CS 4407 Algorithms Lecture 2: Iterative and Divide and Conquer Algorithms

Size: px
Start display at page:

Download "CS 4407 Algorithms Lecture 2: Iterative and Divide and Conquer Algorithms"

Transcription

1 CS 4407 Algorithms Lecture 2: Iterative and Divide and Conquer Algorithms Prof. Gregory Provan Department of Computer Science University College Cork 1

2 Lecture Outline CS 4407, Algorithms Growth Functions Mathematical specification of growth functions Iterative Algorithms Divide-and-Conquer Algorithms

3 Today s Learning Objectives Describe mathematical principles for specifying the growth of run-time of an algorithm Classify the growth functions, O,, o, Iterative Algorithm Analysis Divide-and-Conquer Algorithm Analysis CS 4407, Algorithms

4 Analyzing Algorithms Assumptions generic one-processor, random access machine running time (others: memory, communication, etc) Worst Case Running Time: the longest time for any input of size n upper bound on the running time for any input in some cases like searching, this is close Average Case Behavior: the expected performance averaged over all possible inputs it is generally better than worst case behavior sometimes it s roughly as bad as worst case

5 Notation: Growth Functions Theta f(n) = θ(g(n)) f(n) c g(n) BigOh f(n) = O(g(n)) f(n) c g(n) Omega f(n) = Ω(g(n)) f(n) c g(n) Little Oh f(n) = o(g(n)) f(n) << c g(n) Little Omega f(n) = ω(g(n)) f(n) >> c g(n)

6 -notation For a given function g(n), we denote by (g(n)) the set of functions (g(n)) = {f(n): there exist positive constants c 1, c 2 and n 0 such that 0 c 1 g(n) f(n) c 2 g(n), for all n n 0 } We say g(n) is an asymptotically tight bound for f(n)

7 O-notation For a given function g(n), we denote by O(g(n)) the set of functions O(g(n)) = {f(n): there exist positive constants c and n 0 such that 0 f(n) cg(n), for all n n 0 } We say g(n) is an asymptotic upper bound for f(n) CS 4407, Algorithms

8 -notation For a given function g(n), we denote by (g(n)) the set of functions (g(n)) = {f(n): there exist positive constants c and n 0 such that 0 cg(n) f(n) for all n n 0 } We say g(n) is an asymptotic lower bound for f(n)

9 Relations Between,, O For any two functions g(n) and f(n), f(n) = (g(n)) if and only if f(n) = O(g(n)) and f(n) = (g(n)). i.e., (g(n)) = O(g(n)) (g(n)).

10 Complexity of Simple Algorithms Simple Interation Dealing with Loops Loop invariant method Divide and Conquer Algorithms CS 4407, Algorithms

11 Iterative Algorithm Running Time T(n), or the running time of a particular algorithm on input of size n, is taken to be the number of times the instructions in the algorithm are executed. Pseudo code algorithm illustrates the calculation of the mean (average) of a set of n numbers: 1. n = read input from user 2. sum = 0 3. i = 0 4. while i < n 5. number = read input from user 6. sum = sum + number 7. i = i mean = sum / n The computing time for this algorithm in terms on input size n is: T(n) = 4n + 5. Statement Number of times executed n+1 5 n 6 n 7 n 8 1

12 Analysis of Simple Programs (no recursion) Sum the costs of the lines of the program Compute the bounding function e.g., O(*) CS 4407, Algorithms

13 Analysing Loops Use Loop Invariants Intuitive notion and example CS 4407, Algorithms

14 Designing an Algorithm Define Problem Define Loop Invariants Define Measure of Progress 79 km to school Define Step Define Exit Condition Maintain Loop Inv Exit Exit Make Progress Initial Conditions Ending Exit 79 km 75 km km 0 km Exit Exit

15 Typical Loop Invariant If the input consists of an array of objects I have a solution for the first i objects. i objects Exit 79 km 75 km i to i+1 Extend the solution into a solution for the first i+1. Exit Done when solution for n

16 Typical Loop Invariant CS 4407, Algorithms If the output consists of an array of objects I have an output produced for the first i objects. i objects Produce the i+1-st output object. Exit 79 km 75 km i to i+1 Exit Done when output n objects.

17 Binary search Example of Approach Standard algorithm Input Sorted list, and key Goal: find key in list CS 4407, Algorithms

18 Define Problem: Binary Search PreConditions Key 25 Sorted List PostConditions Find key in list (if there) CS 4407, Algorithms

19 Define Loop Invariant Maintain a sublist Such that key CS 4407, Algorithms

20 Define Loop Invariant Maintain a sublist. If the key is contained in the original list, then the key is contained in the sublist. key CS 4407, Algorithms

21 Make Progress Define Step Maintain Loop Invariant key CS 4407, Algorithms

22 Define Step Cut sublist in half. Determine which half key would be in. Keep that half. key CS 4407, Algorithms

23 Define Step Cut sublist in half. Determine which half the key would be in. Keep that half. key If key mid, then key is in left half. If key > mid, then key is in right half. CS 4407, Algorithms

24 Define Step It is faster not to check if the middle element is the key. Simply continue. key If key mid, then key is in left half. If key > mid, then key is in right half. CS 4407, Algorithms

25 Make Progress Exit The size of the list becomes smaller. 79 km 75 km km km

26 Initial Conditions km key n km The sublist is the entire original list. If the key is contained in the original list, then the key is contained in the sublist. CS 4407, Algorithms

27 Ending Algorithm Exit key km If the key is contained in the original list, then the key is contained in the sublist. Sublist contains one element. Exit If the key is contained in the original list, then the key is at this location.

28 If key not in original list If the key is contained in the original list, then the key is contained in the sublist. Loop invariant true, even if the key is not in the list. key If the key is contained in the original list, then the key is at this location. Conclusion still solves the problem. Simply check this one location for the key. CS 4407, Algorithms

29 Running Time The sublist is of size n, n / 2, n / 4, n / 8,,1 Each step (1) time. Total = (log n) key If key mid, then key is in left half. CS 4407, Algorithms If key > mid, then key is in right half.

30 Code CS 4407, Algorithms

31 Divide and Conquer Algorithms Well-known class of algorithm Requires special approach for complexity analysis CS 4407, Algorithms

32 Divide-and-Conquer Analysis The analysis of divide and conquer algorithms require us to solve a recurrence. Recurrences are a major tool for analysis of algorithms CS 4407, Algorithms

33 MergeSort A L G O R I T H M S A L G O R I T H M S divide cn T(n/2) T(n/2)

34 MergeSort A L G O R I T H M S A L G O R I T H M S Divide #1 A L G O R I T H M S Divide #2 cn T(n/2) T(n/2) T(n/4) T(n/4) T(n/4) T(n/4)

35 MergeSort Solve T(n) = T(n/2) + T(n/2) + cn cn (n/2) +c (n/2) +c T(n/4) T(n/4) T(n/4) T(n/4) c n 1 Recurrence T ( n) 2T n 2 cn n 1 CS 4407, Algorithms

36 Recursion-tree method A recursion tree models the costs (time) of a recursive execution of an algorithm. The recursion tree method is good for generating guesses for the substitution method. The recursion-tree method can be unreliable, just like any method that uses ellipses ( ). The recursion-tree method promotes intuition, however.

37 Example of recursion tree Solve T(n) = T(n/4) + T(n/2) + n 2 :

38 Example of recursion tree Solve T(n) = T(n/4) + T(n/2) + n 2 : T(n)

39 Example of recursion tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 T(n/4) T(n/2)

40 Example of recursion tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 (n/4) 2 (n/2) 2 T(n/16) T(n/8) T(n/8) T(n/4)

41 Example of recursion tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 (n/4) 2 (n/2) 2 (n/16) 2 (n/8) 2 (n/8) 2 (n/4) 2 (1)

42 Example of recursion tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 n 2 (n/4) 2 (n/2) 2 (n/16) 2 (n/8) 2 (n/8) 2 (n/4) 2 (1)

43 Example of recursion tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 (n/4) 2 (n/2) 2 (n/16) 2 (n/8) 2 (n/8) 2 (n/4) 2 n2 5 n 2 16 (1)

44 Example of recursion tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 (n/4) 2 (n/2) 2 (n/16) 2 (n/8) 2 (n/8) 2 (n/4) 2 n2 5 n n (1)

45 Example of recursion tree Solve T(n) = T(n/4) + T(n/2) + n 2 : n 2 (n/4) 2 (n/2) 2 (n/16) 2 (n/8) 2 (n/8) 2 (n/4) 2 n2 5 n n (1) Total = n = (n 2 ) geometric series

46 Solution: geometric series 1 x x 2 n 1 n x x for x x x x for x < 1 1 x

47 The master method The master method applies to recurrences of the form T(n) = a T(n/b) + f (n), where a 1, b > 1, and f is asymptotically positive.

48 Idea of master theorem Recursion tree: f (n) a f (n/b) f (n/b) f (n/b) a h = log b n f (n/b 2 ) f (n/b 2 ) f (n/b 2 ) f (n) a f (n/b) a 2 f (n/b 2 ) (1) #leaves = a h = a log bn = n log ba n log ba (1)

49 Three common cases Compare f (n) with n log ba : 1. f (n) = O(n log ba ) for some constant > 0. f (n) grows polynomially slower than n log ba (by an n factor). Solution: T(n) = (n log ba ). # leaves in recursion tree CS 4407, Algorithms

50 Idea of master theorem Recursion tree: f (n) a f (n/b) f (n/b) a h = log b n f (n/b 2 ) f (n/b 2 ) f (n/b 2 ) f (n/b) f (n) a f (n/b) a 2 f (n/b 2 ) (1) CASE 1: The weight increases geometrically from the root to the leaves. The leaves hold a constant n log ba (1) fraction of the total weight. (n log ba )

51 Three common cases Compare f (n) with n log ba : 2. f (n) = (n log ba lg k n) for some constant k 0. f (n) and n log ba grow at similar rates. Solution: T(n) = (n log ba lg k+1 n). CS 4407, Algorithms

52 Idea of master theorem Recursion tree: f (n) a f (n/b) f (n/b) a h = log b n f (n/b 2 ) f (n/b 2 ) f (n/b 2 ) f (n/b) f (n) a f (n/b) a 2 f (n/b 2 ) (1) CASE 2: (k = 0) The weight is approximately the same on each of the log b n levels. n log ba (1) (n log ba lg n)

53 Three common cases (cont.) Compare f (n) with n log ba : 3. f (n) = (n log ba + ) for some constant > 0. f (n) grows polynomially faster than n log ba (by an n factor), and f (n) satisfies the regularity condition that a f (n/b) c f (n) for some constant c < 1. Solution: T(n) = ( f (n) ).

54 Idea of master theorem Recursion tree: f (n) a f (n/b) f (n/b) a h = log b n f (n/b 2 ) f (n/b 2 ) f (n/b 2 ) f (n/b) f (n) a f (n/b) a 2 f (n/b 2 ) (1) CASE 3: The weight decreases geometrically from the root to the leaves. The root holds a constant fraction of the total weight. n log ba (1) ( f (n))

55 Examples Ex. T(n) = 4T(n/2) + n a = 4, b = 2 n log ba = n 2 ; f (n) = n. CASE 1: f (n) = O(n 2 ) for = 1. T(n) = (n 2 ). Ex. T(n) = 4T(n/2) + n 2 a = 4, b = 2 n log ba = n 2 ; f (n) = n 2. CASE 2: f (n) = (n 2 lg 0 n), that is, k = 0. T(n) = (n 2 lg n).

56 Examples Ex. T(n) = 4T(n/2) + n 3 a = 4, b = 2 n log ba = n 2 ; f (n) = n 3. CASE 3: f (n) = (n 2 + ) for = 1 and 4(cn/2) 3 cn 3 (reg. cond.) for c = 1/2. T(n) = (n 3 ). Ex. T(n) = 4T(n/2) + n 2 /lg n a = 4, b = 2 n log ba = n 2 ; f (n) = n 2 /lg n. Master method does not apply. In particular, for every constant > 0, we have n (lg n).

57 Growth Function Summary Defined the mathematical principles for specifying the runtime of an algorithm Classified the growth functions, O,, o, Defined several relationships among the growth functions Theta f(n) = θ(g(n)) f(n) c g(n) BigOh f(n) = O(g(n)) f(n) c g(n) Omega f(n) = Ω(g(n)) f(n) c g(n) Little Oh f(n) = o(g(n)) f(n) << c g(n) Little Omega f(n) = ω(g(n)) f(n) >> c g(n) CS 4407, Algorithms

58 Appendix: Review of Growth Functions Detailed review of different growth functions

59 A Simple Example INPUT: a sequence of n numbers OUTPUT: the smallest number among them 1. x T[1] 2. for i 2 to n do 3. if T[i] < x then x T[i] * Performance of this algorithm is a function of n. CS 4407, Algorithms

60 Runtime Analysis Elementary operation: an operation whose execution time can be bounded above by a constant depending on implementation used. Assume all elementary operations can be executed at unit cost. This is not true, but they are within some constant factor of each other. We are mainly concerned about the order of growth.

61 Order of Growth For very large input size, it is the asymptotic rate of growth (or order of growth) that matters. We can ignore the lower-order terms, since they are relatively insignificant for very large n. We can also ignore leading term s constant coefficients, since they are not as important for the rate of growth in computational efficiency for very large n. Higher order functions of n are normally considered less efficient. CS 4407, Algorithms

62 Comparisons of Algorithms Multiplication classical technique: O(nm) divide-and-conquer: O(nm ln1.5 ) ~ O(nm 0.59 ) For operands of size 1000, takes 40 & 15 seconds respectively on a Cyber 835. Sorting insertion sort: (n 2 ) merge sort: (n lg n) For 10 6 numbers, it took 5.56 hrs on a supercomputer using machine language and min on a PC using C/C++. CS 4407, Algorithms

63 Why Order of Growth Matters Computer speeds double every two years, so why worry about algorithm speed? When speed doubles, what happens to the amount of work you can do? CS 4407, Algorithms

64 Effect of Faster Machines H/W Speed Comp. of Alg. No. of items sorted 1 M * 2 M Gain * Million operations per second. Ο(n 2 ) O(n lgn) Higher gain with faster hardware for more efficient algorithm. Results are more dramatic for higher speeds: for the n lg n algorithm, doubling the speed almost doubles the number of items that can be sorted. CS 4407, Algorithms

65 Classifying Functions Functions Constant Logarithmic Poly Logarithmic Polynomial Exponential 5 5 log n (log n) 5 n 5 2 5n 2 Exp Double Exp n5 25n 2

66 Ordering Functions Functions Constant Logarithmic Poly Logarithmic Polynomial Exponential Exp << << << << << << 5 << 5 log n << (log n) 5 << n 5 << 2 5n << 2 << Double Exp 2 n5 25n

67 Classifying Functions Functions Constant Logarithmic Poly Logarithmic Polynomial Exponential θ(1) θ(log n) (log n) θ(1) n θ(1) 2 θ(n) 2 Exp Double Exp nθ(1) 2θ(n) 2

68 Asymptotic Notation, O,, o, Used to describe the running times of algorithms Instead of exact running time, say (n 2 ) Defined for functions whose domain is the set of natural numbers, N Determine sets of functions, in practice used to compare two functions CS 4407, Algorithms

69 Example 3n 2 + 7n + 8= (n 2 ) What constants for n 0, c 1, and c 2 will work? Make c 1 a little smaller than leading coefficient, and c 2 a little bigger To compare orders of growth, look at the leading term CS 4407, Algorithms

70 Definition of Theta f(n) = θ(g(n)) c c n, n n, c g( n) f ( n) c g( n) 1, 2, f(n) is sandwiched between c 1 g(n) and c 2 g(n) for some sufficiently small c 1 (= ) for some sufficiently large c 2 (= 1000) CS 4407, Algorithms

71 Definition of Theta f(n) = θ(g(n)) c c n, n n, c g( n) f ( n) c g( n) 1, 2, n 0 For all sufficiently large n For some definition of sufficiently large CS 4407, Algorithms

72 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) c c n, n n, c g( n) f ( n) c g( n) 1, 2,

73 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) c c n, n n, c g( n) f ( n) c g( n) 1, 2, ?? c 1 n 2 3n 2 + 7n + 8 c 2 n 2 CS 4407, Algorithms

74 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) c c n, n n, c g( n) f ( n) c g( n) 1, 2, n 2 3n 2 + 7n n 2 CS 4407, Algorithms

75 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) c c n, n n, c g( n) f ( n) c g( n) 1, 2, False CS 4407, Algorithms

76 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) c c n, n n, c g( n) f ( n) c g( n) 1, 2, False CS 4407, Algorithms

77 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) c c n, n n, c g( n) f ( n) c g( n) 1, 2, True CS 4407, Algorithms

78 Definition of Theta 3n 2 + 7n + 8 = θ(n 2 ) c c n, n n, c g( n) f ( n) c g( n) 1, 2, n 8 3 n 2 3n 2 + 7n n 2 CS 4407, Algorithms

79 Running Times The running time is O(f(n)) Worst case is O(f(n)) Running time is (f(n)) Best case is (f(n)) Can still say Worst case running time is (f(n)) Means worst case running time is given by some unknown function g(n) (f(n))

80 Example Insertion sort takes (n 2 ) worst case time, so sorting (as a problem) is O(n 2 ) Any sort algorithm must look at each item, so sorting is (n) In fact, using (e.g.) merge sort, sorting is (n lg n) in the worst case

81 Asymptotic Notation in Equations Asymptotic notation is used to replace expressions containing lower-order terms. For example, 4n 3 + 3n 2 + 2n + 1 = 4n 3 + 3n 2 + (n) = 4n 3 + (n 2 ) = (n 3 ) In equations, (f(n)) always stands for an anonymous function g(n) (f(n)). In the example above, (n 2 ) stands for 3n 2 + 2n + 1.

82 o-notation For a given function g(n), we denote by o(g(n)) the set of functions: o(g(n)) = {f(n): for any positive constant c > 0, there exists a constant n 0 > 0 such that 0 f(n) < cg(n) for all n n 0 } f(n) becomes insignificant relative to g(n) as n approaches infinity: lim [f(n) / g(n)] = 0 n We say g(n) is an upper bound for f(n) that is not asymptotically tight.

83 O(*) versus o(*) O(g(n)) = {f(n): there exist positive constants c and n 0 such that 0 f(n) cg(n), for all n n 0 }. o(g(n)) = {f(n): for any positive constant c > 0, there exists a constant n 0 > 0 such that 0 f(n) < cg(n) for all n n 0 }. Thus o(f(n)) is a weakened O(f(n)). For example: n 2 = O(n 2 ) n 2 o(n 2 ) n 2 = O(n 3 ) n 2 = o(n 3 )

84 -notation For a given function g(n), we denote by functions (g(n)) the set of (g(n)) = {f(n): for any positive constant c > 0, there exists a constant n 0 > 0 such that 0 cg(n) < f(n) for all n n 0 } f(n) becomes arbitrarily large relative to g(n) as n approaches infinity: lim [f(n) / g(n)] = n We say g(n) is a lower bound for f(n) that is not asymptotically tight.

85 Limits lim [f(n) / g(n)] = 0 f(n) (g(n)) n lim [f(n) / g(n)] < f(n) (g(n)) n 0 < lim [f(n) / g(n)] < f(n) (g(n)) n 0 < lim [f(n) / g(n)] f(n) (g(n)) n lim [f(n) / g(n)] = f(n) (g(n)) n lim [f(n) / g(n)] undefined n can t say

86

87 Additional Useful Relations The following slides provide many useful relations for orders of growth These relations may prove helpful in homeworks and exams CS 4407, Algorithms

88 Comparison of Functions f g a b f (n) = O(g(n)) a b f (n) = (g(n)) a b f (n) = (g(n)) a = b f (n) = o(g(n)) a < b f (n) = (g(n)) a > b CS 4407, Algorithms

89 Properties Transitivity f(n) = (g(n)) & g(n) = (h(n)) f(n) = (h(n)) f(n) = O(g(n)) & g(n) = O(h(n)) f(n) = O(h(n)) f(n) = (g(n)) & g(n) = (h(n)) f(n) = (h(n)) f(n) = o (g(n)) & g(n) = o (h(n)) f(n) = o (h(n)) f(n) = (g(n)) & g(n) = (h(n)) f(n) = (h(n)) Symmetry f(n) = (g(n)) if and only if g(n) = (f(n)) Transpose Symmetry f(n) = O(g(n)) if and only if g(n) = (f(n)) f(n) = o(g(n)) if and only if g(n) = ((f(n))

90 Useful Facts For a 0, b > 0, lim n ( lg a n / n b ) = 0, so lg a n = o(n b ), and n b = (lg a n ) Prove using L Hopital s rule and induction lg(n!) = (n lg n) CS 4407, Algorithms

91 Examples A B 5n n 3n log 3 (n 2 ) log 2 (n 3 ) n lg4 3 lg n lg 2 n n 1/2 CS 4407, Algorithms

92 Examples A B 5n n 3n A (B) A (n 2 ), n 2 (B) A (B) log 3 (n 2 ) log 2 (n 3 ) n lg4 3 lg n lg 2 n n 1/2

93 Examples A B 5n n 3n A (B) A (n 2 ), n 2 (B) A (B) log 3 (n 2 ) log 2 (n 3 ) A (B) log b a = log c a / log c b; A = 2lgn / lg3, B = 3lgn, A/B =2/(3lg3) n lg4 3 lg n lg 2 n n 1/2

94 Examples A B 5n n 3n A (B) A (n 2 ), n 2 (B) A (B) log 3 (n 2 ) log 2 (n 3 ) A (B) log b a = log c a / log c b; A = 2lgn / lg3, B = 3lgn, A/B =2/(3lg3) n lg4 3 lg n A (B) a log b = b log a ; B =3 lg n =n lg 3 ; A/B =n lg(4/3) as n lg 2 n n 1/2

95 A Examples B 5n n 3n A (B) A (n 2 ), n 2 (B) A (B) log 3 (n 2 ) log 2 (n 3 ) A (B) log b a = log c a / log c b; A = 2lgn / lg3, B = 3lgn, A/B =2/(3lg3) n lg4 3 lg n A (B) a log b = b log a ; B =3 lg n =n lg 3 ; A/B =n lg(4/3) as n lg 2 n n 1/2 A (B) lim ( lg a n / n b ) = 0 (here a = 2 and b = 1/2) A (B) n

96 Review on Summation Why do we need summation formulas? We need them for computing the running times of some algorithms. (CLRS/Chapter 3) Example: Maximum Subvector Given an array a[1 n] of numeric values (can be positive, zero and negative) determine the subvector a[i j] (1 i j n) whose sum of elements is maximum over all subvectors

97 Reviews on Summation MaxSubvector(a, n) maxsum 0; for i 1 to n for j = i to n sum 0; for k i to j sum += a[k] maxsum max(sum, maxsum); return maxsum; n n j T(n) = 1 i=1 j=i k=i NOTE: This is not a simplified solution. What is the final answer?

98 Reviews on Summation Constant Series: For n 0, b i=a 1 = b - a + 1 Linear Series: For n 0, n i = n = n(n+1) / 2 i=1

99 Reviews on Summation Quadratic Series: For n 0, n i 2 = n 2 = (2n 3 + 3n 2 + n) / 6 i=1 Linear-Geometric Series: For n 0, n i=1 ic i = c + 2c nc n = [(n-1)c (n+1) - nc n + c] / (c-1) 2

100 Divide-and-Conquer Examples CS 4407, Algorithms

101 Integer Multiplication Let X = A B and Y = C D where A,B,C and D are n/2 bit integers Simple Method: XY = (2 n/2 A+B)(2 n/2 C+D) Running Time Recurrence T(n) < 4T(n/2) + 100n How do we solve it? CS 4407, Algorithms

102 Substitution method The most general method: 1. Guess the form of the solution. 2. Verify by induction. 3. Solve for constants. Example: T(n) = 4T(n/2) + 100n [Assume that T(1) = (1).] Guess O(n 3 ). (Prove O and separately.) Assume that T(k) ck 3 for k < n. Prove T(n) cn 3 by induction.

CS 4407 Algorithms Lecture 2: Growth Functions

CS 4407 Algorithms Lecture 2: Growth Functions CS 4407 Algorithms Lecture 2: Growth Functions Prof. Gregory Provan Department of Computer Science University College Cork 1 Lecture Outline Growth Functions Mathematical specification of growth functions

More information

CS 4407 Algorithms Lecture 3: Iterative and Divide and Conquer Algorithms

CS 4407 Algorithms Lecture 3: Iterative and Divide and Conquer Algorithms CS 4407 Algorithms Lecture 3: Iterative and Divide and Conquer Algorithms Prof. Gregory Provan Department of Computer Science University College Cork 1 Lecture Outline CS 4407, Algorithms Growth Functions

More information

Computational Complexity

Computational Complexity Computational Complexity S. V. N. Vishwanathan, Pinar Yanardag January 8, 016 1 Computational Complexity: What, Why, and How? Intuitively an algorithm is a well defined computational procedure that takes

More information

What we have learned What is algorithm Why study algorithm The time and space efficiency of algorithm The analysis framework of time efficiency Asympt

What we have learned What is algorithm Why study algorithm The time and space efficiency of algorithm The analysis framework of time efficiency Asympt Lecture 3 The Analysis of Recursive Algorithm Efficiency What we have learned What is algorithm Why study algorithm The time and space efficiency of algorithm The analysis framework of time efficiency

More information

Analysis of Algorithms I: Asymptotic Notation, Induction, and MergeSort

Analysis of Algorithms I: Asymptotic Notation, Induction, and MergeSort Analysis of Algorithms I: Asymptotic Notation, Induction, and MergeSort Xi Chen Columbia University We continue with two more asymptotic notation: o( ) and ω( ). Let f (n) and g(n) are functions that map

More information

The Time Complexity of an Algorithm

The Time Complexity of an Algorithm Analysis of Algorithms The Time Complexity of an Algorithm Specifies how the running time depends on the size of the input. Purpose To estimate how long a program will run. To estimate the largest input

More information

Growth of Functions (CLRS 2.3,3)

Growth of Functions (CLRS 2.3,3) Growth of Functions (CLRS 2.3,3) 1 Review Last time we discussed running time of algorithms and introduced the RAM model of computation. Best-case running time: the shortest running time for any input

More information

CS473 - Algorithms I

CS473 - Algorithms I CS473 - Algorithms I Lecture 2 Asymptotic Notation 1 O-notation: Asymptotic upper bound f(n) = O(g(n)) if positive constants c, n 0 such that 0 f(n) cg(n), n n 0 f(n) = O(g(n)) cg(n) f(n) Asymptotic running

More information

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu

Analysis of Algorithm Efficiency. Dr. Yingwu Zhu Analysis of Algorithm Efficiency Dr. Yingwu Zhu Measure Algorithm Efficiency Time efficiency How fast the algorithm runs; amount of time required to accomplish the task Our focus! Space efficiency Amount

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Lecture 4 - Jan. 10, 2018 CLRS 1.1, 1.2, 2.2, 3.1, 4.3, 4.5 University of Manitoba Picture is from the cover of the textbook CLRS. 1 /

More information

CS Non-recursive and Recursive Algorithm Analysis

CS Non-recursive and Recursive Algorithm Analysis CS483-04 Non-recursive and Recursive Algorithm Analysis Instructor: Fei Li Room 443 ST II Office hours: Tue. & Thur. 4:30pm - 5:30pm or by appointments lifei@cs.gmu.edu with subject: CS483 http://www.cs.gmu.edu/

More information

COMP Analysis of Algorithms & Data Structures

COMP Analysis of Algorithms & Data Structures COMP 3170 - Analysis of Algorithms & Data Structures Shahin Kamali Lecture 4 - Jan. 14, 2019 CLRS 1.1, 1.2, 2.2, 3.1, 4.3, 4.5 University of Manitoba Picture is from the cover of the textbook CLRS. COMP

More information

The Time Complexity of an Algorithm

The Time Complexity of an Algorithm CSE 3101Z Design and Analysis of Algorithms The Time Complexity of an Algorithm Specifies how the running time depends on the size of the input. Purpose To estimate how long a program will run. To estimate

More information

with the size of the input in the limit, as the size of the misused.

with the size of the input in the limit, as the size of the misused. Chapter 3. Growth of Functions Outline Study the asymptotic efficiency of algorithms Give several standard methods for simplifying the asymptotic analysis of algorithms Present several notational conventions

More information

data structures and algorithms lecture 2

data structures and algorithms lecture 2 data structures and algorithms 2018 09 06 lecture 2 recall: insertion sort Algorithm insertionsort(a, n): for j := 2 to n do key := A[j] i := j 1 while i 1 and A[i] > key do A[i + 1] := A[i] i := i 1 A[i

More information

Algorithms Design & Analysis. Analysis of Algorithm

Algorithms Design & Analysis. Analysis of Algorithm Algorithms Design & Analysis Analysis of Algorithm Review Internship Stable Matching Algorithm 2 Outline Time complexity Computation model Asymptotic notions Recurrence Master theorem 3 The problem of

More information

When we use asymptotic notation within an expression, the asymptotic notation is shorthand for an unspecified function satisfying the relation:

When we use asymptotic notation within an expression, the asymptotic notation is shorthand for an unspecified function satisfying the relation: CS 124 Section #1 Big-Oh, the Master Theorem, and MergeSort 1/29/2018 1 Big-Oh Notation 1.1 Definition Big-Oh notation is a way to describe the rate of growth of functions. In CS, we use it to describe

More information

3.1 Asymptotic notation

3.1 Asymptotic notation 3.1 Asymptotic notation The notations we use to describe the asymptotic running time of an algorithm are defined in terms of functions whose domains are the set of natural numbers N = {0, 1, 2,... Such

More information

MA008/MIIZ01 Design and Analysis of Algorithms Lecture Notes 3

MA008/MIIZ01 Design and Analysis of Algorithms Lecture Notes 3 MA008 p.1/37 MA008/MIIZ01 Design and Analysis of Algorithms Lecture Notes 3 Dr. Markus Hagenbuchner markus@uow.edu.au. MA008 p.2/37 Exercise 1 (from LN 2) Asymptotic Notation When constants appear in exponents

More information

EECS 477: Introduction to algorithms. Lecture 5

EECS 477: Introduction to algorithms. Lecture 5 EECS 477: Introduction to algorithms. Lecture 5 Prof. Igor Guskov guskov@eecs.umich.edu September 19, 2002 1 Lecture outline Asymptotic notation: applies to worst, best, average case performance, amortized

More information

Lecture 1: Asymptotics, Recurrences, Elementary Sorting

Lecture 1: Asymptotics, Recurrences, Elementary Sorting Lecture 1: Asymptotics, Recurrences, Elementary Sorting Instructor: Outline 1 Introduction to Asymptotic Analysis Rate of growth of functions Comparing and bounding functions: O, Θ, Ω Specifying running

More information

Big O 2/14/13. Administrative. Does it terminate? David Kauchak cs302 Spring 2013

Big O 2/14/13. Administrative. Does it terminate? David Kauchak cs302 Spring 2013 /4/3 Administrative Big O David Kauchak cs3 Spring 3 l Assignment : how d it go? l Assignment : out soon l CLRS code? l Videos Insertion-sort Insertion-sort Does it terminate? /4/3 Insertion-sort Loop

More information

Analysis of Algorithms

Analysis of Algorithms October 1, 2015 Analysis of Algorithms CS 141, Fall 2015 1 Analysis of Algorithms: Issues Correctness/Optimality Running time ( time complexity ) Memory requirements ( space complexity ) Power I/O utilization

More information

Cpt S 223. School of EECS, WSU

Cpt S 223. School of EECS, WSU Algorithm Analysis 1 Purpose Why bother analyzing code; isn t getting it to work enough? Estimate time and memory in the average case and worst case Identify bottlenecks, i.e., where to reduce time Compare

More information

Lecture 2. Fundamentals of the Analysis of Algorithm Efficiency

Lecture 2. Fundamentals of the Analysis of Algorithm Efficiency Lecture 2 Fundamentals of the Analysis of Algorithm Efficiency 1 Lecture Contents 1. Analysis Framework 2. Asymptotic Notations and Basic Efficiency Classes 3. Mathematical Analysis of Nonrecursive Algorithms

More information

Data Structures and Algorithms CMPSC 465

Data Structures and Algorithms CMPSC 465 Data Structures and Algorithms CMPSC 465 LECTURE 9 Solving recurrences Substitution method Adam Smith S. Raskhodnikova and A. Smith; based on slides by E. Demaine and C. Leiserson Review question Draw

More information

Algorithms, Design and Analysis. Order of growth. Table 2.1. Big-oh. Asymptotic growth rate. Types of formulas for basic operation count

Algorithms, Design and Analysis. Order of growth. Table 2.1. Big-oh. Asymptotic growth rate. Types of formulas for basic operation count Types of formulas for basic operation count Exact formula e.g., C(n) = n(n-1)/2 Algorithms, Design and Analysis Big-Oh analysis, Brute Force, Divide and conquer intro Formula indicating order of growth

More information

Data Structures and Algorithms Running time and growth functions January 18, 2018

Data Structures and Algorithms Running time and growth functions January 18, 2018 Data Structures and Algorithms Running time and growth functions January 18, 2018 Measuring Running Time of Algorithms One way to measure the running time of an algorithm is to implement it and then study

More information

Analysis of Algorithms

Analysis of Algorithms September 29, 2017 Analysis of Algorithms CS 141, Fall 2017 1 Analysis of Algorithms: Issues Correctness/Optimality Running time ( time complexity ) Memory requirements ( space complexity ) Power I/O utilization

More information

When we use asymptotic notation within an expression, the asymptotic notation is shorthand for an unspecified function satisfying the relation:

When we use asymptotic notation within an expression, the asymptotic notation is shorthand for an unspecified function satisfying the relation: CS 124 Section #1 Big-Oh, the Master Theorem, and MergeSort 1/29/2018 1 Big-Oh Notation 1.1 Definition Big-Oh notation is a way to describe the rate of growth of functions. In CS, we use it to describe

More information

CSED233: Data Structures (2017F) Lecture4: Analysis of Algorithms

CSED233: Data Structures (2017F) Lecture4: Analysis of Algorithms (2017F) Lecture4: Analysis of Algorithms Daijin Kim CSE, POSTECH dkim@postech.ac.kr Running Time Most algorithms transform input objects into output objects. The running time of an algorithm typically

More information

Analysis of Algorithms

Analysis of Algorithms Presentation for use with the textbook Data Structures and Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia, and M. H. Goldwasser, Wiley, 2014 Analysis of Algorithms Input Algorithm Analysis

More information

MA008/MIIZ01 Design and Analysis of Algorithms Lecture Notes 2

MA008/MIIZ01 Design and Analysis of Algorithms Lecture Notes 2 MA008 p.1/36 MA008/MIIZ01 Design and Analysis of Algorithms Lecture Notes 2 Dr. Markus Hagenbuchner markus@uow.edu.au. MA008 p.2/36 Content of lecture 2 Examples Review data structures Data types vs. data

More information

COMP 9024, Class notes, 11s2, Class 1

COMP 9024, Class notes, 11s2, Class 1 COMP 90, Class notes, 11s, Class 1 John Plaice Sun Jul 31 1::5 EST 011 In this course, you will need to know a bit of mathematics. We cover in today s lecture the basics. Some of this material is covered

More information

Grade 11/12 Math Circles Fall Nov. 5 Recurrences, Part 2

Grade 11/12 Math Circles Fall Nov. 5 Recurrences, Part 2 1 Faculty of Mathematics Waterloo, Ontario Centre for Education in Mathematics and Computing Grade 11/12 Math Circles Fall 2014 - Nov. 5 Recurrences, Part 2 Running time of algorithms In computer science,

More information

CSC Design and Analysis of Algorithms. Lecture 1

CSC Design and Analysis of Algorithms. Lecture 1 CSC 8301- Design and Analysis of Algorithms Lecture 1 Introduction Analysis framework and asymptotic notations What is an algorithm? An algorithm is a finite sequence of unambiguous instructions for solving

More information

Ch01. Analysis of Algorithms

Ch01. Analysis of Algorithms Ch01. Analysis of Algorithms Input Algorithm Output Acknowledgement: Parts of slides in this presentation come from the materials accompanying the textbook Algorithm Design and Applications, by M. T. Goodrich

More information

Data Structures and Algorithms. Asymptotic notation

Data Structures and Algorithms. Asymptotic notation Data Structures and Algorithms Asymptotic notation Estimating Running Time Algorithm arraymax executes 7n 1 primitive operations in the worst case. Define: a = Time taken by the fastest primitive operation

More information

Data Structures and Algorithms CSE 465

Data Structures and Algorithms CSE 465 Data Structures and Algorithms CSE 465 LECTURE 3 Asymptotic Notation O-, Ω-, Θ-, o-, ω-notation Divide and Conquer Merge Sort Binary Search Sofya Raskhodnikova and Adam Smith /5/0 Review Questions If input

More information

Lecture 2: Asymptotic Notation CSCI Algorithms I

Lecture 2: Asymptotic Notation CSCI Algorithms I Lecture 2: Asymptotic Notation CSCI 700 - Algorithms I Andrew Rosenberg September 2, 2010 Last Time Review Insertion Sort Analysis of Runtime Proof of Correctness Today Asymptotic Notation Its use in analyzing

More information

Asymptotic Notation. such that t(n) cf(n) for all n n 0. for some positive real constant c and integer threshold n 0

Asymptotic Notation. such that t(n) cf(n) for all n n 0. for some positive real constant c and integer threshold n 0 Asymptotic Notation Asymptotic notation deals with the behaviour of a function in the limit, that is, for sufficiently large values of its parameter. Often, when analysing the run time of an algorithm,

More information

Module 1: Analyzing the Efficiency of Algorithms

Module 1: Analyzing the Efficiency of Algorithms Module 1: Analyzing the Efficiency of Algorithms Dr. Natarajan Meghanathan Associate Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu Based

More information

Module 1: Analyzing the Efficiency of Algorithms

Module 1: Analyzing the Efficiency of Algorithms Module 1: Analyzing the Efficiency of Algorithms Dr. Natarajan Meghanathan Professor of Computer Science Jackson State University Jackson, MS 39217 E-mail: natarajan.meghanathan@jsums.edu What is an Algorithm?

More information

COMP 382: Reasoning about algorithms

COMP 382: Reasoning about algorithms Fall 2014 Unit 4: Basics of complexity analysis Correctness and efficiency So far, we have talked about correctness and termination of algorithms What about efficiency? Running time of an algorithm For

More information

Asymptotic Analysis 1

Asymptotic Analysis 1 Asymptotic Analysis 1 Last week, we discussed how to present algorithms using pseudocode. For example, we looked at an algorithm for singing the annoying song 99 Bottles of Beer on the Wall for arbitrary

More information

Asymptotic Analysis. Slides by Carl Kingsford. Jan. 27, AD Chapter 2

Asymptotic Analysis. Slides by Carl Kingsford. Jan. 27, AD Chapter 2 Asymptotic Analysis Slides by Carl Kingsford Jan. 27, 2014 AD Chapter 2 Independent Set Definition (Independent Set). Given a graph G = (V, E) an independent set is a set S V if no two nodes in S are joined

More information

Algorithm efficiency can be measured in terms of: Time Space Other resources such as processors, network packets, etc.

Algorithm efficiency can be measured in terms of: Time Space Other resources such as processors, network packets, etc. Algorithms Analysis Algorithm efficiency can be measured in terms of: Time Space Other resources such as processors, network packets, etc. Algorithms analysis tends to focus on time: Techniques for measuring

More information

Analysis of Algorithms - Using Asymptotic Bounds -

Analysis of Algorithms - Using Asymptotic Bounds - Analysis of Algorithms - Using Asymptotic Bounds - Andreas Ermedahl MRTC (Mälardalens Real-Time Research Center) andreas.ermedahl@mdh.se Autumn 004 Rehersal: Asymptotic bounds Gives running time bounds

More information

Ch 01. Analysis of Algorithms

Ch 01. Analysis of Algorithms Ch 01. Analysis of Algorithms Input Algorithm Output Acknowledgement: Parts of slides in this presentation come from the materials accompanying the textbook Algorithm Design and Applications, by M. T.

More information

Analysis of Algorithms [Reading: CLRS 2.2, 3] Laura Toma, csci2200, Bowdoin College

Analysis of Algorithms [Reading: CLRS 2.2, 3] Laura Toma, csci2200, Bowdoin College Analysis of Algorithms [Reading: CLRS 2.2, 3] Laura Toma, csci2200, Bowdoin College Why analysis? We want to predict how the algorithm will behave (e.g. running time) on arbitrary inputs, and how it will

More information

CIS 121 Data Structures and Algorithms with Java Spring Big-Oh Notation Monday, January 22/Tuesday, January 23

CIS 121 Data Structures and Algorithms with Java Spring Big-Oh Notation Monday, January 22/Tuesday, January 23 CIS 11 Data Structures and Algorithms with Java Spring 018 Big-Oh Notation Monday, January /Tuesday, January 3 Learning Goals Review Big-Oh and learn big/small omega/theta notations Discuss running time

More information

CMPS 2200 Fall Divide-and-Conquer. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

CMPS 2200 Fall Divide-and-Conquer. Carola Wenk. Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk CMPS 2200 Fall 2017 Divide-and-Conquer Carola Wenk Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk 1 The divide-and-conquer design paradigm 1. Divide the problem (instance)

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 9 Divide and Conquer Merge sort Counting Inversions Binary Search Exponentiation Solving Recurrences Recursion Tree Method Master Theorem Sofya Raskhodnikova S. Raskhodnikova;

More information

Asymptotic Algorithm Analysis & Sorting

Asymptotic Algorithm Analysis & Sorting Asymptotic Algorithm Analysis & Sorting (Version of 5th March 2010) (Based on original slides by John Hamer and Yves Deville) We can analyse an algorithm without needing to run it, and in so doing we can

More information

Chapter 2. Recurrence Relations. Divide and Conquer. Divide and Conquer Strategy. Another Example: Merge Sort. Merge Sort Example. Merge Sort Example

Chapter 2. Recurrence Relations. Divide and Conquer. Divide and Conquer Strategy. Another Example: Merge Sort. Merge Sort Example. Merge Sort Example Recurrence Relations Chapter 2 Divide and Conquer Equation or an inequality that describes a function by its values on smaller inputs. Recurrence relations arise when we analyze the running time of iterative

More information

CS 350 Midterm Algorithms and Complexity

CS 350 Midterm Algorithms and Complexity It is recommended that you read through the exam before you begin. Answer all questions in the space provided. Name: Answer whether the following statements are true or false and briefly explain your answer

More information

Analysis of Algorithms

Analysis of Algorithms Analysis of Algorithms Section 4.3 Prof. Nathan Wodarz Math 209 - Fall 2008 Contents 1 Analysis of Algorithms 2 1.1 Analysis of Algorithms....................... 2 2 Complexity Analysis 4 2.1 Notation

More information

Asymptotic Analysis. Thomas A. Anastasio. January 7, 2004

Asymptotic Analysis. Thomas A. Anastasio. January 7, 2004 Asymptotic Analysis Thomas A. Anastasio January 7, 004 1 Introduction As a programmer, you often have a choice of data structures and algorithms. Choosing the best one for a particular job involves, among

More information

Big O (Asymptotic Upper Bound)

Big O (Asymptotic Upper Bound) Big O (Asymptotic Upper Bound) Linear search takes O(n) time. Binary search takes O(lg(n)) time. (lg means log 2 ) Bubble sort takes O(n 2 ) time. n 2 + 2n + 1 O(n 2 ), n 2 + 2n + 1 O(n) Definition: f

More information

CS 310 Advanced Data Structures and Algorithms

CS 310 Advanced Data Structures and Algorithms CS 310 Advanced Data Structures and Algorithms Runtime Analysis May 31, 2017 Tong Wang UMass Boston CS 310 May 31, 2017 1 / 37 Topics Weiss chapter 5 What is algorithm analysis Big O, big, big notations

More information

Lecture 2. More Algorithm Analysis, Math and MCSS By: Sarah Buchanan

Lecture 2. More Algorithm Analysis, Math and MCSS By: Sarah Buchanan Lecture 2 More Algorithm Analysis, Math and MCSS By: Sarah Buchanan Announcements Assignment #1 is posted online It is directly related to MCSS which we will be talking about today or Monday. There are

More information

Algorithms. Adnan YAZICI Dept. of Computer Engineering Middle East Technical Univ. Ankara - TURKEY. Algorihms, A.Yazici, Fall 2007 CEng 315

Algorithms. Adnan YAZICI Dept. of Computer Engineering Middle East Technical Univ. Ankara - TURKEY. Algorihms, A.Yazici, Fall 2007 CEng 315 Algorithms Adnan YAZICI Dept. of Computer Engineering Middle East Technical Univ. Ankara - TURKEY Algorihms, A.Yazici, Fall 2007 CEng 315 1 Design and Analysis of Algorithms Aspects of studying algorithms:

More information

Design and Analysis of Algorithms Recurrence. Prof. Chuhua Xian School of Computer Science and Engineering

Design and Analysis of Algorithms Recurrence. Prof. Chuhua Xian   School of Computer Science and Engineering Design and Analysis of Algorithms Recurrence Prof. Chuhua Xian Email: chhxian@scut.edu.cn School of Computer Science and Engineering Course Information Instructor: Chuhua Xian ( 冼楚华 ) Email: chhxian@scut.edu.cn

More information

CS 577 Introduction to Algorithms: Strassen s Algorithm and the Master Theorem

CS 577 Introduction to Algorithms: Strassen s Algorithm and the Master Theorem CS 577 Introduction to Algorithms: Jin-Yi Cai University of Wisconsin Madison In the last class, we described InsertionSort and showed that its worst-case running time is Θ(n 2 ). Check Figure 2.2 for

More information

Data Structures and Algorithms Chapter 2

Data Structures and Algorithms Chapter 2 1 Data Structures and Algorithms Chapter 2 Werner Nutt 2 Acknowledgments The course follows the book Introduction to Algorithms, by Cormen, Leiserson, Rivest and Stein, MIT Press [CLRST]. Many examples

More information

The maximum-subarray problem. Given an array of integers, find a contiguous subarray with the maximum sum. Very naïve algorithm:

The maximum-subarray problem. Given an array of integers, find a contiguous subarray with the maximum sum. Very naïve algorithm: The maximum-subarray problem Given an array of integers, find a contiguous subarray with the maximum sum. Very naïve algorithm: Brute force algorithm: At best, θ(n 2 ) time complexity 129 Can we do divide

More information

Big-O Notation and Complexity Analysis

Big-O Notation and Complexity Analysis Big-O Notation and Complexity Analysis Jonathan Backer backer@cs.ubc.ca Department of Computer Science University of British Columbia May 28, 2007 Problems Reading: CLRS: Growth of Functions 3 GT: Algorithm

More information

Topic 17. Analysis of Algorithms

Topic 17. Analysis of Algorithms Topic 17 Analysis of Algorithms Analysis of Algorithms- Review Efficiency of an algorithm can be measured in terms of : Time complexity: a measure of the amount of time required to execute an algorithm

More information

Algorithms and Their Complexity

Algorithms and Their Complexity CSCE 222 Discrete Structures for Computing David Kebo Houngninou Algorithms and Their Complexity Chapter 3 Algorithm An algorithm is a finite sequence of steps that solves a problem. Computational complexity

More information

CS Data Structures and Algorithm Analysis

CS Data Structures and Algorithm Analysis CS 483 - Data Structures and Algorithm Analysis Lecture II: Chapter 2 R. Paul Wiegand George Mason University, Department of Computer Science February 1, 2006 Outline 1 Analysis Framework 2 Asymptotic

More information

Asymptotic Analysis and Recurrences

Asymptotic Analysis and Recurrences Appendix A Asymptotic Analysis and Recurrences A.1 Overview We discuss the notion of asymptotic analysis and introduce O, Ω, Θ, and o notation. We then turn to the topic of recurrences, discussing several

More information

Notes for Recitation 14

Notes for Recitation 14 6.04/18.06J Mathematics for Computer Science October 4, 006 Tom Leighton and Marten van Dijk Notes for Recitation 14 1 The Akra-Bazzi Theorem Theorem 1 (Akra-Bazzi, strong form). Suppose that: is defined

More information

i=1 i B[i] B[i] + A[i, j]; c n for j n downto i + 1 do c n i=1 (n i) C[i] C[i] + A[i, j]; c n

i=1 i B[i] B[i] + A[i, j]; c n for j n downto i + 1 do c n i=1 (n i) C[i] C[i] + A[i, j]; c n Fundamental Algorithms Homework #1 Set on June 25, 2009 Due on July 2, 2009 Problem 1. [15 pts] Analyze the worst-case time complexity of the following algorithms,and give tight bounds using the Theta

More information

More Asymptotic Analysis Spring 2018 Discussion 8: March 6, 2018

More Asymptotic Analysis Spring 2018 Discussion 8: March 6, 2018 CS 61B More Asymptotic Analysis Spring 2018 Discussion 8: March 6, 2018 Here is a review of some formulas that you will find useful when doing asymptotic analysis. ˆ N i=1 i = 1 + 2 + 3 + 4 + + N = N(N+1)

More information

Taking Stock. IE170: Algorithms in Systems Engineering: Lecture 3. Θ Notation. Comparing Algorithms

Taking Stock. IE170: Algorithms in Systems Engineering: Lecture 3. Θ Notation. Comparing Algorithms Taking Stock IE170: Algorithms in Systems Engineering: Lecture 3 Jeff Linderoth Department of Industrial and Systems Engineering Lehigh University January 19, 2007 Last Time Lots of funky math Playing

More information

Introduction to Algorithms

Introduction to Algorithms Introduction to Algorithms (2 nd edition) by Cormen, Leiserson, Rivest & Stein Chapter 3: Growth of Functions (slides enhanced by N. Adlai A. DePano) Overview Order of growth of functions provides a simple

More information

Asymptotic Analysis of Algorithms. Chapter 4

Asymptotic Analysis of Algorithms. Chapter 4 Asymptotic Analysis of Algorithms Chapter 4 Overview Motivation Definition of Running Time Classifying Running Time Asymptotic Notation & Proving Bounds Algorithm Complexity vs Problem Complexity Overview

More information

Mergesort and Recurrences (CLRS 2.3, 4.4)

Mergesort and Recurrences (CLRS 2.3, 4.4) Mergesort and Recurrences (CLRS 2.3, 4.4) We saw a couple of O(n 2 ) algorithms for sorting. Today we ll see a different approach that runs in O(n lg n) and uses one of the most powerful techniques for

More information

Written Homework #1: Analysis of Algorithms

Written Homework #1: Analysis of Algorithms Written Homework #1: Analysis of Algorithms CIS 121 Fall 2016 cis121-16fa-staff@googlegroups.com Due: Thursday, September 15th, 2015 before 10:30am (You must submit your homework online via Canvas. A paper

More information

Problem Set 1 Solutions

Problem Set 1 Solutions Introduction to Algorithms September 24, 2004 Massachusetts Institute of Technology 6.046J/18.410J Professors Piotr Indyk and Charles E. Leiserson Handout 7 Problem Set 1 Solutions Exercise 1-1. Do Exercise

More information

Data structures Exercise 1 solution. Question 1. Let s start by writing all the functions in big O notation:

Data structures Exercise 1 solution. Question 1. Let s start by writing all the functions in big O notation: Data structures Exercise 1 solution Question 1 Let s start by writing all the functions in big O notation: f 1 (n) = 2017 = O(1), f 2 (n) = 2 log 2 n = O(n 2 ), f 3 (n) = 2 n = O(2 n ), f 4 (n) = 1 = O

More information

CISC 235: Topic 1. Complexity of Iterative Algorithms

CISC 235: Topic 1. Complexity of Iterative Algorithms CISC 235: Topic 1 Complexity of Iterative Algorithms Outline Complexity Basics Big-Oh Notation Big-Ω and Big-θ Notation Summations Limitations of Big-Oh Analysis 2 Complexity Complexity is the study of

More information

Analysis of Algorithms Review

Analysis of Algorithms Review COMP171 Fall 2005 Analysis of Algorithms Review Adapted from Notes of S. Sarkar of UPenn, Skiena of Stony Brook, etc. Introduction to Analysis of Algorithms / Slide 2 Outline Why Does Growth Rate Matter?

More information

Introduction to Algorithms and Asymptotic analysis

Introduction to Algorithms and Asymptotic analysis Indian Institute of Information Technology Design and Manufacturing, Kancheepuram Chennai 600 127, India An Autonomous Institute under MHRD, Govt of India An Institute of National Importance COM 501 Advanced

More information

Review Of Topics. Review: Induction

Review Of Topics. Review: Induction Review Of Topics Asymptotic notation Solving recurrences Sorting algorithms Insertion sort Merge sort Heap sort Quick sort Counting sort Radix sort Medians/order statistics Randomized algorithm Worst-case

More information

csci 210: Data Structures Program Analysis

csci 210: Data Structures Program Analysis csci 210: Data Structures Program Analysis Summary Topics commonly used functions analysis of algorithms experimental asymptotic notation asymptotic analysis big-o big-omega big-theta READING: GT textbook

More information

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2018

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2018 CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis Ruth Anderson Winter 2018 Today Algorithm Analysis What do we care about? How to compare two algorithms Analyzing Code Asymptotic Analysis

More information

Midterm Exam. CS 3110: Design and Analysis of Algorithms. June 20, Group 1 Group 2 Group 3

Midterm Exam. CS 3110: Design and Analysis of Algorithms. June 20, Group 1 Group 2 Group 3 Banner ID: Name: Midterm Exam CS 3110: Design and Analysis of Algorithms June 20, 2006 Group 1 Group 2 Group 3 Question 1.1 Question 2.1 Question 3.1 Question 1.2 Question 2.2 Question 3.2 Question 3.3

More information

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2018

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2018 CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis Ruth Anderson Winter 2018 Today Algorithm Analysis What do we care about? How to compare two algorithms Analyzing Code Asymptotic Analysis

More information

In-Class Soln 1. CS 361, Lecture 4. Today s Outline. In-Class Soln 2

In-Class Soln 1. CS 361, Lecture 4. Today s Outline. In-Class Soln 2 In-Class Soln 1 Let f(n) be an always positive function and let g(n) = f(n) log n. Show that f(n) = o(g(n)) CS 361, Lecture 4 Jared Saia University of New Mexico For any positive constant c, we want to

More information

Principles of Algorithm Analysis

Principles of Algorithm Analysis C H A P T E R 3 Principles of Algorithm Analysis 3.1 Computer Programs The design of computer programs requires:- 1. An algorithm that is easy to understand, code and debug. This is the concern of software

More information

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2019

CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis. Ruth Anderson Winter 2019 CSE332: Data Structures & Parallelism Lecture 2: Algorithm Analysis Ruth Anderson Winter 2019 Today Algorithm Analysis What do we care about? How to compare two algorithms Analyzing Code Asymptotic Analysis

More information

P, NP, NP-Complete, and NPhard

P, NP, NP-Complete, and NPhard P, NP, NP-Complete, and NPhard Problems Zhenjiang Li 21/09/2011 Outline Algorithm time complicity P and NP problems NP-Complete and NP-Hard problems Algorithm time complicity Outline What is this course

More information

CSE 417: Algorithms and Computational Complexity

CSE 417: Algorithms and Computational Complexity CSE 417: Algorithms and Computational Complexity Lecture 2: Analysis Larry Ruzzo 1 Why big-o: measuring algorithm efficiency outline What s big-o: definition and related concepts Reasoning with big-o:

More information

An analogy from Calculus: limits

An analogy from Calculus: limits COMP 250 Fall 2018 35 - big O Nov. 30, 2018 We have seen several algorithms in the course, and we have loosely characterized their runtimes in terms of the size n of the input. We say that the algorithm

More information

Foundations II: Data Structures and Algorithms

Foundations II: Data Structures and Algorithms Foundations II: Data Structures and Algorithms Instructor : Yusu Wang Topic 1 : Introduction and Asymptotic notation Course Information Course webpage http://www.cse.ohio-state.edu/~yusu/courses/2331 Office

More information

csci 210: Data Structures Program Analysis

csci 210: Data Structures Program Analysis csci 210: Data Structures Program Analysis 1 Summary Summary analysis of algorithms asymptotic analysis big-o big-omega big-theta asymptotic notation commonly used functions discrete math refresher READING:

More information

COMPUTER ALGORITHMS. Athasit Surarerks.

COMPUTER ALGORITHMS. Athasit Surarerks. COMPUTER ALGORITHMS Athasit Surarerks. Introduction EUCLID s GAME Two players move in turn. On each move, a player has to write on the board a positive integer equal to the different from two numbers already

More information

A design paradigm. Divide and conquer: (When) does decomposing a problem into smaller parts help? 09/09/ EECS 3101

A design paradigm. Divide and conquer: (When) does decomposing a problem into smaller parts help? 09/09/ EECS 3101 A design paradigm Divide and conquer: (When) does decomposing a problem into smaller parts help? 09/09/17 112 Multiplying complex numbers (from Jeff Edmonds slides) INPUT: Two pairs of integers, (a,b),

More information

Lecture 3. Big-O notation, more recurrences!!

Lecture 3. Big-O notation, more recurrences!! Lecture 3 Big-O notation, more recurrences!! Announcements! HW1 is posted! (Due Friday) See Piazza for a list of HW clarifications First recitation section was this morning, there s another tomorrow (same

More information