INTERMEDIATE FLUID MECHANICS

Size: px
Start display at page:

Download "INTERMEDIATE FLUID MECHANICS"

Transcription

1 INTERMEDITE FLUID MEHNIS enot shman-rosn Thaer School of Engneerng Dartmoth ollege See: Kn et al. Secton 3.4 pages 76-8 Lectre : Stran Vortct rclaton an Stress The ector eloct fel has 3 components each epenng on 3 spatal coornates. There s therefore a total of 9 possble spatal erates characterng the araton of the flo across space: r It can be shon that ths 33 table forms a 33 tensor. In other ors t possesses the reqre nmber of narants th respect to rotaton of the coornate aes. One mportant narant s the trace hch s the sm of the agonal elements: hch s none other than the ergence of the flo fel. r 3 3 th mple sm oer repeate nces

2 Of nterest also are: the smmetrc part of the tensor: the ant-smmetrc part of the tensor: R S In D th an these sb-tensors are: S R 3 stnct components onl component 6 components n 3D 3 components n 3D Phscal nterpretaton represents stretchng or sqeeng n the -recton represents stretchng or sqeeng n the -recton Smlarl + f f + < tme tme

3 The terms an relate to eformaton: t t Pont moes from to t t Pont moes from to Pont moes from to t t t t t t t t tan t t t Ths e see that: epresses trnng aa from the -as t t tan t t t epresses trnng aa from the -as. 3

4 4 t t t t No e see hat the combnatons of erates represent: For pre rotaton t t t an Eample of sol bo-rotaton: Therefore the epresson th the fference measres the amont of trnng n the flo. t t t n n the opposte case hen there s no net rotaton: Therefore the epresson th the sm measres the amont of stran case b the flo. In three mensons there are three stran-rate components: In a stranng flo fel an ntall sphercal fl parcel storts nto an ellpso. The three stan rates correspon to the rates of elongaton or shortenng of each maor as.

5 5 onser no all three possble ant-smmetrc components of the erate tensor: These can be collecte no longer n a tensor bt n a ector: = crl of the eloct ector s calle the ortct ector. It measres the amont of trnng n the flo. In D the ector ortct has a sngle component stckng ot of the plane of flo: General propert of the ortct ector: ecase the ortct ector s the crl of a ector ts ergence anshes. Inee = Note: No phscal prncple has been noke here onl mathematcs. Ths means that the ortct ector no matter hat the flo ma be alas carres thn tself a constrant. Ths s fferent from a ergence-free flo fel hch s the reslt of mass conseraton for an ncompressble fl.

6 Vortct an rclaton For an close loop n 3D e efne s rclaton s pplcaton of Stokes Theorem: The ntegral of a ector along a close cre = fl of the crl of that ector throgh the srface spanne b the close loop. Ths s nˆ nˆ nˆ nother of pttng ths s to sa that the crclaton s eqal to the ortct fl. pplcaton to sol-bo rotaton Flo fel s: long crclar loop of ras r the amthal eloct s V r It follos that the crclaton aron that loop s s V r V r r The ortct ot of the plane s: n the fl of ortct s r r Same as crclaton nee. 6

7 Proof n the flat plane: For a lttle sqare D s s s D s s ortct area D n no for man sqares fllng the area nse the loop No o sm oer the man small rectangles. ontrbtons of all nteror ses cancel one another ot. Onl the contrbtons along the otse segments remans. Ths s Vorte Tbe Take a close loop --- an from each pont along t ra a lne segment algne th the local ortct ector. Termnate each lne arbtrarl. The en ponts form a ne loop an the set of ortct lnes from startng loop to enng loop forms a orte tbe. learl ortct s tangent to the lateral srface bt not to the base an top. No appl Stokes Theorem to the follong close contor hch ncles gong from a pont on the base loop p along a ortct lne - aron the top loop n the conterclockse recton back on the same lne n reerse - an fnall aron the base loop n the clockse recton ---. Ths path oes form a close loop. The crclaton along ths loop s nl becase the ortct s eerhere tangent to the srface spannng ths loop: s ' ' ' ' ' s s s ' ' ' ' s ' ' ' ' ' s s s s Helmholt Theorem 7

8 Stress Tensor fl s sbecte to stresses especall hen t flos. Stress s force per area lke pressre bt s more general. It can hae an recton on an srface on hch t bears. Ths on an srface of a fl parcel there s a ector stress. If e no conser a small cbe of fl e hae a most general stress confgraton as epcte n the se fgre th a three-component ector stress on three fferent srface orentatons. eng a ector of ectors stress forms a tensor: The agonal components an are normal stresses; all others are shear stresses. The stress tensor mst be smmetrc: = = = Inee f t ere not the fferences ol create anomalosl large torqes. Take for eample the torqe aron the -as hch s torqe The mass of the fl parcel s so that ts moment of nerta th respect to the -as s on the orer of. Snce the rotatonal acceleraton mst reman phscall fnte t s necessar that the torqe be on the same orer as the moment of nerta. Ths reqres that the stress fference be on the orer of an ths mch less than each term alone. The to terms mst ths be eqal th an possble fference attrbtable to spatal graents small change oer a small stance. 8

9 Pressre as part of the stress tensor We sa earler than pressre s one of the forces per area actng on a fl parcel. Ths pressre s a part of the stress. Snce pressre - s a normal stress - has the same ale rrespecte of recton an - s measre postel n compresson t follos that the pressre part of the stress tensor s of the form: pressre part of stress tensor p p p 9

Kinematics of Fluid Motion

Kinematics of Fluid Motion Knematcs of Flu Moton R. Shankar Subramanan Department of Chemcal an Bomolecular Engneerng Clarkson Unversty Knematcs s the stuy of moton wthout ealng wth the forces that affect moton. The scusson here

More information

Module 6. Lecture 2: Navier-Stokes and Saint Venant equations

Module 6. Lecture 2: Navier-Stokes and Saint Venant equations Modle 6 Lectre : Naer-Stokes and Sant Venant eqatons Modle 6 Naer-Stokes Eqatons Clade-Los Naer Sr George Gabrel Stokes St.Venant eqatons are dered from Naer-Stokes Eqatons for shallo ater flo condtons.

More information

Chaper 2: Stress in beams

Chaper 2: Stress in beams Chaper : Stress n eams FLEURE Beams suject to enng wll fle COPRESSON TENSON On the lower surface the eam s stretche lengthwse. Ths sujects t to tensle stress. N.A. N.A. s the neutral as On the upper surface

More information

PHZ 6607 Lecture Notes

PHZ 6607 Lecture Notes NOTE PHZ 6607 Lecture Notes 1. Lecture 2 1.1. Defntons Books: ( Tensor Analyss on Manfols ( The mathematcal theory of black holes ( Carroll (v Schutz Vector: ( In an N-Dmensonal space, a vector s efne

More information

MEMBRANE ELEMENT WITH NORMAL ROTATIONS

MEMBRANE ELEMENT WITH NORMAL ROTATIONS 9. MEMBRANE ELEMENT WITH NORMAL ROTATIONS Rotatons Mst Be Compatble Between Beam, Membrane and Shell Elements 9. INTRODUCTION { XE "Membrane Element" }The comple natre of most bldngs and other cvl engneerng

More information

Chapter 24 Work and Energy

Chapter 24 Work and Energy Chapter 4 or an Energ 4 or an Energ You have one qute a bt of problem solvng usng energ concepts. ac n chapter we efne energ as a transferable phscal quantt that an obect can be sa to have an we sa that

More information

C PLANE ELASTICITY PROBLEM FORMULATIONS

C PLANE ELASTICITY PROBLEM FORMULATIONS C M.. Tamn, CSMLab, UTM Corse Content: A ITRODUCTIO AD OVERVIEW mercal method and Compter-Aded Engneerng; Phscal problems; Mathematcal models; Fnte element method. B REVIEW OF -D FORMULATIOS Elements and

More information

Bruce A. Draper & J. Ross Beveridge, January 25, Geometric Image Manipulation. Lecture #1 January 25, 2013

Bruce A. Draper & J. Ross Beveridge, January 25, Geometric Image Manipulation. Lecture #1 January 25, 2013 Brce A. Draper & J. Ross Beerdge, Janar 5, Geometrc Image Manplaton Lectre # Janar 5, Brce A. Draper & J. Ross Beerdge, Janar 5, Image Manplaton: Contet To start wth the obos, an mage s a D arra of pels

More information

Chapter 7: Conservation of Energy

Chapter 7: Conservation of Energy Lecture 7: Conservaton o nergy Chapter 7: Conservaton o nergy Introucton I the quantty o a subject oes not change wth tme, t means that the quantty s conserve. The quantty o that subject remans constant

More information

Optimization. Nuno Vasconcelos ECE Department, UCSD

Optimization. Nuno Vasconcelos ECE Department, UCSD Optmzaton Nuno Vasconcelos ECE Department, UCSD Optmzaton many engneerng problems bol on to optmzaton goal: n mamum or mnmum o a uncton Denton: gven unctons, g,,...,k an h,,...m ene on some oman Ω R n

More information

Rigid body simulation

Rigid body simulation Rgd bod smulaton Rgd bod smulaton Once we consder an object wth spacal etent, partcle sstem smulaton s no longer suffcent Problems Problems Unconstraned sstem rotatonal moton torques and angular momentum

More information

Concept of Stress at a Point

Concept of Stress at a Point Washkeic College of Engineering Section : STRONG FORMULATION Concept of Stress at a Point Consider a point ithin an arbitraril loaded deformable bod Define Normal Stress Shear Stress lim A Fn A lim A FS

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

1 Differential Equations for Solid Mechanics

1 Differential Equations for Solid Mechanics 1 Differential Eqations for Solid Mechanics Simple problems involving homogeneos stress states have been considered so far, wherein the stress is the same throghot the component nder std. An eception to

More information

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors.

SCALARS AND VECTORS All physical quantities in engineering mechanics are measured using either scalars or vectors. SCALARS AND ECTORS All phscal uanttes n engneerng mechancs are measured usng ether scalars or vectors. Scalar. A scalar s an postve or negatve phscal uantt that can be completel specfed b ts magntude.

More information

C PLANE ELASTICITY PROBLEM FORMULATIONS

C PLANE ELASTICITY PROBLEM FORMULATIONS C M.. Tamn, CSMLab, UTM Corse Content: A ITRODUCTIO AD OVERVIEW mercal method and Compter-Aded Engneerng; Phscal problems; Mathematcal models; Fnte element method. B REVIEW OF -D FORMULATIOS Elements and

More information

ENGI9496 Lecture Notes Multiport Models in Mechanics

ENGI9496 Lecture Notes Multiport Models in Mechanics ENGI9496 Moellng an Smulaton of Dynamc Systems Mechancs an Mechansms ENGI9496 Lecture Notes Multport Moels n Mechancs (New text Secton 4..3; Secton 9.1 generalzes to 3D moton) Defntons Generalze coornates

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecture 3 Contnuous Systems an Fels (Chapter 3) Where Are We Now? We ve fnshe all the essentals Fnal wll cover Lectures through Last two lectures: Classcal Fel Theory Start wth wave equatons

More information

Navier Stokes Second Exact Transformation

Navier Stokes Second Exact Transformation Unversal Jornal of Appled Mathematcs (3): 136-140, 014 DOI: 1013189/jam01400303 http://wwwhrpborg Naver Stokes Second Eact Transformaton Aleandr Koachok Kev, Ukrane *Correspondng Athor: a-koachok1@andea

More information

One Dimensional Axial Deformations

One Dimensional Axial Deformations One Dmensonal al Deformatons In ths secton, a specfc smple geometr s consdered, that of a long and thn straght component loaded n such a wa that t deforms n the aal drecton onl. The -as s taken as the

More information

Complex Numbers Practice 0708 & SP 1. The complex number z is defined by

Complex Numbers Practice 0708 & SP 1. The complex number z is defined by IB Math Hgh Leel: Complex Nmbers Practce 0708 & SP Complex Nmbers Practce 0708 & SP. The complex nmber z s defned by π π π π z = sn sn. 6 6 Ale - Desert Academy (a) Express z n the form re, where r and

More information

Physics 101 Lecture 9 Linear Momentum and Collisions

Physics 101 Lecture 9 Linear Momentum and Collisions Physcs 0 Lecture 9 Lnear Momentum and Collsons Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum and Collsons q q q q q q q Conseraton o Energy Momentum Impulse Conseraton o Momentum -D Collsons

More information

Fields, Charges, and Field Lines

Fields, Charges, and Field Lines Felds, Charges, and Feld Lnes Electrc charges create electrc felds. (Gauss Law) Electrc feld lnes begn on + charges and end on - charges. Lke charges repel, oppostes attract. Start wth same dea for magnetc

More information

EMU Physics Department.

EMU Physics Department. Physcs 0 Lecture 9 Lnear Momentum and Collsons Assst. Pro. Dr. Al ÖVGÜN EMU Physcs Department www.aogun.com Lnear Momentum q Conseraton o Energy q Momentum q Impulse q Conseraton o Momentum q -D Collsons

More information

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer

Chapter 6 Momentum Transfer in an External Laminar Boundary Layer 6. Similarit Soltions Chapter 6 Momentm Transfer in an Eternal Laminar Bondar Laer Consider a laminar incompressible bondar laer with constant properties. Assme the flow is stead and two-dimensional aligned

More information

Chapter 1: Differential Form of Basic Equations

Chapter 1: Differential Form of Basic Equations MEG 74 Energ and Variational Methods in Mechanics I Brendan J. O Toole, Ph.D. Associate Professor of Mechanical Engineering Howard R. Hghes College of Engineering Universit of Nevada Las Vegas TBE B- (7)

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamcs of Rotatonal Moton Torque: the rotatonal analogue of force Torque = force x moment arm = Fl moment arm = perpendcular dstance through whch the force acts a.k.a. leer arm l F l F l F l F = Fl =

More information

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation

Lecture 5. Differential Analysis of Fluid Flow Navier-Stockes equation Lectre 5 Differential Analsis of Flid Flo Naier-Stockes eqation Differential analsis of Flid Flo The aim: to rodce differential eqation describing the motion of flid in detail Flid Element Kinematics An

More information

Chapter 1. Foundation of Solid Mechanics and Variational Methods

Chapter 1. Foundation of Solid Mechanics and Variational Methods Chapter Fondaton of Sold Mechancs and Varatonal Methods - Some Fndamental Concepts -- hscal roblems, Mathematcal Models, Soltons -- Contnm Mechancs -3- Bondar ale problem solton -4- Appromate solton of

More information

Physics 105: Mechanics Lecture 13

Physics 105: Mechanics Lecture 13 Physcs 05: Mechancs Lecture 3 Wenda Cao NJIT Physcs Department Momentum and Momentum Conseraton Momentum Impulse Conseraton o Momentum Collsons Lnear Momentum A new undamental quantty, lke orce, energy

More information

5. The Bernoulli Equation

5. The Bernoulli Equation 5. The Bernolli Eqation [This material relates predominantly to modles ELP034, ELP035] 5. Work and Energy 5. Bernolli s Eqation 5.3 An example of the se of Bernolli s eqation 5.4 Pressre head, velocity

More information

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph

A Tale of Friction Basic Rollercoaster Physics. Fahrenheit Rollercoaster, Hershey, PA max height = 121 ft max speed = 58 mph A Tale o Frcton Basc Rollercoaster Physcs Fahrenhet Rollercoaster, Hershey, PA max heght = 11 t max speed = 58 mph PLAY PLAY PLAY PLAY Rotatonal Movement Knematcs Smlar to how lnear velocty s dened, angular

More information

EQUATION CHAPTER 1 SECTION 1STRAIN IN A CONTINUOUS MEDIUM

EQUATION CHAPTER 1 SECTION 1STRAIN IN A CONTINUOUS MEDIUM EQUTION HPTER SETION STRIN IN ONTINUOUS MEIUM ontent Introdcton One dmensonal stran Two-dmensonal stran Three-dmensonal stran ondtons for homogenety n two-dmensons n eample of deformaton of a lne Infntesmal

More information

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding.

Physics 53. Rotational Motion 3. Sir, I have found you an argument, but I am not obliged to find you an understanding. Physcs 53 Rotatonal Moton 3 Sr, I have found you an argument, but I am not oblged to fnd you an understandng. Samuel Johnson Angular momentum Wth respect to rotatonal moton of a body, moment of nerta plays

More information

Yukawa Potential and the Propagator Term

Yukawa Potential and the Propagator Term PHY304 Partcle Physcs 4 Dr C N Booth Yukawa Potental an the Propagator Term Conser the electrostatc potental about a charge pont partcle Ths s gven by φ = 0, e whch has the soluton φ = Ths escrbes the

More information

Phys 331: Ch 7,.2 Unconstrained Lagrange s Equations 1

Phys 331: Ch 7,.2 Unconstrained Lagrange s Equations 1 Phys 33: Ch 7 Unconstrane agrange s Equatons Fr0/9 Mon / We /3 hurs /4 7-3 agrange s wth Constrane 74-5 Proof an Eaples 76-8 Generalze Varables & Classcal Haltonan (ecoen 79 f you ve ha Phys 33) HW7 ast

More information

Lesson 81: The Cross Product of Vectors

Lesson 81: The Cross Product of Vectors Lesson 8: The Cross Prodct of Vectors IBHL - SANTOWSKI In this lesson yo will learn how to find the cross prodct of two ectors how to find an orthogonal ector to a plane defined by two ectors how to find

More information

The Noether theorem. Elisabet Edvardsson. Analytical mechanics - FYGB08 January, 2016

The Noether theorem. Elisabet Edvardsson. Analytical mechanics - FYGB08 January, 2016 The Noether theorem Elsabet Evarsson Analytcal mechancs - FYGB08 January, 2016 1 1 Introucton The Noether theorem concerns the connecton between a certan kn of symmetres an conservaton laws n physcs. It

More information

ESS 265 Spring Quarter 2005 Time Series Analysis: Error Analysis

ESS 265 Spring Quarter 2005 Time Series Analysis: Error Analysis ESS 65 Sprng Qarter 005 Tme Seres Analyss: Error Analyss Lectre 9 May 3, 005 Some omenclatre Systematc errors Reprodcbly errors that reslt from calbraton errors or bas on the part of the obserer. Sometmes

More information

Q2. The velocity field in a fluid flow is given by

Q2. The velocity field in a fluid flow is given by Kinematics of Flid Q. Choose the correct anser (i) streamline is a line (a) hich is along the path of a particle (b) dran normal to the elocit ector at an point (c) sch that the streamlines diide the passage

More information

Chapter Twelve. Integration. We now turn our attention to the idea of an integral in dimensions higher than one. Consider a real-valued function f : D

Chapter Twelve. Integration. We now turn our attention to the idea of an integral in dimensions higher than one. Consider a real-valued function f : D Chapter Twelve Integraton 12.1 Introducton We now turn our attenton to the dea of an ntegral n dmensons hgher than one. Consder a real-valued functon f : R, where the doman s a nce closed subset of Eucldean

More information

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product

Week 11: Chapter 11. The Vector Product. The Vector Product Defined. The Vector Product and Torque. More About the Vector Product The Vector Product Week 11: Chapter 11 Angular Momentum There are nstances where the product of two vectors s another vector Earler we saw where the product of two vectors was a scalar Ths was called the

More information

b ), which stands for uniform distribution on the interval a x< b. = 0 elsewhere

b ), which stands for uniform distribution on the interval a x< b. = 0 elsewhere Fall Analyss of Epermental Measurements B. Esensten/rev. S. Errede Some mportant probablty dstrbutons: Unform Bnomal Posson Gaussan/ormal The Unform dstrbuton s often called U( a, b ), hch stands for unform

More information

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before .1 Arc Length hat s the length of a curve? How can we approxmate t? e could do t followng the pattern we ve used before Use a sequence of ncreasngly short segments to approxmate the curve: As the segments

More information

Hopfield Training Rules 1 N

Hopfield Training Rules 1 N Hopfeld Tranng Rules To memorse a sngle pattern Suppose e set the eghts thus - = p p here, s the eght beteen nodes & s the number of nodes n the netor p s the value requred for the -th node What ll the

More information

Solutions to Practice Problems

Solutions to Practice Problems Phys A Solutons to Practce Probles hapter Inucton an Maxwell s uatons (a) At t s, the ef has a agntue of t ag t Wb s t Wb s Wb s t Wb s V t 5 (a) Table - gves the resstvty of copper Thus, L A 8 9 5 (b)

More information

Finite Difference Method

Finite Difference Method 7/0/07 Instructor r. Ramond Rump (9) 747 698 rcrump@utep.edu EE 337 Computatonal Electromagnetcs (CEM) Lecture #0 Fnte erence Method Lecture 0 These notes ma contan coprghted materal obtaned under ar use

More information

Connectivity and Menger s theorems

Connectivity and Menger s theorems Connectiity and Menger s theorems We hae seen a measre of connectiity that is based on inlnerability to deletions (be it tcs or edges). There is another reasonable measre of connectiity based on the mltiplicity

More information

Reading Assignment. Panel Data Cross-Sectional Time-Series Data. Chapter 16. Kennedy: Chapter 18. AREC-ECON 535 Lec H 1

Reading Assignment. Panel Data Cross-Sectional Time-Series Data. Chapter 16. Kennedy: Chapter 18. AREC-ECON 535 Lec H 1 Readng Assgnment Panel Data Cross-Sectonal me-seres Data Chapter 6 Kennedy: Chapter 8 AREC-ECO 535 Lec H Generally, a mxtre of cross-sectonal and tme seres data y t = β + β x t + β x t + + β k x kt + e

More information

Analytical classical dynamics

Analytical classical dynamics Analytcal classcal ynamcs by Youun Hu Insttute of plasma physcs, Chnese Acaemy of Scences Emal: yhu@pp.cas.cn Abstract These notes were ntally wrtten when I rea tzpatrck s book[] an were later revse to

More information

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method

BAR & TRUSS FINITE ELEMENT. Direct Stiffness Method BAR & TRUSS FINITE ELEMENT Drect Stness Method FINITE ELEMENT ANALYSIS AND APPLICATIONS INTRODUCTION TO FINITE ELEMENT METHOD What s the nte element method (FEM)? A technqe or obtanng approxmate soltons

More information

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2

Vectors in Rn un. This definition of norm is an extension of the Pythagorean Theorem. Consider the vector u = (5, 8) in R 2 MATH 307 Vectors in Rn Dr. Neal, WKU Matrices of dimension 1 n can be thoght of as coordinates, or ectors, in n- dimensional space R n. We can perform special calclations on these ectors. In particlar,

More information

Solutions to selected problems from homework 1.

Solutions to selected problems from homework 1. Jan Hagemejer 1 Soltons to selected problems from homeork 1. Qeston 1 Let be a tlty fncton hch generates demand fncton xp, ) and ndrect tlty fncton vp, ). Let F : R R be a strctly ncreasng fncton. If the

More information

Primary dependent variable is fluid velocity vector V = V ( r ); where r is the position vector

Primary dependent variable is fluid velocity vector V = V ( r ); where r is the position vector Chapter 4: Flids Kinematics 4. Velocit and Description Methods Primar dependent ariable is flid elocit ector V V ( r ); where r is the position ector If V is known then pressre and forces can be determined

More information

Plate Theories for Classical and Laminated plates Weak Formulation and Element Calculations

Plate Theories for Classical and Laminated plates Weak Formulation and Element Calculations Plate heores for Classcal and Lamnated plates Weak Formulaton and Element Calculatons PM Mohte Department of Aerospace Engneerng Indan Insttute of echnolog Kanpur EQIP School on Computatonal Methods n

More information

So far: simple (planar) geometries

So far: simple (planar) geometries Physcs 06 ecture 5 Torque and Angular Momentum as Vectors SJ 7thEd.: Chap. to 3 Rotatonal quanttes as vectors Cross product Torque epressed as a vector Angular momentum defned Angular momentum as a vector

More information

total If no external forces act, the total linear momentum of the system is conserved. This occurs in collisions and explosions.

total If no external forces act, the total linear momentum of the system is conserved. This occurs in collisions and explosions. Lesson 0: Collsons, Rotatonal netc Energy, Torque, Center o Graty (Sectons 7.8 Last te we used ewton s second law to deelop the pulse-oentu theore. In words, the theore states that the change n lnear oentu

More information

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary

Momentum Equation. Necessary because body is not made up of a fixed assembly of particles Its volume is the same however Imaginary Momentm Eqation Interest in the momentm eqation: Qantification of proplsion rates esign strctres for power generation esign of pipeline systems to withstand forces at bends and other places where the flow

More information

Lesson 4: Relative motion, Forces, Newton s laws (sections )

Lesson 4: Relative motion, Forces, Newton s laws (sections ) Lesson 4: Relate moton, Forces, Newton s laws (sectons 3.6-4.4) We start wth a projectle problem. A olf ball s ht from the round at 35 m/s at an anle of 55º. The round s leel.. How lon s the ball n the

More information

Physics 207: Lecture 20. Today s Agenda Homework for Monday

Physics 207: Lecture 20. Today s Agenda Homework for Monday Physcs 207: Lecture 20 Today s Agenda Homework for Monday Recap: Systems of Partcles Center of mass Velocty and acceleraton of the center of mass Dynamcs of the center of mass Lnear Momentum Example problems

More information

THE THEORY OF MULTIPLE PEELING. Nicola M. Pugno

THE THEORY OF MULTIPLE PEELING. Nicola M. Pugno HE HEOR O MULIPLE PEELING Ncoa M. Pgno Dept. of Strctra Engneerng an Geotechncs, Potecnco orno, orso Dca eg brzz 4, 9, orno, IL Laboratory of Bo-nspre Nanomechancs Gseppe Mara Pgno e: 39 564 49; ax: 39

More information

Field and Wave Electromagnetic. Chapter.4

Field and Wave Electromagnetic. Chapter.4 Fel an Wave Electromagnetc Chapter.4 Soluton of electrostatc Problems Posson s s an Laplace s Equatons D = ρ E = E = V D = ε E : Two funamental equatons for electrostatc problem Where, V s scalar electrc

More information

GENERIC CONTINUOUS SPECTRUM FOR MULTI-DIMENSIONAL QUASIPERIODIC SCHRÖDINGER OPERATORS WITH ROUGH POTENTIALS

GENERIC CONTINUOUS SPECTRUM FOR MULTI-DIMENSIONAL QUASIPERIODIC SCHRÖDINGER OPERATORS WITH ROUGH POTENTIALS GENERIC CONTINUOUS SPECTRUM FOR MULTI-DIMENSIONAL QUASIPERIODIC SCHRÖDINGER OPERATORS WITH ROUGH POTENTIALS YANG FAN AND RUI HAN Abstract. We stuy the mult-mensonal operator (H xu) n = m n = um + f(t n

More information

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is.

Moments of Inertia. and reminds us of the analogous equation for linear momentum p= mv, which is of the form. The kinetic energy of the body is. Moments of Inerta Suppose a body s movng on a crcular path wth constant speed Let s consder two quanttes: the body s angular momentum L about the center of the crcle, and ts knetc energy T How are these

More information

In this section is given an overview of the common elasticity models.

In this section is given an overview of the common elasticity models. Secton 4.1 4.1 Elastc Solds In ths secton s gven an overvew of the common elastcty models. 4.1.1 The Lnear Elastc Sold The classcal Lnear Elastc model, or Hooean model, has the followng lnear relatonshp

More information

Numerical Simulation of Density Currents over a Slope under the Condition of Cooling Period in Lake Biwa

Numerical Simulation of Density Currents over a Slope under the Condition of Cooling Period in Lake Biwa Nmerical Simlation of Densit Crrents oer a Slope nder the Condition of Cooling Period in Lake Bia Takashi Hosoda Professor, Department of Urban Management, Koto Uniersit, C1-3-65, Kotodai-Katsra, Nishiko-k,

More information

CS 450: COMPUTER GRAPHICS VECTORS SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS VECTORS SPRING 2016 DR. MICHAEL J. REALE CS 45: COMPUTER GRPHICS VECTORS SPRING 216 DR. MICHEL J. RELE INTRODUCTION In graphics, we are going to represent objects and shapes in some form or other. First, thogh, we need to figre ot how to represent

More information

3 2D Elastostatic Problems in Cartesian Coordinates

3 2D Elastostatic Problems in Cartesian Coordinates D lastostatic Problems in Cartesian Coordinates Two dimensional elastostatic problems are discssed in this Chapter, that is, static problems of either plane stress or plane strain. Cartesian coordinates

More information

A Generalization Of Gauss's Theorem In Electrostatics

A Generalization Of Gauss's Theorem In Electrostatics Proc. EA Annual Meetng on Electrostatcs A Generalzaton Of Gauss's Theorem In Electrostatcs Ishnath Pathak B.Tech tuent Dept. of Cvl Engneerng Inan Insttute Of Technology North Guwahat, Guwahat- 7839, Ina

More information

Review & Summary. Questions

Review & Summary. Questions QUESTIONS 87 Reew & Summar Magnetc Fel A magnetc fel s efne n terms of the force F : actng on a test partcle wth charge q mong through the fel wth eloct : The SI unt for : : : F : q : :. s the tesla (T):

More information

Lecture notes on Computational Fluid Dynamics

Lecture notes on Computational Fluid Dynamics Lectre notes on Comptatonal Fld Dnamcs Dan S. Hennngson Martn Berggren Janar 3, 5 Contents Dervaton of the Naver-Stokes eqatons 7. Notaton............................................... 7. Knematcs.............................................

More information

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers

9. Complex Numbers. 1. Numbers revisited. 2. Imaginary number i: General form of complex numbers. 3. Manipulation of complex numbers 9. Comple Numbers. Numbers revsted. Imagnar number : General form of comple numbers 3. Manpulaton of comple numbers 4. The Argand dagram 5. The polar form for comple numbers 9.. Numbers revsted We saw

More information

VECTOR CONTROL OF INDUCTION MOTORS USING UPWM VOLTAGE SOURCE INVERTER

VECTOR CONTROL OF INDUCTION MOTORS USING UPWM VOLTAGE SOURCE INVERTER VECOR CONROL OF INDUCION MOORS USING UPWM VOLAGE Abtract SOURCE INVERER G. Emaly (M.Sc.), A. Khoabakhhan (Ph.D), K. Jamh (Ph.D) Faclty of Engneerng, Ifahan Unverty, Ifahan, Iran he objectve of th paper

More information

Ch. 7 Lagrangian and Hamiltonian dynamics Homework Problems 7-3, 7-7, 7-15, 7-16, 7-17, 7-18, 7-34, 7-37, where y'(x) dy dx Δ Δ Δ. f x.

Ch. 7 Lagrangian and Hamiltonian dynamics Homework Problems 7-3, 7-7, 7-15, 7-16, 7-17, 7-18, 7-34, 7-37, where y'(x) dy dx Δ Δ Δ. f x. Ch. 7 Laranan an Hamltonan namcs Homewor Problems 7-3 7-7 7-5 7-6 7-7 7-8 7-34 7-37 7-40 A. revew o calculus o varatons (Chapter 6. basc problem or J { ( '(; } where '( For e en ponts an ntereste n the

More information

Lecture 1b. Differential operators and orthogonal coordinates. Partial derivatives. Divergence and divergence theorem. Gradient. A y. + A y y dy. 1b.

Lecture 1b. Differential operators and orthogonal coordinates. Partial derivatives. Divergence and divergence theorem. Gradient. A y. + A y y dy. 1b. b. Partial erivatives Lecture b Differential operators an orthogonal coorinates Recall from our calculus courses that the erivative of a function can be efine as f ()=lim 0 or using the central ifference

More information

VEKTORANALYS. GAUSS s THEOREM and STOKES s THEOREM. Kursvecka 3. Kapitel 6-7 Sidor 51-82

VEKTORANALYS. GAUSS s THEOREM and STOKES s THEOREM. Kursvecka 3. Kapitel 6-7 Sidor 51-82 VEKTORANAY Kursvecka 3 GAU s THEOREM and TOKE s THEOREM Kaptel 6-7 dor 51-82 TARGET PROBEM EECTRIC FIED MAGNETIC FIED N + Magnetc monopoles do not est n nature. How can we epress ths nformaton for E and

More information

Complementing the Lagrangian Density of the E. M. Field and the Surface Integral of the p-v Vector Product

Complementing the Lagrangian Density of the E. M. Field and the Surface Integral of the p-v Vector Product Applie Mathematics,,, 5-9 oi:.436/am..4 Pblishe Online Febrary (http://www.scirp.org/jornal/am) Complementing the Lagrangian Density of the E. M. Fiel an the Srface Integral of the p- Vector Proct Abstract

More information

Section 7.4: Integration of Rational Functions by Partial Fractions

Section 7.4: Integration of Rational Functions by Partial Fractions Section 7.4: Integration of Rational Fnctions by Partial Fractions This is abot as complicated as it gets. The Method of Partial Fractions Ecept for a few very special cases, crrently we have no way to

More information

Introduction to elastic wave equation. Salam Alnabulsi University of Calgary Department of Mathematics and Statistics October 15,2012

Introduction to elastic wave equation. Salam Alnabulsi University of Calgary Department of Mathematics and Statistics October 15,2012 Introdcton to elastc wave eqaton Salam Alnabls Unversty of Calgary Department of Mathematcs and Statstcs October 15,01 Otlne Motvaton Elastc wave eqaton Eqaton of moton, Defntons and The lnear Stress-

More information

PHYS 705: Classical Mechanics. Newtonian Mechanics

PHYS 705: Classical Mechanics. Newtonian Mechanics 1 PHYS 705: Classcal Mechancs Newtonan Mechancs Quck Revew of Newtonan Mechancs Basc Descrpton: -An dealzed pont partcle or a system of pont partcles n an nertal reference frame [Rgd bodes (ch. 5 later)]

More information

Vote today! Physics 122, Fall November (c) University of Rochester 1. Today in Physics 122: applications of induction

Vote today! Physics 122, Fall November (c) University of Rochester 1. Today in Physics 122: applications of induction Phscs 1, Fall 01 6 Noember 01 Toda n Phscs 1: applcatons of nducton Generators, motors and back EMF Transformers Edd currents Vote toda! Hdropower generators on the Nagara Rer below the Falls. The ste

More information

2. High dimensional data

2. High dimensional data /8/00. Hgh mensons. Hgh mensonal ata Conser representng a ocument by a vector each component of whch correspons to the number of occurrences of a partcular wor n the ocument. The Englsh language has on

More information

A Tutorial on Data Reduction. Linear Discriminant Analysis (LDA) Shireen Elhabian and Aly A. Farag. University of Louisville, CVIP Lab September 2009

A Tutorial on Data Reduction. Linear Discriminant Analysis (LDA) Shireen Elhabian and Aly A. Farag. University of Louisville, CVIP Lab September 2009 A utoral on Data Reducton Lnear Dscrmnant Analss (LDA) hreen Elhaban and Al A Farag Unverst of Lousvlle, CVIP Lab eptember 009 Outlne LDA objectve Recall PCA No LDA LDA o Classes Counter eample LDA C Classes

More information

Missing in Action? please check in. Course Groups and Presentations. Lecture #2 Principal Component Analysis !!!! FIRST!!!! Principal what?

Missing in Action? please check in. Course Groups and Presentations. Lecture #2 Principal Component Analysis !!!! FIRST!!!! Principal what? 8 Mssng n Acton? please check n Course Bologcal Data analss an chemometrcs Aners C. Raffalt Jule K. Høgh Lasse R. Bech Mkkel. Pleman Chrstna H. Kærgaar na F. Rasmussen Ken Sejlng Aners S. Laer Rene J.

More information

10.4 Solving Equations in Quadratic Form, Equations Reducible to Quadratics

10.4 Solving Equations in Quadratic Form, Equations Reducible to Quadratics . Solving Eqations in Qadratic Form, Eqations Redcible to Qadratics Now that we can solve all qadratic eqations we want to solve eqations that are not eactl qadratic bt can either be made to look qadratic

More information

EE2 Mathematics : Functions of Multiple Variables

EE2 Mathematics : Functions of Multiple Variables EE2 Mathematics : Fnctions of Mltiple Variables http://www2.imperial.ac.k/ nsjones These notes are not identical word-for-word with m lectres which will be gien on the blackboard. Some of these notes ma

More information

Chapter 3 Motion in a Plane

Chapter 3 Motion in a Plane Chapter 3 Motion in a Plane Introduce ectors and scalars. Vectors hae direction as well as magnitude. The are represented b arrows. The arrow points in the direction of the ector and its length is related

More information

Macroscopic Momentum Balances

Macroscopic Momentum Balances Lecture 13 F. Morrson CM3110 2013 10/22/2013 CM3110 Transport I Part I: Flud Mechancs Macroscopc Momentum Balances Professor Fath Morrson Department of Chemcal Engneerng Mchgan Technologcal Unersty 1 Macroscopc

More information

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy.

Elastic Collisions. Definition: two point masses on which no external forces act collide without losing any energy. Elastc Collsons Defnton: to pont asses on hch no external forces act collde thout losng any energy v Prerequstes: θ θ collsons n one denson conservaton of oentu and energy occurs frequently n everyday

More information

UNIT IV BOUNDARY LAYER AND FLOW THROUGH PIPES Definition of bonary layer Thickness an classification Displacement an momentm Thickness Development of laminar an trblent flows in circlar pipes Major an

More information

PHYS 1443 Section 003 Lecture #17

PHYS 1443 Section 003 Lecture #17 PHYS 144 Secton 00 ecture #17 Wednesda, Oct. 9, 00 1. Rollng oton of a Rgd od. Torque. oment of Inerta 4. Rotatonal Knetc Energ 5. Torque and Vector Products Remember the nd term eam (ch 6 11), onda, Nov.!

More information

Introducing Ideal Flow

Introducing Ideal Flow D f f f p D p D p D f T k p D e The Continit eqation The Naier Stokes eqations The iscos Flo Energ Eqation These form a closed set hen to thermodnamic relations are specified Introdcing Ideal Flo Getting

More information

KIRCHHOFF CURRENT LAW

KIRCHHOFF CURRENT LAW KRCHHOFF CURRENT LAW ONE OF THE FUNDAMENTAL CONSERATON PRNCPLES N ELECTRCAL ENGNEERNG CHARGE CANNOT BE CREATED NOR DESTROYED NODES, BRANCHES, LOOPS A NODE CONNECTS SEERAL COMPONENTS. BUT T DOES NOT HOLD

More information

Momentum. Momentum. Impulse. Momentum and Collisions

Momentum. Momentum. Impulse. Momentum and Collisions Momentum Momentum and Collsons From Newton s laws: orce must be present to change an object s elocty (speed and/or drecton) Wsh to consder eects o collsons and correspondng change n elocty Gol ball ntally

More information

Linear Momentum. Equation 1

Linear Momentum. Equation 1 Lnear Momentum OBJECTIVE Obsere collsons between two carts, testng or the conseraton o momentum. Measure energy changes durng derent types o collsons. Classy collsons as elastc, nelastc, or completely

More information

The Cross Product of Two Vectors in Space DEFINITION. Cross Product. u * v = s ƒ u ƒƒv ƒ sin ud n

The Cross Product of Two Vectors in Space DEFINITION. Cross Product. u * v = s ƒ u ƒƒv ƒ sin ud n 12.4 The Cross Prodct 873 12.4 The Cross Prodct In stdying lines in the plane, when we needed to describe how a line was tilting, we sed the notions of slope and angle of inclination. In space, we want

More information

( ) = : a torque vector composed of shoulder torque and elbow torque, corresponding to

( ) = : a torque vector composed of shoulder torque and elbow torque, corresponding to Supplementary Materal for Hwan EJ, Donchn O, Smth MA, Shamehr R (3 A Gan-Fel Encon of Lmb Poston an Velocty n the Internal Moel of Arm Dynamcs. PLOS Boloy, :9-. Learnn of ynamcs usn bass elements he nternal

More information

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018

Lecture 3. (2) Last time: 3D space. The dot product. Dan Nichols January 30, 2018 Lectre 3 The dot prodct Dan Nichols nichols@math.mass.ed MATH 33, Spring 018 Uniersity of Massachsetts Janary 30, 018 () Last time: 3D space Right-hand rle, the three coordinate planes 3D coordinate system:

More information

Chapter 12 Equilibrium & Elasticity

Chapter 12 Equilibrium & Elasticity Chapter 12 Equlbrum & Elastcty If there s a net force, an object wll experence a lnear acceleraton. (perod, end of story!) If there s a net torque, an object wll experence an angular acceleraton. (perod,

More information