
More informationStructural behaviour of traditional mortiseandtenon timber joints
Structural behaviour of traditional mortiseandtenon timber joints Artur O. Feio 1, Paulo B. Lourenço 2 and José S. Machado 3 1 CCR Construtora S.A., Portugal University Lusíada, Portugal 2 University
More informationExercise: concepts from chapter 8
Reading: Fundamentals of Structural Geology, Ch 8 1) The following exercises explore elementary concepts associated with a linear elastic material that is isotropic and homogeneous with respect to elastic
More informationTable of Contents. Preface... 13
Table of Contents Preface... 13 Chapter 1. Vibrations of Continuous Elastic Solid Media... 17 1.1. Objective of the chapter... 17 1.2. Equations of motion and boundary conditions of continuous media...
More informationLecture 4: PRELIMINARY CONCEPTS OF STRUCTURAL ANALYSIS. Introduction
Introduction In this class we will focus on the structural analysis of framed structures. We will learn about the flexibility method first, and then learn how to use the primary analytical tools associated
More informationSound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur
Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3D solids, thin plates have surfaces
More informationLecture 15 Strain and stress in beams
Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME
More informationUnit 4 Lesson 3 Mountain Building. Copyright Houghton Mifflin Harcourt Publishing Company
Stressed Out How can tectonic plate motion cause deformation? The movement of tectonic plates causes stress on rock structures. Stress is the amount of force per unit area that is placed on an object.
More informationUnit M1.5 Statically Indeterminate Systems
Unit M1.5 Statically Indeterminate Systems Readings: CDL 2.1, 2.3, 2.4, 2.7 16.001/002  Unified Engineering Department of Aeronautics and Astronautics Massachusetts Institute of Technology LEARNING OBJECTIVES
More informationCIVL 8/7117 Chapter 12  Structural Dynamics 1/75. To discuss the dynamics of a singledegreeof freedom springmass
CIV 8/77 Chapter  /75 Introduction To discuss the dynamics of a singledegreeof freedom springmass system. To derive the finite element equations for the timedependent stress analysis of the onedimensional
More informationFinal Exam Solution Dynamics :45 12:15. Problem 1 Bateau
Final Exam Solution Dynamics 2 191157140 31012013 8:45 12:15 Problem 1 Bateau Bateau is a trapeze act by Cirque du Soleil in which artists perform aerial maneuvers on a boat shaped structure. The boat
More informationUse a highlighter to mark the most important parts, or the parts. you want to remember in the background information.
P a g e 1 Name A Fault Model Purpose: To explore the types of faults and how they affect the geosphere Background Information: A fault is an area of stress in the earth where broken rocks slide past each
More informationAlternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE. University of Liège Aerospace & Mechanical Engineering
University of Liège Aerospace & Mechanical Engineering Alternative numerical method in continuum mechanics COMPUTATIONAL MULTISCALE Van Dung NGUYEN Innocent NIYONZIMA Aerospace & Mechanical engineering
More informationConsider an elastic spring as shown in the Fig.2.4. When the spring is slowly
.3 Strain Energy Consider an elastic spring as shown in the Fig..4. When the spring is slowly pulled, it deflects by a small amount u 1. When the load is removed from the spring, it goes back to the original
More informationComposites Design and Analysis. Stress Strain Relationship
Composites Design and Analysis Stress Strain Relationship Composite design and analysis Laminate Theory Manufacturing Methods Materials Composite Materials Design / Analysis Engineer Design Guidelines
More informationNumerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation
Numerical Modeling of Interface Between Soil and Pile to Account for Loss of Contact during Seismic Excitation P. Sushma Ph D Scholar, Earthquake Engineering Research Center, IIIT Hyderabad, Gachbowli,
More informationAdvanced Structural Analysis EGF Cylinders Under Pressure
Advanced Structural Analysis EGF316 4. Cylinders Under Pressure 4.1 Introduction When a cylinder is subjected to pressure, three mutually perpendicular principal stresses will be set up within the walls
More informationEngineering Geophysical Application to Mine Subsidence Risk Assessment
Engineering Geophysical Application to Mine Subsidence Risk Assessment By: Kanaan Hanna, Sr. Mining Engineer Steve Hodges, Sr. Geophysicist Jim Pfeiffer, Sr. Geophysicist Dr. Keith Heasley, Professor West
More informationERTH2020 Introduction to Geophysics The Seismic Method. 1. Basic Concepts in Seismology. 1.1 Seismic Wave Types
ERTH2020 Introduction to Geophysics The Seismic Method 1. Basic Concepts in Seismology 1.1 Seismic Wave Types Existence of different wave types The existence of different seismic wave types can be understood
More informationWe briefly discuss two examples for solving wave propagation type problems with finite differences, the acoustic and the seismic problem.
Excerpt from GEOL557 Numerical Modeling of Earth Systems by Becker and Kaus 2016 1 Wave propagation Figure 1: Finite difference discretization of the 2D acoustic problem. We briefly discuss two examples
More information3D Elasticity Theory
3D lasticity Theory Many structural analysis problems are analysed using the theory of elasticity in which Hooke s law is used to enforce proportionality between stress and strain at any deformation level.
More informationSURFACE WAVE MODELLING USING SEISMIC GROUND RESPONSE ANALYSIS
43 SURFACE WAVE MODELLING USING SEISMIC GROUND RESPONSE ANALYSIS E John MARSH And Tam J LARKIN SUMMARY This paper presents a study of surface wave characteristics using a two dimensional nonlinear seismic
More informationA Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials
Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical
More informationThe aims of this experiment were to obtain values for Young s modulus and Poisson s ratio for
The Cornu Method Nikki Truss 09369481 Abstract: The aims of this experiment were to obtain values for Young s modulus and Poisson s ratio for Perspex using the Cornu Method. A value of was found for Young
More informationCracked concrete structures under cyclic load
Cracked concrete structures under cyclic load Fabrizio Barpi & Silvio Valente Department of Structural and Geotechnical Engineering, Politecnico di Torino, Torino, Italy ABSTRACT: The safety of cracked
More information7 Mathematical Methods 7.6 Insulation (10 units)
7 Mathematical Methods 7.6 Insulation (10 units) There are no prerequisites for this project. 1 Introduction When sheets of plastic and of other insulating materials are used in the construction of building
More informationPRACTICE 2 PROYECTO Y CONSTRUCCIÓN DE PUENTES. 1º Máster Ingeniería de Caminos. E.T.S.I. Caminos, canales y puertos (Ciudad Real) 01/06/2016
PRACTICE 2 PROYECTO Y CONSTRUCCIÓN DE PUENTES 1º Máster Ingeniería de Caminos E.T.S.I. Caminos, canales y puertos (Ciudad Real) 01/06/2016 AUTHOR: CONTENT 1. INTRODUCTION... 3 2. BRIDGE GEOMETRY AND MATERIAL...
More informationMacroscopic theory Rock as 'elastic continuum'
Elasticity and Seismic Waves Macroscopic theory Rock as 'elastic continuum' Elastic body is deformed in response to stress Two types of deformation: Change in volume and shape Equations of motion Wave
More informationReceiver. Johana Brokešová Charles University in Prague
Propagation of seismic waves  theoretical background Receiver Johana Brokešová Charles University in Prague Seismic waves = waves in elastic continuum a model of the medium through which the waves propagate
More information25th International Conference on Ground Control in Mining
ANALYTICAL INVESTIGATION OF SHAFT DAMAGES AT WEST ELK MINE Tim Ross, Senior Associate Agapito Associates, Inc. Golden, CO, USA Bo Yu, Senior Engineer Agapito Associates, Inc. Grand Junction, CO, USA Chris
More informationIntegral equations for crack systems in a slightly heterogeneous elastic medium
Boundary Elements and Other Mesh Reduction Methods XXXII 65 Integral equations for crack systems in a slightly heterogeneous elastic medium A. N. Galybin & S. M. Aizikovich Wessex Institute of Technology,
More informationELASTICITY AND FRACTURE MECHANICS. Vijay G. Ukadgaonker
THEORY OF ELASTICITY AND FRACTURE MECHANICS y x Vijay G. Ukadgaonker Theory of Elasticity and Fracture Mechanics VIJAY G. UKADGAONKER Former Professor Indian Institute of Technology Bombay Delhi110092
More informationDETAILS ABOUT THE TECHNIQUE. We use a global mantle convection model (Bunge et al., 1997) in conjunction with a
DETAILS ABOUT THE TECHNIQUE We use a global mantle convection model (Bunge et al., 1997) in conjunction with a global model of the lithosphere (Kong and Bird, 1995) to compute plate motions consistent
More informationPractice Test SHM with Answers
Practice Test SHM with Answers MPC 1) If we double the frequency of a system undergoing simple harmonic motion, which of the following statements about that system are true? (There could be more than one
More information3D simulations of an injection test done into an unsaturated porous and fractured limestone
3D simulations of an injection test done into an unsaturated porous and fractured limestone A. Thoraval *, Y. Guglielmi, F. Cappa INERIS, Ecole des Mines de Nancy, FRANCE *Corresponding author: Ecole des
More informationClassification of partial differential equations and their solution characteristics
9 TH INDO GERMAN WINTER ACADEMY 2010 Classification of partial differential equations and their solution characteristics By Ankita Bhutani IIT Roorkee Tutors: Prof. V. Buwa Prof. S. V. R. Rao Prof. U.
More informationEMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading
MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain  Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain  Axial Loading Statics
More informationROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring
ROTATIONAL STRESSES INTRODUCTION High centrifugal forces are developed in machine components rotating at a high angular speed of the order of 100 to 500 revolutions per second (rps). High centrifugal force
More informationIntroduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.
Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. BernoulliEuler Beams.
More informationFracture Mechanics of Composites with Residual Thermal Stresses
J. A. Nairn Material Science & Engineering, University of Utah, Salt Lake City, Utah 84 Fracture Mechanics of Composites with Residual Thermal Stresses The problem of calculating the energy release rate
More informationNDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.
CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of ElastoDynamics 6.2. Principles of Measurement 6.3. The PulseEcho
More informationHIGHWALL STABILITY DUE TO GROUND VIBRATIONS FROM BLASTING. Dr. Kyle A. Perry Dr. Kot F. Unrug Kevin Harris Michael Raffaldi
HIGHWALL STABILITY DUE TO GROUND VIBRATIONS FROM BLASTING Dr. Kyle A. Perry Dr. Kot F. Unrug Kevin Harris Michael Raffaldi PURPOSE Objective: Study the effect of blast vibrations on the stability of highwalls
More informationMATERIAL PROPERTIES. Material Properties Must Be Evaluated By Laboratory or Field Tests 1.1 INTRODUCTION 1.2 ANISOTROPIC MATERIALS
. MARIAL PROPRIS Material Properties Must Be valuated By Laboratory or Field ests. INRODUCION he fundamental equations of structural mechanics can be placed in three categories[]. First, the stressstrain
More informationCOPYRIGHTED MATERIAL. Index
Index A Admissible function, 163 Amplification factor, 36 Amplitude, 1, 22 Amplitudemodulated carrier, 630 Amplitude ratio, 36 Antinodes, 612 Approximate analytical methods, 647 Assumed modes method,
More informationDiscrete Analysis for Plate Bending Problems by Using Hybridtype Penalty Method
131 Bulletin of Research Center for Computing and Multimedia Studies, Hosei University, 21 (2008) Published online (http://hdl.handle.net/10114/1532) Discrete Analysis for Plate Bending Problems by Using
More informationMapping the conversion point in vertical transversely isotropic (VTI) media
Mapping the conversion point in vertical transversely isotropic (VTI) media Jianli Yang and Don. C. Lawton Conversionpoint mapping ABSTRACT The important aspect of convertedwave (PS) seismology is that
More informationThe University of Melbourne Engineering Mechanics
The University of Melbourne 436291 Engineering Mechanics Tutorial Four Poisson s Ratio and Axial Loading Part A (Introductory) 1. (Problem 922 from Hibbeler  Statics and Mechanics of Materials) A short
More informationA unifying model for fluid flow and elastic solid deformation: a novel approach for fluidstructure interaction and wave propagation
A unifying model for fluid flow and elastic solid deformation: a novel approach for fluidstructure interaction and wave propagation S. Bordère a and J.P. Caltagirone b a. CNRS, Univ. Bordeaux, ICMCB,
More informationInternational Journal of Advanced Engineering Technology EISSN
Research Article INTEGRATED FORCE METHOD FOR FIBER REINFORCED COMPOSITE PLATE BENDING PROBLEMS Doiphode G. S., Patodi S. C.* Address for Correspondence Assistant Professor, Applied Mechanics Department,
More informationXI. NANOMECHANICS OF GRAPHENE
XI. NANOMECHANICS OF GRAPHENE Carbon is an element of extraordinary properties. The carboncarbon bond possesses large magnitude cohesive strength through its covalent bonds. Elemental carbon appears in
More informationIf the number of unknown reaction components are equal to the number of equations, the structure is known as statically determinate.
1 of 6 EQUILIBRIUM OF A RIGID BODY AND ANALYSIS OF ETRUCTURAS II 9.1 reactions in supports and joints of a twodimensional structure and statically indeterminate reactions: Statically indeterminate structures
More informationNomenclature. Length of the panel between the supports. Width of the panel between the supports/ width of the beam
omenclature a b c f h Length of the panel between the supports Width of the panel between the supports/ width of the beam Sandwich beam/ panel core thickness Thickness of the panel face sheet Sandwich
More informationA *69>H>N6 #DJGC6A DG C<>C::G>C<,8>:C8:H /DA 'D 2:6G  (  ) +"' ( + "( (' (& +" % '('%"' +"2 ( !"', % )% .C>K:GH>IN D; AF69>HH>6,+
The primary objective is to determine whether the structural efficiency of plates can be improved with variable thickness The large displacement analysis of steel plate with variable thickness at direction
More information[8] Bending and Shear Loading of Beams
[8] Bending and Shear Loading of Beams Page 1 of 28 [8] Bending and Shear Loading of Beams [8.1] Bending of Beams (will not be covered in class) [8.2] Bending Strain and Stress [8.3] Shear in Straight
More informationINTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 4, 2013
INTERNATIONAL JOURNAL OF CIVIL AND STRUCTURAL ENGINEERING Volume 3, No 4, 2013 Copyright by the authors  Licensee IPA Under Creative Commons license 3.0 Research article ISSN 0976 4399 Pure bending analysis
More informationSETTLEMENT TROUGH DUE TO TUNNELING IN COHESIVE GROUND
Indian Geotechnical Journal, 41(), 11, 6475 SETTLEMENT TROUGH DUE TO TUNNELING IN COHESIVE GROUND Mohammed Y. Fattah 1, Kais T. Shlash and Nahla M. Salim 3 Key words Tunnel, clay, finite elements, settlement,
More informationIntroduction to Seismology Spring 2008
MIT OpenCourseWare http://ocw.mit.edu 12.510 Introduction to Seismology Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Stress and Strain
More informationVIBRATION CONTROL OF RECTANGULAR CROSSPLY FRP PLATES USING PZT MATERIALS
Journal of Engineering Science and Technology Vol. 12, No. 12 (217) 33983411 School of Engineering, Taylor s University VIBRATION CONTROL OF RECTANGULAR CROSSPLY FRP PLATES USING PZT MATERIALS DILEEP
More informationMiningCaused Activation of Fault
Discrete Dynamics in Nature and Society, 2002 VoL. 7 (3), pp. 151155 Taylor & Francis Taylor & Francis Group Numerical Simulation of Fractal Interface Effect of MiningCaused Activation of Fault YU GUANGMINGa
More informationChapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING )
Chapter 5 CENTRIC TENSION OR COMPRESSION ( AXIAL LOADING ) 5.1 DEFINITION A construction member is subjected to centric (axial) tension or compression if in any cross section the single distinct stress
More informationFIXED BEAMS IN BENDING
FIXED BEAMS IN BENDING INTRODUCTION Fixed or builtin beams are commonly used in building construction because they possess high rigidity in comparison to simply supported beams. When a simply supported
More informationQuintic beam closed form matrices (revised 2/21, 2/23/12) General elastic beam with an elastic foundation
General elastic beam with an elastic foundation Figure 1 shows a beamcolumn on an elastic foundation. The beam is connected to a continuous series of foundation springs. The other end of the foundation
More informationModule6: Laminated CompositesII. Learning Unit1: M6.1. M 6.1 Structural Mechanics of Laminates
Module6: Laminated CompositesII Learning Unit1: M6.1 M 6.1 Structural Mechanics of Laminates Classical Lamination Theory: Laminate Stiffness Matrix To this point in the development of classical lamination
More informationIGJ PROOFS SETTLEMENT TROUGH DUE TO TUNNELING IN COHESIVE GROUND. Surface Settlement. Introduction. Indian Geotechnical Journal, 41(2), 2011, 6475
Indian Geotechnical Journal, 41(), 11, 6475 SETTLEMENT TROUGH DUE TO TUNNELING IN COHESIVE GROUND Key words Tunnel, clay, finite elements, settlement, complex variable Introduction The construction of
More informationDynamics Manual. Version 7
Dynamics Manual Version 7 DYNAMICS MANUAL TABLE OF CONTENTS 1 Introduction...11 1.1 About this manual...11 2 Tutorial...21 2.1 Dynamic analysis of a generator on an elastic foundation...21 2.1.1 Input...21
More informationDYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOILPILE INTERACTION
October 117,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOILPILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,
More informationExample3. Title. Description. Cylindrical Hole in an Infinite MohrCoulomb Medium
Example3 Title Cylindrical Hole in an Infinite MohrCoulomb Medium Description The problem concerns the determination of stresses and displacements for the case of a cylindrical hole in an infinite elastoplastic
More informationVirtual Work & Energy Methods. External EnergyWork Transformation
External EnergyWork Transformation Virtual Work Many structural problems are statically determinate (support reactions & internal forces can be found by simple statics) Other methods are required when
More informationRigid Pavement Mechanics. Curling Stresses
Rigid Pavement Mechanics Curling Stresses Major Distress Conditions Cracking Bottomup transverse cracks Topdown transverse cracks Longitudinal cracks Corner breaks Punchouts (CRCP) 2 Major Distress Conditions
More informationMohr's Circle and Earth Stress (The Elastic Earth)
Lect. 1  Mohr s Circle and Earth Stress 6 Mohr's Circle and Earth Stress (The Elastic Earth) In the equations that we derived for Mohr s circle, we measured the angle, θ, as the angle between σ 1 and
More information