Time complexity analysis

Size: px
Start display at page:

Download "Time complexity analysis"

Transcription

1 Time complexity analysis Let s start with selection sort C. Seshadhri University of California, Santa Cruz sesh@ucsc.edu March 30, 2016 C. Seshadhri (UCSC) CMPS101 1 / 40

2 Sorting Sorting Input An array e.g., [1, 5, 6, 7, 3, 2, 1] Output Sorted array [1, 1, 2, 3, 5, 6, 7] C. Seshadhri (UCSC) CMPS101 2 / 40

3 Sorting Formally Input Output An array e.g., [a 1, a 2, a 3,..., a n ] A permuted version of the array [a 1, a 2, a 3,..., a n] such that a 1 a 2 a 3... a n C. Seshadhri (UCSC) CMPS101 3 / 40

4 Sorting Comes up everywhere Give me webpages on Data Structures, in decreasing order of relevance Give me a list of coffee shops, in decreasing order of ratings Give me a list of grocery stores, in increasing order of distance C. Seshadhri (UCSC) CMPS101 4 / 40

5 Sorting Sorting with keys Input Output An array of key-value pairs e.g., [(k 1, v 1 ), (k 2, v 2 ), (k 3, v 3 ),..., (k n, v n )] A permuted version of the array [(k 1, v 1 ), (k 2, v 2 ), (k 3, v 3 ),..., (k n, v n)] such that v 1 v 2 v 3... v n C. Seshadhri (UCSC) CMPS101 5 / 40

6 Sorting What is an Algorithm? A sequence of well defined computational steps that takes some input transforms it into an output (with a certain property) Alternatively An algorithm describes a specific computational procedure for achieving a specified input/output relationship C. Seshadhri (UCSC) CMPS101 6 / 40

7 Selection Sort (Let length of array A be n.) SELECTION-SORT(A) 1 For i = 1 to n: 1 Find minimum element b in A[i... n]. 2 Set b to be ith element in sorted order C. Seshadhri (UCSC) CMPS101 7 / 40

8 Selection Sort (Let length of array A be n.) Selection-Sort(A) 1 for i = 1 to n 2 min = A[i] / Initialize min 3 minind = i / Initialize min index 4 for j = i to n 5 if A[j] < min // Aha! Min needs to be changed 6 min = A[j] // So change min and min index 7 minind = j 8 // Swap A[i] with A[minInd] 9 A[minInd] = A[i] 10 A[i] = min C. Seshadhri (UCSC) CMPS101 8 / 40

9 How many comparisons? Selection-Sort on an array of n items makes at most how many comparisons? (Give the best answer.) (R) n (B) n 1 (G) (n 1)(n 2)/2 (O) n 2 2n C. Seshadhri (UCSC) CMPS101 9 / 40

10 How many comparisons? Selection-Sort on an array of n items makes at most how many comparisons? (Give the best answer.) (R) n (B) n 1 (G) (n 1)(n 2)/2 (O) n 2 2n C. Seshadhri (UCSC) CMPS / 40

11 How long does Selection-Sort take? It really depends on your machine! How can we mathematically talk about the running time of Selection-Sort? C. Seshadhri (UCSC) CMPS / 40

12 Analyzing Selection-Sort Definition The running time of Selection-Sort (or your favorite algorithm) on input A is the number of elementary operations that Selection-Sort takes on A. Beats wall clock time. Challenges: What is elementary? Ok, for sorting, any assignment or comparison counts as one operation. Running time is not one number; it depends heavily on input (especially size). C. Seshadhri (UCSC) CMPS / 40

13 Analyzing Selection-Sort Definition The running time of Selection-Sort (or your favorite algorithm) on input A is the number of elementary operations that Selection-Sort takes on A. Beats wall clock time. Challenges: What is elementary? Ok, for sorting, any assignment or comparison counts as one operation. Running time is not one number; it depends heavily on input (especially size). C. Seshadhri (UCSC) CMPS / 40

14 Worst-case Analysis Definition The worst-case running time or worst-case time complexity of Selection-Sort (or your favorite algorithm) is the function T (n) where: T (n) is the maximum running time over all inputs of size n. C. Seshadhri (UCSC) CMPS / 40

15 Back to Selection Sort (Let length of array A be n.) Selection-Sort(A) 1 for i = 1 to n 2 min = A[i] / Initialize min 3 minind = i / Initialize min index 4 for j = i to n 5 if A[j] < min // Aha! Min needs to be changed 6 min = A[j] // So change min and min index 7 minind = j 8 // Swap A[i] with A[minInd] 9 A[minInd] = A[i] 10 A[i] = min C. Seshadhri (UCSC) CMPS / 40

16 Exactly finding T (n) It s a real pain. Once you get the basic idea, it s boring to figure out exactly. C. Seshadhri (UCSC) CMPS / 40

17 The solution? C. Seshadhri (UCSC) CMPS / 40

18 The solution? C. Seshadhri (UCSC) CMPS / 40

19 Basic Idea Focus on the asymptotic growth of T (n) Asymptotic: Fancy way of saying that we will focus on how the function grows as n. C. Seshadhri (UCSC) CMPS / 40

20 Oh Notation Given time complexity T (n) and convenient/simple function f (n) we say that T (n) O(f (n)) if there exists constants c and n 0 such that 0 T (n) c f (n) for all n n 0. Notational convention: T (n) = O(f (n)), T (n) is O(f (n)), T (n) is in O(f (n)). We re providing a convenient upper bound for T (n). C. Seshadhri (UCSC) CMPS / 40

21 In Pictures C. Seshadhri (UCSC) CMPS / 40

22 Is 2n + 30 = O(n)? (R) Yes (B) No C. Seshadhri (UCSC) CMPS / 40

23 Example - 1 2n + 30 = O(n) Need to show that there exists c and n 0 such that 0 2n + 30 c n for all n n 0 Let c = 3 and n 0 = 30. C. Seshadhri (UCSC) CMPS / 40

24 Is 2n + 30 = O(n 2 )? (R) Yes (B) No C. Seshadhri (UCSC) CMPS / 40

25 Example - 2 2n + 30 = O(n 2 ) Need to show that there exists c and n 0 such that 0 2n + 30 c n 2 for all n n 0 Let c = 2 and n 0 = 6. C. Seshadhri (UCSC) CMPS / 40

26 Is 5n n = O(n 2 )? (R) Yes (B) No C. Seshadhri (UCSC) CMPS / 40

27 Example - 3 Reductio ad absurdum 5n n / O(n 2 ) C. Seshadhri (UCSC) CMPS / 40

28 Example - 3 Reductio ad absurdum 5n n / O(n 2 ) C. Seshadhri (UCSC) CMPS / 40

29 Example - 3 5n n / O(n 2 ) Proof by contradiction. Suppose c and n 0 existed. 0 5n n c n 2 for all n n 0 0 5n + 10 n c for all n n 0 But as n we have 5n + 10 n. C. Seshadhri (UCSC) CMPS / 40

30 Selection Sort (Let length of array A be n.) Selection-Sort(A) 1 for i = 1 to n 2 min = A[i] / Initialize min 3 minind = i / Initialize min index 4 for j = i to n 5 if A[j] < min // Aha! Min needs to be changed 6 min = A[j] // So change min and min index 7 minind = j 8 // Swap A[i] with A[minInd] 9 A[minInd] = A[i] 10 A[i] = min Selection-Sort time complexity is O(n 2 ). C. Seshadhri (UCSC) CMPS / 40

31 Omega Notation Given functions T (n) and f (n) we say that T (n) Ω(f (n)) if there exists constants c and n 0 such that 0 cf (n) T (n) for all n n 0. Notational convention: T (n) = Ω(f (n)) C. Seshadhri (UCSC) CMPS / 40

32 Theta Notation Given functions T (n) and f (n) we say that T (n) Θ(f (n)) if there exists constants c 1, c 2 and n 0 such that 0 c 1 f (n) T (n) c 2 f (n) for all n n 0. Notational convention: T (n) = Θ(f (n)) C. Seshadhri (UCSC) CMPS / 40

33 An Alternate View Point T (n) T (n) = O(f (n)) = lim n f (n) const T (n) T (n) = Ω(f (n)) = lim n f (n) const T (n) T (n) = Θ(f (n)) = const 1 lim n f (n) const 2 C. Seshadhri (UCSC) CMPS / 40

34 In Pictures C. Seshadhri (UCSC) CMPS / 40

35 Example - 4 5n n = Θ(n 2 ) Need to show that there exists c 1, c 2 and n 0 such that Rewrite as 0 c 1 n 2 5n n c 2 n 2 for all n n 0 0 c n c 2 for all n n 0 But as n we have n 5. So select c 1 = 4 and c 2 = 6, with n 0 = 10. C. Seshadhri (UCSC) CMPS / 40

36 Prove For any two functions f (n) and g(n), we have f (n) = Θ(g(n)) f (n) = O(g(n)) and f (n) = Ω(g(n)). C. Seshadhri (UCSC) CMPS / 40

37 The time complexity of Selection-Sort is: (R) Θ(n 2 ) (B) O(n 2 ) but not Θ(n 2 ). (G) Ω(n 2 ) but not Θ(n 2 ). (O) I have no idea what s going on. C. Seshadhri (UCSC) CMPS / 40

38 Selection Sort (Let length of array A be n.) Selection-Sort(A) 1 for i = 1 to n 2 min = A[i] / Initialize min 3 minind = i / Initialize min index 4 for j = i to n 5 if A[j] < min // Aha! Min needs to be changed 6 min = A[j] // So change min and min index 7 minind = j 8 // Swap A[i] with A[minInd] 9 A[minInd] = A[i] 10 A[i] = min Selection-Sort time complexity is Θ(n 2 ). C. Seshadhri (UCSC) CMPS / 40

39 Little o and ω Notation o Notation O notation is not asymptotically tight. For instance n = O(n) and also n = O(n 2 ). Given functions g(n) and f (n) we say that f (n) o(g(n)) if there exists a constant n 0 such that 0 f (n) cg(n) for all c > 0 and n n 0. Carefully note the order of the qualifiers. Intuitively, f (n) becomes insignificant compared to g(n) f (n) lim n g(n) = 0. C. Seshadhri (UCSC) CMPS / 40

40 Little o and ω Notation Example - 5 5n n / o(n 2 ) lim n n = 5 0 5n n = o(n 3 ) 5 lim n n + 10 = 0 n 2 C. Seshadhri (UCSC) CMPS / 40

41 Little o and ω Notation ω Notation Given functions g(n) and f (n) we say that f (n) ω(g(n)) if there exists a constant n 0 such that 0 cg(n) f (n) for all c > 0 and n n 0. Carefully note the order of the qualifiers. Intuitively, f (n) grows much faster as compared to g(n) f (n) lim n g(n) =. C. Seshadhri (UCSC) CMPS / 40

42 Little o and ω Notation Questions? C. Seshadhri (UCSC) CMPS / 40

Growth of Functions (CLRS 2.3,3)

Growth of Functions (CLRS 2.3,3) Growth of Functions (CLRS 2.3,3) 1 Review Last time we discussed running time of algorithms and introduced the RAM model of computation. Best-case running time: the shortest running time for any input

More information

Computational Complexity

Computational Complexity Computational Complexity S. V. N. Vishwanathan, Pinar Yanardag January 8, 016 1 Computational Complexity: What, Why, and How? Intuitively an algorithm is a well defined computational procedure that takes

More information

CIS 121 Data Structures and Algorithms with Java Spring Big-Oh Notation Monday, January 22/Tuesday, January 23

CIS 121 Data Structures and Algorithms with Java Spring Big-Oh Notation Monday, January 22/Tuesday, January 23 CIS 11 Data Structures and Algorithms with Java Spring 018 Big-Oh Notation Monday, January /Tuesday, January 3 Learning Goals Review Big-Oh and learn big/small omega/theta notations Discuss running time

More information

3.1 Asymptotic notation

3.1 Asymptotic notation 3.1 Asymptotic notation The notations we use to describe the asymptotic running time of an algorithm are defined in terms of functions whose domains are the set of natural numbers N = {0, 1, 2,... Such

More information

Big O 2/14/13. Administrative. Does it terminate? David Kauchak cs302 Spring 2013

Big O 2/14/13. Administrative. Does it terminate? David Kauchak cs302 Spring 2013 /4/3 Administrative Big O David Kauchak cs3 Spring 3 l Assignment : how d it go? l Assignment : out soon l CLRS code? l Videos Insertion-sort Insertion-sort Does it terminate? /4/3 Insertion-sort Loop

More information

Lecture 2: Asymptotic Notation CSCI Algorithms I

Lecture 2: Asymptotic Notation CSCI Algorithms I Lecture 2: Asymptotic Notation CSCI 700 - Algorithms I Andrew Rosenberg September 2, 2010 Last Time Review Insertion Sort Analysis of Runtime Proof of Correctness Today Asymptotic Notation Its use in analyzing

More information

Asymptotic Analysis. Slides by Carl Kingsford. Jan. 27, AD Chapter 2

Asymptotic Analysis. Slides by Carl Kingsford. Jan. 27, AD Chapter 2 Asymptotic Analysis Slides by Carl Kingsford Jan. 27, 2014 AD Chapter 2 Independent Set Definition (Independent Set). Given a graph G = (V, E) an independent set is a set S V if no two nodes in S are joined

More information

CS473 - Algorithms I

CS473 - Algorithms I CS473 - Algorithms I Lecture 2 Asymptotic Notation 1 O-notation: Asymptotic upper bound f(n) = O(g(n)) if positive constants c, n 0 such that 0 f(n) cg(n), n n 0 f(n) = O(g(n)) cg(n) f(n) Asymptotic running

More information

Data Structures and Algorithms. Asymptotic notation

Data Structures and Algorithms. Asymptotic notation Data Structures and Algorithms Asymptotic notation Estimating Running Time Algorithm arraymax executes 7n 1 primitive operations in the worst case. Define: a = Time taken by the fastest primitive operation

More information

Lecture 1: Asymptotics, Recurrences, Elementary Sorting

Lecture 1: Asymptotics, Recurrences, Elementary Sorting Lecture 1: Asymptotics, Recurrences, Elementary Sorting Instructor: Outline 1 Introduction to Asymptotic Analysis Rate of growth of functions Comparing and bounding functions: O, Θ, Ω Specifying running

More information

MA008/MIIZ01 Design and Analysis of Algorithms Lecture Notes 2

MA008/MIIZ01 Design and Analysis of Algorithms Lecture Notes 2 MA008 p.1/36 MA008/MIIZ01 Design and Analysis of Algorithms Lecture Notes 2 Dr. Markus Hagenbuchner markus@uow.edu.au. MA008 p.2/36 Content of lecture 2 Examples Review data structures Data types vs. data

More information

Big-O Notation and Complexity Analysis

Big-O Notation and Complexity Analysis Big-O Notation and Complexity Analysis Jonathan Backer backer@cs.ubc.ca Department of Computer Science University of British Columbia May 28, 2007 Problems Reading: CLRS: Growth of Functions 3 GT: Algorithm

More information

P, NP, NP-Complete, and NPhard

P, NP, NP-Complete, and NPhard P, NP, NP-Complete, and NPhard Problems Zhenjiang Li 21/09/2011 Outline Algorithm time complicity P and NP problems NP-Complete and NP-Hard problems Algorithm time complicity Outline What is this course

More information

The Time Complexity of an Algorithm

The Time Complexity of an Algorithm Analysis of Algorithms The Time Complexity of an Algorithm Specifies how the running time depends on the size of the input. Purpose To estimate how long a program will run. To estimate the largest input

More information

CS 4407 Algorithms Lecture 2: Growth Functions

CS 4407 Algorithms Lecture 2: Growth Functions CS 4407 Algorithms Lecture 2: Growth Functions Prof. Gregory Provan Department of Computer Science University College Cork 1 Lecture Outline Growth Functions Mathematical specification of growth functions

More information

COMP 382: Reasoning about algorithms

COMP 382: Reasoning about algorithms Fall 2014 Unit 4: Basics of complexity analysis Correctness and efficiency So far, we have talked about correctness and termination of algorithms What about efficiency? Running time of an algorithm For

More information

Quicksort. Where Average and Worst Case Differ. S.V. N. (vishy) Vishwanathan. University of California, Santa Cruz

Quicksort. Where Average and Worst Case Differ. S.V. N. (vishy) Vishwanathan. University of California, Santa Cruz Quicksort Where Average and Worst Case Differ S.V. N. (vishy) Vishwanathan University of California, Santa Cruz vishy@ucsc.edu February 1, 2016 S.V. N. Vishwanathan (UCSC) CMPS101 1 / 28 Basic Idea Outline

More information

Algorithms, CSE, OSU. Introduction, complexity of algorithms, asymptotic growth of functions. Instructor: Anastasios Sidiropoulos

Algorithms, CSE, OSU. Introduction, complexity of algorithms, asymptotic growth of functions. Instructor: Anastasios Sidiropoulos 6331 - Algorithms, CSE, OSU Introduction, complexity of algorithms, asymptotic growth of functions Instructor: Anastasios Sidiropoulos Why algorithms? Algorithms are at the core of Computer Science Why

More information

The Time Complexity of an Algorithm

The Time Complexity of an Algorithm CSE 3101Z Design and Analysis of Algorithms The Time Complexity of an Algorithm Specifies how the running time depends on the size of the input. Purpose To estimate how long a program will run. To estimate

More information

EECS 477: Introduction to algorithms. Lecture 5

EECS 477: Introduction to algorithms. Lecture 5 EECS 477: Introduction to algorithms. Lecture 5 Prof. Igor Guskov guskov@eecs.umich.edu September 19, 2002 1 Lecture outline Asymptotic notation: applies to worst, best, average case performance, amortized

More information

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu Analysis of Algorithm Efficiency Dr. Yingwu Zhu Measure Algorithm Efficiency Time efficiency How fast the algorithm runs; amount of time required to accomplish the task Our focus! Space efficiency Amount

More information

Analysis of Algorithms

Analysis of Algorithms October 1, 2015 Analysis of Algorithms CS 141, Fall 2015 1 Analysis of Algorithms: Issues Correctness/Optimality Running time ( time complexity ) Memory requirements ( space complexity ) Power I/O utilization

More information

Big-Oh notation and P vs NP

Big-Oh notation and P vs NP Big-Oh notation and P vs NP Hao Chung This presentation is mainly adapted from the lecture note of Prof. Mark Zhandry July 17, 2017 Hao Chung (NTU) crypto July 17, 2017 1 / 21 Overview 1 Big-Oh notation

More information

CS 380 ALGORITHM DESIGN AND ANALYSIS

CS 380 ALGORITHM DESIGN AND ANALYSIS CS 380 ALGORITHM DESIGN AND ANALYSIS Lecture 2: Asymptotic Analysis, Insertion Sort Text Reference: Chapters 2, 3 Space and Time Complexity For a given problem, may be a variety of algorithms that you

More information

Agenda. We ve discussed

Agenda. We ve discussed Agenda We ve discussed Now Next C++ basics Some built-in data structures and their applications: stack, map, vector, array The Fibonacci example showing the importance of good algorithms and asymptotic

More information

Asymptotic Analysis 1

Asymptotic Analysis 1 Asymptotic Analysis 1 Last week, we discussed how to present algorithms using pseudocode. For example, we looked at an algorithm for singing the annoying song 99 Bottles of Beer on the Wall for arbitrary

More information

Lecture 2. Fundamentals of the Analysis of Algorithm Efficiency

Lecture 2. Fundamentals of the Analysis of Algorithm Efficiency Lecture 2 Fundamentals of the Analysis of Algorithm Efficiency 1 Lecture Contents 1. Analysis Framework 2. Asymptotic Notations and Basic Efficiency Classes 3. Mathematical Analysis of Nonrecursive Algorithms

More information

Data Structures and Algorithms Running time and growth functions January 18, 2018

Data Structures and Algorithms Running time and growth functions January 18, 2018 Data Structures and Algorithms Running time and growth functions January 18, 2018 Measuring Running Time of Algorithms One way to measure the running time of an algorithm is to implement it and then study

More information

Asymptotic Analysis Cont'd

Asymptotic Analysis Cont'd Cont'd Carlos Moreno cmoreno @ uwaterloo.ca EIT-4103 https://ece.uwaterloo.ca/~cmoreno/ece250 Announcements We have class this Wednesday, Jan 18 at 12:30 That is, we have two sessions this Wednesday: at

More information

CS 4407 Algorithms Lecture 2: Iterative and Divide and Conquer Algorithms

CS 4407 Algorithms Lecture 2: Iterative and Divide and Conquer Algorithms CS 4407 Algorithms Lecture 2: Iterative and Divide and Conquer Algorithms Prof. Gregory Provan Department of Computer Science University College Cork 1 Lecture Outline CS 4407, Algorithms Growth Functions

More information

Data Structures and Algorithms CSE 465

Data Structures and Algorithms CSE 465 Data Structures and Algorithms CSE 465 LECTURE 3 Asymptotic Notation O-, Ω-, Θ-, o-, ω-notation Divide and Conquer Merge Sort Binary Search Sofya Raskhodnikova and Adam Smith /5/0 Review Questions If input

More information

with the size of the input in the limit, as the size of the misused.

with the size of the input in the limit, as the size of the misused. Chapter 3. Growth of Functions Outline Study the asymptotic efficiency of algorithms Give several standard methods for simplifying the asymptotic analysis of algorithms Present several notational conventions

More information

CS173 Running Time and Big-O. Tandy Warnow

CS173 Running Time and Big-O. Tandy Warnow CS173 Running Time and Big-O Tandy Warnow CS 173 Running Times and Big-O analysis Tandy Warnow Today s material We will cover: Running time analysis Review of running time analysis of Bubblesort Review

More information

CS 4407 Algorithms Lecture 3: Iterative and Divide and Conquer Algorithms

CS 4407 Algorithms Lecture 3: Iterative and Divide and Conquer Algorithms CS 4407 Algorithms Lecture 3: Iterative and Divide and Conquer Algorithms Prof. Gregory Provan Department of Computer Science University College Cork 1 Lecture Outline CS 4407, Algorithms Growth Functions

More information

Md Momin Al Aziz. Analysis of Algorithms. Asymptotic Notations 3 COMP Computer Science University of Manitoba

Md Momin Al Aziz. Analysis of Algorithms. Asymptotic Notations 3 COMP Computer Science University of Manitoba Md Momin Al Aziz azizmma@cs.umanitoba.ca Computer Science University of Manitoba Analysis of Algorithms Asymptotic Notations 3 COMP 2080 Outline 1. Visualization 2. Little notations 3. Properties of Asymptotic

More information

i=1 i B[i] B[i] + A[i, j]; c n for j n downto i + 1 do c n i=1 (n i) C[i] C[i] + A[i, j]; c n

i=1 i B[i] B[i] + A[i, j]; c n for j n downto i + 1 do c n i=1 (n i) C[i] C[i] + A[i, j]; c n Fundamental Algorithms Homework #1 Set on June 25, 2009 Due on July 2, 2009 Problem 1. [15 pts] Analyze the worst-case time complexity of the following algorithms,and give tight bounds using the Theta

More information

Review Of Topics. Review: Induction

Review Of Topics. Review: Induction Review Of Topics Asymptotic notation Solving recurrences Sorting algorithms Insertion sort Merge sort Heap sort Quick sort Counting sort Radix sort Medians/order statistics Randomized algorithm Worst-case

More information

data structures and algorithms lecture 2

data structures and algorithms lecture 2 data structures and algorithms 2018 09 06 lecture 2 recall: insertion sort Algorithm insertionsort(a, n): for j := 2 to n do key := A[j] i := j 1 while i 1 and A[i] > key do A[i + 1] := A[i] i := i 1 A[i

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Lecture 4 - Jan. 10, 2018 CLRS 1.1, 1.2, 2.2, 3.1, 4.3, 4.5 University of Manitoba Picture is from the cover of the textbook CLRS. 1 /

More information

Foundations II: Data Structures and Algorithms

Foundations II: Data Structures and Algorithms Foundations II: Data Structures and Algorithms Instructor : Yusu Wang Topic 1 : Introduction and Asymptotic notation Course Information Course webpage http://www.cse.ohio-state.edu/~yusu/courses/2331 Office

More information

Algorithm efficiency can be measured in terms of: Time Space Other resources such as processors, network packets, etc.

Algorithm efficiency can be measured in terms of: Time Space Other resources such as processors, network packets, etc. Algorithms Analysis Algorithm efficiency can be measured in terms of: Time Space Other resources such as processors, network packets, etc. Algorithms analysis tends to focus on time: Techniques for measuring

More information

Analysis of Algorithms I: Asymptotic Notation, Induction, and MergeSort

Analysis of Algorithms I: Asymptotic Notation, Induction, and MergeSort Analysis of Algorithms I: Asymptotic Notation, Induction, and MergeSort Xi Chen Columbia University We continue with two more asymptotic notation: o( ) and ω( ). Let f (n) and g(n) are functions that map

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Lecture 4 - Jan. 14, 2019 CLRS 1.1, 1.2, 2.2, 3.1, 4.3, 4.5 University of Manitoba Picture is from the cover of the textbook CLRS. COMP

More information

Module 1: Analyzing the Efficiency of Algorithms

Module 1: Analyzing the Efficiency of Algorithms Module 1: Analyzing the Efficiency of Algorithms Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu Based

More information

Algorithms Design & Analysis. Analysis of Algorithm

Algorithms Design & Analysis. Analysis of Algorithm Algorithms Design & Analysis Analysis of Algorithm Review Internship Stable Matching Algorithm 2 Outline Time complexity Computation model Asymptotic notions Recurrence Master theorem 3 The problem of

More information

Lecture 2. More Algorithm Analysis, Math and MCSS By: Sarah Buchanan

Lecture 2. More Algorithm Analysis, Math and MCSS By: Sarah Buchanan Lecture 2 More Algorithm Analysis, Math and MCSS By: Sarah Buchanan Announcements Assignment #1 is posted online It is directly related to MCSS which we will be talking about today or Monday. There are

More information

Big O (Asymptotic Upper Bound)

Big O (Asymptotic Upper Bound) Big O (Asymptotic Upper Bound) Linear search takes O(n) time. Binary search takes O(lg(n)) time. (lg means log 2 ) Bubble sort takes O(n 2 ) time. n 2 + 2n + 1 O(n 2 ), n 2 + 2n + 1 O(n) Definition: f

More information

Analysis of Algorithms

Analysis of Algorithms Analysis of Algorithms Section 4.3 Prof. Nathan Wodarz Math 209 - Fall 2008 Contents 1 Analysis of Algorithms 2 1.1 Analysis of Algorithms....................... 2 2 Complexity Analysis 4 2.1 Notation

More information

Introduction to Algorithms and Asymptotic analysis

Introduction to Algorithms and Asymptotic analysis Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600 127, India An Autonomous Institute under MHRD, Govt of India An Institute of National Importance COM 501 Advanced

More information

COMP 9024, Class notes, 11s2, Class 1

COMP 9024, Class notes, 11s2, Class 1 COMP 90, Class notes, 11s, Class 1 John Plaice Sun Jul 31 1::5 EST 011 In this course, you will need to know a bit of mathematics. We cover in today s lecture the basics. Some of this material is covered

More information

Asymptotic Analysis. Thomas A. Anastasio. January 7, 2004

Asymptotic Analysis. Thomas A. Anastasio. January 7, 2004 Asymptotic Analysis Thomas A. Anastasio January 7, 004 1 Introduction As a programmer, you often have a choice of data structures and algorithms. Choosing the best one for a particular job involves, among

More information

Divide and Conquer CPE 349. Theresa Migler-VonDollen

Divide and Conquer CPE 349. Theresa Migler-VonDollen Divide and Conquer CPE 349 Theresa Migler-VonDollen Divide and Conquer Divide and Conquer is a strategy that solves a problem by: 1 Breaking the problem into subproblems that are themselves smaller instances

More information

Module 1: Analyzing the Efficiency of Algorithms

Module 1: Analyzing the Efficiency of Algorithms Module 1: Analyzing the Efficiency of Algorithms Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu What is an Algorithm?

More information

CS Non-recursive and Recursive Algorithm Analysis

CS Non-recursive and Recursive Algorithm Analysis CS483-04 Non-recursive and Recursive Algorithm Analysis Instructor: Fei Li Room 443 ST II Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments lifei@cs.gmu.edu with subject: CS483 http://www.cs.gmu.edu/

More information

Grade 11/12 Math Circles Fall Nov. 5 Recurrences, Part 2

Grade 11/12 Math Circles Fall Nov. 5 Recurrences, Part 2 1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 11/12 Math Circles Fall 2014 - Nov. 5 Recurrences, Part 2 Running time of algorithms In computer science,

More information

Advanced Algorithmics (6EAP)

Advanced Algorithmics (6EAP) Advanced Algorithmics (6EAP) MTAT.03.238 Order of growth maths Jaak Vilo 2017 fall Jaak Vilo 1 Program execution on input of size n How many steps/cycles a processor would need to do How to relate algorithm

More information

Asymptotic Analysis of Algorithms. Chapter 4

Asymptotic Analysis of Algorithms. Chapter 4 Asymptotic Analysis of Algorithms Chapter 4 Overview Motivation Definition of Running Time Classifying Running Time Asymptotic Notation & Proving Bounds Algorithm Complexity vs Problem Complexity Overview

More information

Ch01. Analysis of Algorithms

Ch01. Analysis of Algorithms Ch01. Analysis of Algorithms Input Algorithm Output Acknowledgement: Parts of slides in this presentation come from the materials accompanying the textbook Algorithm Design and Applications, by M. T. Goodrich

More information

Introduction to Computer Science Lecture 5: Algorithms

Introduction to Computer Science Lecture 5: Algorithms Introduction to Computer Science Lecture 5: Algorithms Tian-Li Yu Taiwan Evolutionary Intelligence Laboratory (TEIL) Department of Electrical Engineering National Taiwan University tianliyu@cc.ee.ntu.edu.tw

More information

Running Time Evaluation

Running Time Evaluation Running Time Evaluation Quadratic Vs. Linear Time Lecturer: Georgy Gimel farb COMPSCI 220 Algorithms and Data Structures 1 / 19 1 Running time 2 Examples 3 Big-Oh, Big-Omega, and Big-Theta Tools 4 Time

More information

On my honor I affirm that I have neither given nor received inappropriate aid in the completion of this exercise.

On my honor I affirm that I have neither given nor received inappropriate aid in the completion of this exercise. CS 2413 Data Structures EXAM 1 Fall 2017, Page 1 of 10 Student Name: Student ID # OU Academic Integrity Pledge On my honor I affirm that I have neither given nor received inappropriate aid in the completion

More information

More Asymptotic Analysis Spring 2018 Discussion 8: March 6, 2018

More Asymptotic Analysis Spring 2018 Discussion 8: March 6, 2018 CS 61B More Asymptotic Analysis Spring 2018 Discussion 8: March 6, 2018 Here is a review of some formulas that you will find useful when doing asymptotic analysis. ˆ N i=1 i = 1 + 2 + 3 + 4 + + N = N(N+1)

More information

Asymptotic Notation. such that t(n) cf(n) for all n n 0. for some positive real constant c and integer threshold n 0

Asymptotic Notation. such that t(n) cf(n) for all n n 0. for some positive real constant c and integer threshold n 0 Asymptotic Notation Asymptotic notation deals with the behaviour of a function in the limit, that is, for sufficiently large values of its parameter. Often, when analysing the run time of an algorithm,

More information

Data Structures and Algorithms Chapter 2

Data Structures and Algorithms Chapter 2 1 Data Structures and Algorithms Chapter 2 Werner Nutt 2 Acknowledgments The course follows the book Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples

More information

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU Algorithm Analysis 1 Purpose Why bother analyzing code; isn t getting it to work enough? Estimate time and memory in the average case and worst case Identify bottlenecks, i.e., where to reduce time Compare

More information

Analysis of Algorithms

Analysis of Algorithms Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 Analysis of Algorithms Input Algorithm Analysis

More information

Recurrence Relations

Recurrence Relations Recurrence Relations Analysis Tools S.V. N. (vishy) Vishwanathan University of California, Santa Cruz vishy@ucsc.edu January 15, 2016 S.V. N. Vishwanathan (UCSC) CMPS101 1 / 29 Recurrences Outline 1 Recurrences

More information

Algorithms, Design and Analysis. Order of growth. Table 2.1. Big-oh. Asymptotic growth rate. Types of formulas for basic operation count

Algorithms, Design and Analysis. Order of growth. Table 2.1. Big-oh. Asymptotic growth rate. Types of formulas for basic operation count Types of formulas for basic operation count Exact formula e.g., C(n) = n(n-1)/2 Algorithms, Design and Analysis Big-Oh analysis, Brute Force, Divide and conquer intro Formula indicating order of growth

More information

Analysis of Algorithms [Reading: CLRS 2.2, 3] Laura Toma, csci2200, Bowdoin College

Analysis of Algorithms [Reading: CLRS 2.2, 3] Laura Toma, csci2200, Bowdoin College Analysis of Algorithms [Reading: CLRS 2.2, 3] Laura Toma, csci2200, Bowdoin College Why analysis? We want to predict how the algorithm will behave (e.g. running time) on arbitrary inputs, and how it will

More information

CSC Design and Analysis of Algorithms. Lecture 1

CSC Design and Analysis of Algorithms. Lecture 1 CSC 8301- Design and Analysis of Algorithms Lecture 1 Introduction Analysis framework and asymptotic notations What is an algorithm? An algorithm is a finite sequence of unambiguous instructions for solving

More information

Lecture 10: Big-Oh. Doina Precup With many thanks to Prakash Panagaden and Mathieu Blanchette. January 27, 2014

Lecture 10: Big-Oh. Doina Precup With many thanks to Prakash Panagaden and Mathieu Blanchette. January 27, 2014 Lecture 10: Big-Oh Doina Precup With many thanks to Prakash Panagaden and Mathieu Blanchette January 27, 2014 So far we have talked about O() informally, as a way of capturing the worst-case computation

More information

CSE332: Data Abstrac0ons Sec%on 2. HyeIn Kim Spring 2014

CSE332: Data Abstrac0ons Sec%on 2. HyeIn Kim Spring 2014 CSE332: Data Abstrac0ons Sec%on 2 HyeIn Kim Spring 2014 Sec0on Agenda Recurrence Relations Asymptotic Analysis HW1, Project 1 Q&A Project 2 - Introduction - Working in a team - Testing strategies Recurrence

More information

When we use asymptotic notation within an expression, the asymptotic notation is shorthand for an unspecified function satisfying the relation:

When we use asymptotic notation within an expression, the asymptotic notation is shorthand for an unspecified function satisfying the relation: CS 124 Section #1 Big-Oh, the Master Theorem, and MergeSort 1/29/2018 1 Big-Oh Notation 1.1 Definition Big-Oh notation is a way to describe the rate of growth of functions. In CS, we use it to describe

More information

Principles of Algorithm Analysis

Principles of Algorithm Analysis C H A P T E R 3 Principles of Algorithm Analysis 3.1 Computer Programs The design of computer programs requires:- 1. An algorithm that is easy to understand, code and debug. This is the concern of software

More information

2. ALGORITHM ANALYSIS

2. ALGORITHM ANALYSIS 2. ALGORITHM ANALYSIS computational tractability asymptotic order of growth survey of common running times Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley http://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

Lecture 1: Asymptotic Complexity. 1 These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole.

Lecture 1: Asymptotic Complexity. 1 These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole. Lecture 1: Asymptotic Complexity 1 These slides include material originally prepared by Dr.Ron Cytron, Dr. Jeremy Buhler, and Dr. Steve Cole. Announcements TA office hours officially start this week see

More information

5 + 9(10) + 3(100) + 0(1000) + 2(10000) =

5 + 9(10) + 3(100) + 0(1000) + 2(10000) = Chapter 5 Analyzing Algorithms So far we have been proving statements about databases, mathematics and arithmetic, or sequences of numbers. Though these types of statements are common in computer science,

More information

CSED233: Data Structures (2017F) Lecture4: Analysis of Algorithms

CSED233: Data Structures (2017F) Lecture4: Analysis of Algorithms (2017F) Lecture4: Analysis of Algorithms Daijin Kim CSE, POSTECH dkim@postech.ac.kr Running Time Most algorithms transform input objects into output objects. The running time of an algorithm typically

More information

Measuring Goodness of an Algorithm. Asymptotic Analysis of Algorithms. Measuring Efficiency of an Algorithm. Algorithm and Data Structure

Measuring Goodness of an Algorithm. Asymptotic Analysis of Algorithms. Measuring Efficiency of an Algorithm. Algorithm and Data Structure Measuring Goodness of an Algorithm Asymptotic Analysis of Algorithms EECS2030 B: Advanced Object Oriented Programming Fall 2018 CHEN-WEI WANG 1. Correctness : Does the algorithm produce the expected output?

More information

CIS 121. Analysis of Algorithms & Computational Complexity. Slides based on materials provided by Mary Wootters (Stanford University)

CIS 121. Analysis of Algorithms & Computational Complexity. Slides based on materials provided by Mary Wootters (Stanford University) CIS 121 Analysis of Algorithms & Computational Complexity Slides based on materials provided by Mary Wootters (Stanford University) Today Sorting: InsertionSort vs MergeSort Analyzing the correctness of

More information

Omega notation. Transitivity etc.

Omega notation. Transitivity etc. Omega notation Big-Omega: Lecture 2, Sept. 25, 2014 f () n (()) g n const cn, s.t. n n : cg() n f () n Small-omega: 0 0 0 f () n (()) g n const c, n s.t. n n : cg() n f () n 0 0 0 Intuition (works most

More information

Great Theoretical Ideas in Computer Science. Lecture 7: Introduction to Computational Complexity

Great Theoretical Ideas in Computer Science. Lecture 7: Introduction to Computational Complexity 15-251 Great Theoretical Ideas in Computer Science Lecture 7: Introduction to Computational Complexity September 20th, 2016 What have we done so far? What will we do next? What have we done so far? > Introduction

More information

Data Structures and Algorithms

Data Structures and Algorithms Data Structures and Algorithms Autumn 2018-2019 Outline 1 Algorithm Analysis (contd.) Outline Algorithm Analysis (contd.) 1 Algorithm Analysis (contd.) Growth Rates of Some Commonly Occurring Functions

More information

COMPUTER ALGORITHMS. Athasit Surarerks.

COMPUTER ALGORITHMS. Athasit Surarerks. COMPUTER ALGORITHMS Athasit Surarerks. Introduction EUCLID s GAME Two players move in turn. On each move, a player has to write on the board a positive integer equal to the different from two numbers already

More information

CISC 235: Topic 1. Complexity of Iterative Algorithms

CISC 235: Topic 1. Complexity of Iterative Algorithms CISC 235: Topic 1 Complexity of Iterative Algorithms Outline Complexity Basics Big-Oh Notation Big-Ω and Big-θ Notation Summations Limitations of Big-Oh Analysis 2 Complexity Complexity is the study of

More information

Theory of Computation

Theory of Computation Theory of Computation Dr. Sarmad Abbasi Dr. Sarmad Abbasi () Theory of Computation 1 / 33 Lecture 20: Overview Incompressible strings Minimal Length Descriptions Descriptive Complexity Dr. Sarmad Abbasi

More information

CSE332: Data Abstrac0ons Sec%on 2. HyeIn Kim Winter 2013

CSE332: Data Abstrac0ons Sec%on 2. HyeIn Kim Winter 2013 CSE332: Data Abstrac0ons Sec%on 2 HyeIn Kim Winter 2013 Asymptotic Analysis Sec0on Agenda - Example problem & HW1 Q/A Heaps - Property of Heap & Example problem - Build Heap Project 2 - Introduction -

More information

CS Data Structures and Algorithm Analysis

CS Data Structures and Algorithm Analysis CS 483 - Data Structures and Algorithm Analysis Lecture II: Chapter 2 R. Paul Wiegand George Mason University, Department of Computer Science February 1, 2006 Outline 1 Analysis Framework 2 Asymptotic

More information

Introduction to Algorithms: Asymptotic Notation

Introduction to Algorithms: Asymptotic Notation Introduction to Algorithms: Asymptotic Notation Why Should We Care? (Order of growth) CS 421 - Analysis of Algorithms 2 Asymptotic Notation O-notation (upper bounds): that 0 f(n) cg(n) for all n n. 0 CS

More information

When we use asymptotic notation within an expression, the asymptotic notation is shorthand for an unspecified function satisfying the relation:

When we use asymptotic notation within an expression, the asymptotic notation is shorthand for an unspecified function satisfying the relation: CS 124 Section #1 Big-Oh, the Master Theorem, and MergeSort 1/29/2018 1 Big-Oh Notation 1.1 Definition Big-Oh notation is a way to describe the rate of growth of functions. In CS, we use it to describe

More information

Defining Efficiency. 2: Analysis. Efficiency. Measuring efficiency. CSE 421: Intro Algorithms. Summer 2007 Larry Ruzzo

Defining Efficiency. 2: Analysis. Efficiency. Measuring efficiency. CSE 421: Intro Algorithms. Summer 2007 Larry Ruzzo CSE 421: Intro Algorithms 2: Analysis Summer 2007 Larry Ruzzo Defining Efficiency Runs fast on typical real problem instances Pro: sensible, bottom-line-oriented Con: moving target (diff computers, compilers,

More information

Algorithms and Their Complexity

Algorithms and Their Complexity CSCE 222 Discrete Structures for Computing David Kebo Houngninou Algorithms and Their Complexity Chapter 3 Algorithm An algorithm is a finite sequence of steps that solves a problem. Computational complexity

More information

1 Quick Sort LECTURE 7. OHSU/OGI (Winter 2009) ANALYSIS AND DESIGN OF ALGORITHMS

1 Quick Sort LECTURE 7. OHSU/OGI (Winter 2009) ANALYSIS AND DESIGN OF ALGORITHMS OHSU/OGI (Winter 2009) CS532 ANALYSIS AND DESIGN OF ALGORITHMS LECTURE 7 1 Quick Sort QuickSort 1 is a classic example of divide and conquer. The hard work is to rearrange the elements of the array A[1..n]

More information

Kurt Schmidt. June 5, 2017

Kurt Schmidt. June 5, 2017 Dept. of Computer Science, Drexel University June 5, 2017 Examples are taken from Kernighan & Pike, The Practice of ming, Addison-Wesley, 1999 Objective: To learn when and how to optimize the performance

More information

Taking Stock. IE170: Algorithms in Systems Engineering: Lecture 3. Θ Notation. Comparing Algorithms

Taking Stock. IE170: Algorithms in Systems Engineering: Lecture 3. Θ Notation. Comparing Algorithms Taking Stock IE170: Algorithms in Systems Engineering: Lecture 3 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University January 19, 2007 Last Time Lots of funky math Playing

More information

COMP 555 Bioalgorithms. Fall Lecture 3: Algorithms and Complexity

COMP 555 Bioalgorithms. Fall Lecture 3: Algorithms and Complexity COMP 555 Bioalgorithms Fall 2014 Lecture 3: Algorithms and Complexity Study Chapter 2.1-2.8 Topics Algorithms Correctness Complexity Some algorithm design strategies Exhaustive Greedy Recursion Asymptotic

More information

Reading 10 : Asymptotic Analysis

Reading 10 : Asymptotic Analysis CS/Math 240: Introduction to Discrete Mathematics Fall 201 Instructor: Beck Hasti and Gautam Prakriya Reading 10 : Asymptotic Analysis In the last reading, we analyzed the running times of various algorithms.

More information

Homework Assignment 1 Solutions

Homework Assignment 1 Solutions MTAT.03.286: Advanced Methods in Algorithms Homework Assignment 1 Solutions University of Tartu 1 Big-O notation For each of the following, indicate whether f(n) = O(g(n)), f(n) = Ω(g(n)), or f(n) = Θ(g(n)).

More information

Divide and Conquer. Arash Rafiey. 27 October, 2016

Divide and Conquer. Arash Rafiey. 27 October, 2016 27 October, 2016 Divide the problem into a number of subproblems Divide the problem into a number of subproblems Conquer the subproblems by solving them recursively or if they are small, there must be

More information

Ch 01. Analysis of Algorithms

Ch 01. Analysis of Algorithms Ch 01. Analysis of Algorithms Input Algorithm Output Acknowledgement: Parts of slides in this presentation come from the materials accompanying the textbook Algorithm Design and Applications, by M. T.

More information