Roots of Equations. ITCS 4133/5133: Introduction to Numerical Methods 1 Roots of Equations

Size: px
Start display at page:

Download "Roots of Equations. ITCS 4133/5133: Introduction to Numerical Methods 1 Roots of Equations"

Transcription

1 Roots of Equations Direct Search, Bisection Methods Regula Falsi, Secant Methods Newton-Raphson Method Zeros of Polynomials (Horner s, Muller s methods) EigenValue Analysis ITCS 4133/5133: Introduction to Numerical Methods 1 Roots of Equations

2 Motivation Solution to many scientific and engineering problems Equations may be non-linear Equations expressible in the form F (x) = 0 Values of x that satisfy the above equation are termed roots Example:Quadratic Equation ax 2 + bx + c = 0 with roots x 1 x 2 = b + b 2 4ac 2a = b b 2 4ac 2a ITCS 4133/5133: Introduction to Numerical Methods 2 Roots of Equations

3 Example Functions ITCS 4133/5133: Introduction to Numerical Methods 3 Roots of Equations

4 Direct Search Method Trial and Error Approach: Evaluate f(x) over some range of x at multiple points Specify a range within which the root is assumed to occur Subdivide range into smaller, uniformly spaced intervals Search through all subintervals to locate the root. ITCS 4133/5133: Introduction to Numerical Methods 4 Roots of Equations

5 Direct Search:Searhing an interval Evaluate at end points of interval, and check if f(x) has opposite polarity. ITCS 4133/5133: Introduction to Numerical Methods 5 Roots of Equations

6 Direct Search:Disadvantages Computationally expensive (linear search) Intervals have to be very small, for high precision If intervals are too large, roots can be missed. Multiple roots cannot be handled: f(x) = x 2 2x + 1 ITCS 4133/5133: Introduction to Numerical Methods 6 Roots of Equations

7 Bisection Method Assumes a single root within the interval of interest. Similar to binary search: evaluates function at middle of interval and moves to interval containing the root. Requires fewer calculations than direct search method. ITCS 4133/5133: Introduction to Numerical Methods 7 Roots of Equations

8 Bisection Method:Algorithm ITCS 4133/5133: Introduction to Numerical Methods 8 Roots of Equations

9 Bisection Method:Example ITCS 4133/5133: Introduction to Numerical Methods 9 Roots of Equations

10 Error Analysis Error measures can be an absolute value, ɛ d = x m,i+1 x m,i or, a percent error ɛ r = x m,i+1 x m,i x m,i True Accuracy is known only if true solution (root x t ) is known ɛ r = x t x m,i x t 100 ITCS 4133/5133: Introduction to Numerical Methods 10 Roots of Equations

11 Regula Falsi,Secant Methods Bisection makes no use of shape of function to determine root. Use a straightline approximation to f(x)(in contrast to the midpoint) to find the approximate root location. Start with 2 points, (a, f(a)), (b, f(b)) that satisfies (f(a).f(b) < 0. ITCS 4133/5133: Introduction to Numerical Methods 11 Roots of Equations

12 Regula Falsi Method Next approximation: where the straightline approximation crosses the x-axis: f(b) f(b) f(a) = (b s) (b a) b a s = b f(b) f(a) f(b) ITCS 4133/5133: Introduction to Numerical Methods 12 Roots of Equations

13 Regular Falsi: Algorithm ITCS 4133/5133: Introduction to Numerical Methods 13 Roots of Equations

14 Regular Falsi: Example(Cube Root of 2) ITCS 4133/5133: Introduction to Numerical Methods 14 Roots of Equations

15 Secant Method Similar to Regula Falsi method, with a slight modification. New estimate of x i+1 of the root, based on f(x i ) and f(x i 1 ) Especially useful when its difficult to obtain derivatives analytically. and x 2 = x 1 x 1 x 0 y 1 y 0 y 1 x i+1 = x i x i x i 1 y i y i 1 y i ITCS 4133/5133: Introduction to Numerical Methods 15 Roots of Equations

16 Secant Method (contd) Solving for x i+1 gives f(x i 1 ) = f(x i) x i+1 x i 1 x i+1 x i x i+1 = x i f(x i)[x i 1 x i ] f(x i 1 f(x i ) = x i f(x i) f(x i 1 f(x i ) x i 1 x i = x i f(x i) f (x i ) which is similar in form to the Newton s method. Secant method doesnt require testing for interval selection Generally converges faster, but not guaranteed. ITCS 4133/5133: Introduction to Numerical Methods 16 Roots of Equations

17 Secant Method:Algorithm ITCS 4133/5133: Introduction to Numerical Methods 17 Roots of Equations

18 Secant Method:Example(Square Root of 2) ITCS 4133/5133: Introduction to Numerical Methods 18 Roots of Equations

19 Newton-Raphson Method Motivation: Rate of convergence of bisection method is slow. Newton s iteration method uses the linear portion of the Taylor series where x = x 1 x 0, df dx when x 1 is the root of the function. f(x 1 ) = f(x 0 ) + df dx x is the derivative w.r.t x. f(x 1 ) = 0 = f(x 0 ) + df dx (x 1 x 0 ) x 1 = x 0 f(x 0) df/dx = x 0 f(x 0) f (x 0 ) (derivative f evaluated at x 0 ) ITCS 4133/5133: Introduction to Numerical Methods 19 Roots of Equations

20 Newton-Raphson Method (contd) Iteratively, Accuracy x i+1 = x i f(x i) f (x i ) If f(x) is linear, first iteration produces exact solution If f(x) is non-linear, accuracy depends on importance of the truncated non-linear terms of the Taylor series Graphical Interpretation Approximate f (x i ) over [x i, x i+1 ] as f (x i ) = f(x i 0) x i+1 x i from which the iteration is derived. ITCS 4133/5133: Introduction to Numerical Methods 20 Roots of Equations

21 Newton-Raphson Method: Algorithm ITCS 4133/5133: Introduction to Numerical Methods 21 Roots of Equations

22 Newton-Raphson Method: Example ITCS 4133/5133: Introduction to Numerical Methods 22 Roots of Equations

23 Newton-Raphson Method:Non-Convergence f (x) approaches zero, exception (division by zero). Solution oscillates between two different solutions f(x i )/f (x i ) = f(x i+1 /f (x i+1 ) ITCS 4133/5133: Introduction to Numerical Methods 23 Roots of Equations

24 Solving Non-Linear Equations Addresses root finding to two or more variables Approach: Solve for the variables and a Jacobi style iteration technique Example Solve for x and y, x 3 3x 2 + xy = 0 4x 2 4xy 2 + 3y 2 = 0 x = (3x 2 xy) 1/3 y = 4x2 + 3y 2 4x Use initial estimates for x and y to begin the iteration using most recent values of x and y. ITCS 4133/5133: Introduction to Numerical Methods 24 Roots of Equations 1/2

25 Muller s Method Extension of the Secant Method; uses a quadratic approximation. Starts with 3 initial approximations x 0, x 1, x 2 and consider the next approximation x 4 as the intersection of the parabola connecting (x 0, f(x 0 )), (x 1, f(x 1 )), (x 2, f(x 2 )) with the x-axis In general, less sensitive to starting values than Newton s method. ITCS 4133/5133: Introduction to Numerical Methods 25 Roots of Equations

26 Muller s Method(contd) Start with P (x) = a(x x 2 ) 2 + b(x x 2 ) + c As the quadratic passes through (x 0, f(x 0 )), (x 1, f(x 1 ) and (x 2, f(x 2 ) f(x 0 ) = a(x 0 x 2 ) 2 + b(x 0 x 2 ) + c f(x 1 ) = a(x 1 x 2 ) 2 + b(x 1 x 2 ) + c f(x 2 ) = a b.0 + c = c We can solve for a, b, c a = (x 1 x 2 )[f(x 0 ) f(x 2 )] (x 0 x 2 )[f(x 1 ) f(x 2 )] (x 0 x 2 )(x 1 x 2 )(x 0 x 1 ) b = (x 0 x 2 ) 2 [f(x 1 ) f(x 2 )] (x 1 x 2 ) 2 [f(x 0 ) f(x 2 )] (x 0 x 2 )(x 1 x 2 )(x 0 x 1 ) c = f(x 2 ) ITCS 4133/5133: Introduction to Numerical Methods 26 Roots of Equations

27 Muller s Method (contd.) We can solve the quadratic P (x) for the next estimate, x 3. resulting in P (x) = P (x 3 x 2 ) = a(x 3 x 2 ) 2 + b(x 3 x 2 ) + c = 0 x 3 x 2 = b ± b 2 4ac 2a The above form can cause roundoff errors, when b 2 use x 3 x 2 = 2c b ± b 2 4ac 4ac. Instead Muller s method chooses the root, that agrees with the sign of b to make the denominator large, and hence closest root to x 2. ITCS 4133/5133: Introduction to Numerical Methods 27 Roots of Equations

28 Eigenvalue Analysis Eigen values, denoted by λ, are values for the matrix system having a non-zero solution vector X. A and I are n n I is the identity matrix. [A λi]x = 0 Applications: Analysis of sediment deposits in river beds, analyzing flutter in airplane wings. Solve A λi = 0 resulting in an nth order polynomial, to be solved for the λs. ITCS 4133/5133: Introduction to Numerical Methods 28 Roots of Equations

29 Eigenvalue Analysis(contd.) For a 3 3 system, A λi = a 11 λ a 12 a 13 a 21 a 22 λ a 23 a 31 a 32 a 33 λ = 0 resulting in λ 3 + b 2 λ 2 + b 1 λ + b 0 = 0 ITCS 4133/5133: Introduction to Numerical Methods 29 Roots of Equations

30 Analyis: Root Finding Methods Need to understand errors Need to understancd convergence rates Convergence Rate If e n+1 approaches K e n p as =, then the method is of order p Typically convergence rates are valid only close to the root. Can study convergence rates experimentally or theoretically. ITCS 4133/5133: Introduction to Numerical Methods 30 Roots of Equations

31 Convergence Rate: Fixed Point Iteration x n+1 = g(x n ) If x = r is a solution of f(x) = 0, then f(r) = 0, r = g(r). Thus, x n+1 r = g(x n ) g(r) = g(x n) g(r) (x n r) (x n r) We can use the mean value theorm (assuming g(x), g (x) are continuous) x n+1 r = g (ξ n ) (x n r) where ξ n (x n, r). Similarly, the error can be defined as e i+1 = g (ξ n ) e i ITCS 4133/5133: Introduction to Numerical Methods 31 Roots of Equations

32 Convergence Rate: Fixed Point Iteration e i+1 = g (ξ n ) e i Suppose g (x) < K < 1 for all x (r h, r + h), then if x 0 is in this interval, then the iterates converge, as e n+1 < K e n < K 2 e n 1 < K 3 e n 2 <... < K n+1 e 0 which implies fixed point iteration is of order 1. ITCS 4133/5133: Introduction to Numerical Methods 32 Roots of Equations

33 Convergence Rate: Newton s Method x n+1 = x n f(x n) f (x n ) = g(x n) Has the same form as the fixed point iteration. Thus, successive iterates converge if g (x) < 1 Assume a simple root at x = r, g (x) = 1 f (x) f (x) f(x) f (x) = f(x) f (x) [f (x)] 2 [f (x)] 2 Thus, if f(x) f (x) [f (x)] 2 < 1 in an interval around the root r, the method will converge for any x 0. ITCS 4133/5133: Introduction to Numerical Methods 33 Roots of Equations

34 Convergence Rate: Newton s Method If r is a root of f(x) = 0, then r = g(r), x n+1 = g(x n ), so x n+1 r = g(x n ) g(r) Expanding g(x n ) using Taylor series, expanding about (x n r), with ξ (x n, r) thus g(x n ) = g(r) + g (r) (x n r) + g (ξ) 2 (x n r) 2 g (r) = f(r) f (r) [f (r)] 2 = 0 g(x n ) = g(r) + g (ξ) 2 (x n r) 2 ITCS 4133/5133: Introduction to Numerical Methods 34 Roots of Equations

35 Convergence Rate: Newton s Method If x n r = e n, we have g(x n ) = g(r) + g (ξ) 2 (x n r) 2 e n+1 = x n+1 r = g(x n ) g(r) = g (ξ) 2 e n 2 Thus, each error in the limit is proportional to the second power of the previous error, resulting convergence of order 2, or quadratic convergence. ITCS 4133/5133: Introduction to Numerical Methods 35 Roots of Equations

36 Convergence Rate: Bisection Method Method based on intermediate value theorem: root exists in the interval [a, b], if f(a) and f(b) are of opposite sign. Error at stage k is at most (b a)/2 k Error estimates(on the average) are reduced by half at each iteration Bisection is linearly convergent. e n+1 = 0.5 e n ITCS 4133/5133: Introduction to Numerical Methods 36 Roots of Equations

37 Analysis: Regula Falsi, Secant Methods Rate of Convergence: Must investigate for large values of p. x k x x k 1 x p It can be shown that errors are reduced as follows: e n+1 = g (ξ i, ξ 2 ) (e n )e n 1 2 Convergence rate can be shown to be about ITCS 4133/5133: Introduction to Numerical Methods 37 Roots of Equations

Root Finding (and Optimisation)

Root Finding (and Optimisation) Root Finding (and Optimisation) M.Sc. in Mathematical Modelling & Scientific Computing, Practical Numerical Analysis Michaelmas Term 2018, Lecture 4 Root Finding The idea of root finding is simple we want

More information

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435

PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 PART I Lecture Notes on Numerical Solution of Root Finding Problems MATH 435 Professor Biswa Nath Datta Department of Mathematical Sciences Northern Illinois University DeKalb, IL. 60115 USA E mail: dattab@math.niu.edu

More information

CHAPTER-II ROOTS OF EQUATIONS

CHAPTER-II ROOTS OF EQUATIONS CHAPTER-II ROOTS OF EQUATIONS 2.1 Introduction The roots or zeros of equations can be simply defined as the values of x that makes f(x) =0. There are many ways to solve for roots of equations. For some

More information

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS BISECTION METHOD

SOLUTION OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS BISECTION METHOD BISECTION METHOD If a function f(x) is continuous between a and b, and f(a) and f(b) are of opposite signs, then there exists at least one root between a and b. It is shown graphically as, Let f a be negative

More information

Order of convergence

Order of convergence Order of convergence Linear and Quadratic Order of convergence Computing square root with Newton s Method Given a > 0, p def = a is positive root of equation Newton s Method p k+1 = p k p2 k a 2p k = 1

More information

Zeroes of Transcendental and Polynomial Equations. Bisection method, Regula-falsi method and Newton-Raphson method

Zeroes of Transcendental and Polynomial Equations. Bisection method, Regula-falsi method and Newton-Raphson method Zeroes of Transcendental and Polynomial Equations Bisection method, Regula-falsi method and Newton-Raphson method PRELIMINARIES Solution of equation f (x) = 0 A number (real or complex) is a root of the

More information

Solution of Algebric & Transcendental Equations

Solution of Algebric & Transcendental Equations Page15 Solution of Algebric & Transcendental Equations Contents: o Introduction o Evaluation of Polynomials by Horner s Method o Methods of solving non linear equations o Bracketing Methods o Bisection

More information

ROOT FINDING REVIEW MICHELLE FENG

ROOT FINDING REVIEW MICHELLE FENG ROOT FINDING REVIEW MICHELLE FENG 1.1. Bisection Method. 1. Root Finding Methods (1) Very naive approach based on the Intermediate Value Theorem (2) You need to be looking in an interval with only one

More information

3.1 Introduction. Solve non-linear real equation f(x) = 0 for real root or zero x. E.g. x x 1.5 =0, tan x x =0.

3.1 Introduction. Solve non-linear real equation f(x) = 0 for real root or zero x. E.g. x x 1.5 =0, tan x x =0. 3.1 Introduction Solve non-linear real equation f(x) = 0 for real root or zero x. E.g. x 3 +1.5x 1.5 =0, tan x x =0. Practical existence test for roots: by intermediate value theorem, f C[a, b] & f(a)f(b)

More information

Chapter 3: Root Finding. September 26, 2005

Chapter 3: Root Finding. September 26, 2005 Chapter 3: Root Finding September 26, 2005 Outline 1 Root Finding 2 3.1 The Bisection Method 3 3.2 Newton s Method: Derivation and Examples 4 3.3 How To Stop Newton s Method 5 3.4 Application: Division

More information

Root Finding: Close Methods. Bisection and False Position Dr. Marco A. Arocha Aug, 2014

Root Finding: Close Methods. Bisection and False Position Dr. Marco A. Arocha Aug, 2014 Root Finding: Close Methods Bisection and False Position Dr. Marco A. Arocha Aug, 2014 1 Roots Given function f(x), we seek x values for which f(x)=0 Solution x is the root of the equation or zero of the

More information

Bisection and False Position Dr. Marco A. Arocha Aug, 2014

Bisection and False Position Dr. Marco A. Arocha Aug, 2014 Bisection and False Position Dr. Marco A. Arocha Aug, 2014 1 Given function f, we seek x values for which f(x)=0 Solution x is the root of the equation or zero of the function f Problem is known as root

More information

Numerical Analysis: Solving Nonlinear Equations

Numerical Analysis: Solving Nonlinear Equations Numerical Analysis: Solving Nonlinear Equations Mirko Navara http://cmp.felk.cvut.cz/ navara/ Center for Machine Perception, Department of Cybernetics, FEE, CTU Karlovo náměstí, building G, office 104a

More information

p 1 p 0 (p 1, f(p 1 )) (p 0, f(p 0 )) The geometric construction of p 2 for the se- cant method.

p 1 p 0 (p 1, f(p 1 )) (p 0, f(p 0 )) The geometric construction of p 2 for the se- cant method. 80 CHAP. 2 SOLUTION OF NONLINEAR EQUATIONS f (x) = 0 y y = f(x) (p, 0) p 2 p 1 p 0 x (p 1, f(p 1 )) (p 0, f(p 0 )) The geometric construction of p 2 for the se- Figure 2.16 cant method. Secant Method The

More information

Hence a root lies between 1 and 2. Since f a is negative and f(x 0 ) is positive The root lies between a and x 0 i.e. 1 and 1.

Hence a root lies between 1 and 2. Since f a is negative and f(x 0 ) is positive The root lies between a and x 0 i.e. 1 and 1. The Bisection method or BOLZANO s method or Interval halving method: Find the positive root of x 3 x = 1 correct to four decimal places by bisection method Let f x = x 3 x 1 Here f 0 = 1 = ve, f 1 = ve,

More information

Numerical Methods. Root Finding

Numerical Methods. Root Finding Numerical Methods Solving Non Linear 1-Dimensional Equations Root Finding Given a real valued function f of one variable (say ), the idea is to find an such that: f() 0 1 Root Finding Eamples Find real

More information

Solution of Nonlinear Equations

Solution of Nonlinear Equations Solution of Nonlinear Equations (Com S 477/577 Notes) Yan-Bin Jia Sep 14, 017 One of the most frequently occurring problems in scientific work is to find the roots of equations of the form f(x) = 0. (1)

More information

MATH 3795 Lecture 12. Numerical Solution of Nonlinear Equations.

MATH 3795 Lecture 12. Numerical Solution of Nonlinear Equations. MATH 3795 Lecture 12. Numerical Solution of Nonlinear Equations. Dmitriy Leykekhman Fall 2008 Goals Learn about different methods for the solution of f(x) = 0, their advantages and disadvantages. Convergence

More information

Program : M.A./M.Sc. (Mathematics) M.A./M.Sc. (Final) Paper Code:MT-08 Numerical Analysis Section A (Very Short Answers Questions)

Program : M.A./M.Sc. (Mathematics) M.A./M.Sc. (Final) Paper Code:MT-08 Numerical Analysis Section A (Very Short Answers Questions) Program : M../M.Sc. (Mathematics) M../M.Sc. (Final) Paper Code:MT-08 Numerical nalysis Section (Very Short nswers Questions) 1. Write two examples of transcendental equations. (i) x 3 + sin x = 0 (ii)

More information

Outline. Math Numerical Analysis. Intermediate Value Theorem. Lecture Notes Zeros and Roots. Joseph M. Mahaffy,

Outline. Math Numerical Analysis. Intermediate Value Theorem. Lecture Notes Zeros and Roots. Joseph M. Mahaffy, Outline Math 541 - Numerical Analysis Lecture Notes Zeros and Roots Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research

More information

Midterm Review. Igor Yanovsky (Math 151A TA)

Midterm Review. Igor Yanovsky (Math 151A TA) Midterm Review Igor Yanovsky (Math 5A TA) Root-Finding Methods Rootfinding methods are designed to find a zero of a function f, that is, to find a value of x such that f(x) =0 Bisection Method To apply

More information

Math Numerical Analysis

Math Numerical Analysis Math 541 - Numerical Analysis Lecture Notes Zeros and Roots Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center

More information

STOP, a i+ 1 is the desired root. )f(a i) > 0. Else If f(a i+ 1. Set a i+1 = a i+ 1 and b i+1 = b Else Set a i+1 = a i and b i+1 = a i+ 1

STOP, a i+ 1 is the desired root. )f(a i) > 0. Else If f(a i+ 1. Set a i+1 = a i+ 1 and b i+1 = b Else Set a i+1 = a i and b i+1 = a i+ 1 53 17. Lecture 17 Nonlinear Equations Essentially, the only way that one can solve nonlinear equations is by iteration. The quadratic formula enables one to compute the roots of p(x) = 0 when p P. Formulas

More information

Bisection Method. and compute f (p 1 ). repeat with p 2 = a 2+b 2

Bisection Method. and compute f (p 1 ). repeat with p 2 = a 2+b 2 Bisection Method Given continuous function f (x) on the interval [a, b] with f (a) f (b) < 0, there must be a root in (a, b). To find a root: set [a 1, b 1 ] = [a, b]. set p 1 = a 1+b 1 2 and compute f

More information

by Martin Mendez, UASLP Copyright 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

by Martin Mendez, UASLP Copyright 2006 The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 5 by Martin Mendez, 1 Roots of Equations Part Why? b m b a + b + c = 0 = aa 4ac But a 5 4 3 + b + c + d + e + f = 0 sin + = 0 =? =? by Martin Mendez, Nonlinear Equation Solvers Bracketing Graphical

More information

Nonlinearity Root-finding Bisection Fixed Point Iteration Newton s Method Secant Method Conclusion. Nonlinear Systems

Nonlinearity Root-finding Bisection Fixed Point Iteration Newton s Method Secant Method Conclusion. Nonlinear Systems Nonlinear Systems CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Doug James (and Justin Solomon) CS 205A: Mathematical Methods Nonlinear Systems 1 / 27 Part III: Nonlinear Problems Not

More information

Determining the Roots of Non-Linear Equations Part I

Determining the Roots of Non-Linear Equations Part I Determining the Roots of Non-Linear Equations Part I Prof. Dr. Florian Rupp German University of Technology in Oman (GUtech) Introduction to Numerical Methods for ENG & CS (Mathematics IV) Spring Term

More information

Introductory Numerical Analysis

Introductory Numerical Analysis Introductory Numerical Analysis Lecture Notes December 16, 017 Contents 1 Introduction to 1 11 Floating Point Numbers 1 1 Computational Errors 13 Algorithm 3 14 Calculus Review 3 Root Finding 5 1 Bisection

More information

Chapter 4. Solution of Non-linear Equation. Module No. 1. Newton s Method to Solve Transcendental Equation

Chapter 4. Solution of Non-linear Equation. Module No. 1. Newton s Method to Solve Transcendental Equation Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Mathematics National Institute of Technology Durgapur Durgapur-713209 email: anita.buie@gmail.com 1 . Chapter 4 Solution of Non-linear

More information

Numerical Analysis MTH603

Numerical Analysis MTH603 Numerical Analysis Course Contents Solution of Non Linear Equations Solution of Linear System of Equations Approximation of Eigen Values Interpolation and Polynomial Approximation Numerical Differentiation

More information

15 Nonlinear Equations and Zero-Finders

15 Nonlinear Equations and Zero-Finders 15 Nonlinear Equations and Zero-Finders This lecture describes several methods for the solution of nonlinear equations. In particular, we will discuss the computation of zeros of nonlinear functions f(x).

More information

Computational Methods CMSC/AMSC/MAPL 460. Solving nonlinear equations and zero finding. Finding zeroes of functions

Computational Methods CMSC/AMSC/MAPL 460. Solving nonlinear equations and zero finding. Finding zeroes of functions Computational Methods CMSC/AMSC/MAPL 460 Solving nonlinear equations and zero finding Ramani Duraiswami, Dept. of Computer Science Where does it arise? Finding zeroes of functions Solving functional equations

More information

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane.

Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane. Queens College, CUNY, Department of Computer Science Numerical Methods CSCI 361 / 761 Spring 2018 Instructor: Dr. Sateesh Mane c Sateesh R. Mane 2018 3 Lecture 3 3.1 General remarks March 4, 2018 This

More information

Numerical Methods Dr. Sanjeev Kumar Department of Mathematics Indian Institute of Technology Roorkee Lecture No 7 Regula Falsi and Secant Methods

Numerical Methods Dr. Sanjeev Kumar Department of Mathematics Indian Institute of Technology Roorkee Lecture No 7 Regula Falsi and Secant Methods Numerical Methods Dr. Sanjeev Kumar Department of Mathematics Indian Institute of Technology Roorkee Lecture No 7 Regula Falsi and Secant Methods So welcome to the next lecture of the 2 nd unit of this

More information

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam

Jim Lambers MAT 460/560 Fall Semester Practice Final Exam Jim Lambers MAT 460/560 Fall Semester 2009-10 Practice Final Exam 1. Let f(x) = sin 2x + cos 2x. (a) Write down the 2nd Taylor polynomial P 2 (x) of f(x) centered around x 0 = 0. (b) Write down the corresponding

More information

The iteration formula for to find the root of the equation

The iteration formula for to find the root of the equation SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY, COIMBATORE- 10 DEPARTMENT OF SCIENCE AND HUMANITIES SUBJECT: NUMERICAL METHODS & LINEAR PROGRAMMING UNIT II SOLUTIONS OF EQUATION 1. If is continuous in then under

More information

A Review of Bracketing Methods for Finding Zeros of Nonlinear Functions

A Review of Bracketing Methods for Finding Zeros of Nonlinear Functions Applied Mathematical Sciences, Vol 1, 018, no 3, 137-146 HIKARI Ltd, wwwm-hikaricom https://doiorg/101988/ams018811 A Review of Bracketing Methods for Finding Zeros of Nonlinear Functions Somkid Intep

More information

1. Method 1: bisection. The bisection methods starts from two points a 0 and b 0 such that

1. Method 1: bisection. The bisection methods starts from two points a 0 and b 0 such that Chapter 4 Nonlinear equations 4.1 Root finding Consider the problem of solving any nonlinear relation g(x) = h(x) in the real variable x. We rephrase this problem as one of finding the zero (root) of a

More information

Chapter 1. Root Finding Methods. 1.1 Bisection method

Chapter 1. Root Finding Methods. 1.1 Bisection method Chapter 1 Root Finding Methods We begin by considering numerical solutions to the problem f(x) = 0 (1.1) Although the problem above is simple to state it is not always easy to solve analytically. This

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T Heath Chapter 5 Nonlinear Equations Copyright c 2001 Reproduction permitted only for noncommercial, educational

More information

Line Search Methods. Shefali Kulkarni-Thaker

Line Search Methods. Shefali Kulkarni-Thaker 1 BISECTION METHOD Line Search Methods Shefali Kulkarni-Thaker Consider the following unconstrained optimization problem min f(x) x R Any optimization algorithm starts by an initial point x 0 and performs

More information

Practical Numerical Analysis: Sheet 3 Solutions

Practical Numerical Analysis: Sheet 3 Solutions Practical Numerical Analysis: Sheet 3 Solutions 1. We need to compute the roots of the function defined by f(x) = sin(x) + sin(x 2 ) on the interval [0, 3] using different numerical methods. First we consider

More information

Numerical Solution of f(x) = 0

Numerical Solution of f(x) = 0 Numerical Solution of f(x) = 0 Gerald W. Recktenwald Department of Mechanical Engineering Portland State University gerry@pdx.edu ME 350: Finding roots of f(x) = 0 Overview Topics covered in these slides

More information

Root Finding Convergence Analysis

Root Finding Convergence Analysis Root Finding Convergence Analysis Justin Ross & Matthew Kwitowski November 5, 2012 There are many different ways to calculate the root of a function. Some methods are direct and can be done by simply solving

More information

UNIT II SOLUTION OF NON-LINEAR AND SIMULTANEOUS LINEAR EQUATION

UNIT II SOLUTION OF NON-LINEAR AND SIMULTANEOUS LINEAR EQUATION UNIT II SOLUTION OF NON-LINEAR AND SIMULTANEOUS LINEAR EQUATION. If g x is continuous in a, b, then under what condition the iterative method x = g x has a unique solution in a, b? g x < in a, b. State

More information

Solving Non-Linear Equations (Root Finding)

Solving Non-Linear Equations (Root Finding) Solving Non-Linear Equations (Root Finding) Root finding Methods What are root finding methods? Methods for determining a solution of an equation. Essentially finding a root of a function, that is, a zero

More information

MTH603 FAQ + Short Questions Answers.

MTH603 FAQ + Short Questions Answers. Absolute Error : Accuracy : The absolute error is used to denote the actual value of a quantity less it s rounded value if x and x* are respectively the rounded and actual values of a quantity, then absolute

More information

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark

Solution Methods. Richard Lusby. Department of Management Engineering Technical University of Denmark Solution Methods Richard Lusby Department of Management Engineering Technical University of Denmark Lecture Overview (jg Unconstrained Several Variables Quadratic Programming Separable Programming SUMT

More information

1. Nonlinear Equations. This lecture note excerpted parts from Michael Heath and Max Gunzburger. f(x) = 0

1. Nonlinear Equations. This lecture note excerpted parts from Michael Heath and Max Gunzburger. f(x) = 0 Numerical Analysis 1 1. Nonlinear Equations This lecture note excerpted parts from Michael Heath and Max Gunzburger. Given function f, we seek value x for which where f : D R n R n is nonlinear. f(x) =

More information

INTRODUCTION TO NUMERICAL ANALYSIS

INTRODUCTION TO NUMERICAL ANALYSIS INTRODUCTION TO NUMERICAL ANALYSIS Cho, Hyoung Kyu Department of Nuclear Engineering Seoul National University 3. SOLVING NONLINEAR EQUATIONS 3.1 Background 3.2 Estimation of errors in numerical solutions

More information

Comparative Analysis of Convergence of Various Numerical Methods

Comparative Analysis of Convergence of Various Numerical Methods Journal of Computer and Mathematical Sciences, Vol.6(6),290-297, June 2015 (An International Research Journal), www.compmath-journal.org ISSN 0976-5727 (Print) ISSN 2319-8133 (Online) Comparative Analysis

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Taylor s Theorem Can often approximate a function by a polynomial The error in the approximation

More information

GENG2140, S2, 2012 Week 7: Curve fitting

GENG2140, S2, 2012 Week 7: Curve fitting GENG2140, S2, 2012 Week 7: Curve fitting Curve fitting is the process of constructing a curve, or mathematical function, f(x) that has the best fit to a series of data points Involves fitting lines and

More information

Math Numerical Analysis Mid-Term Test Solutions

Math Numerical Analysis Mid-Term Test Solutions Math 400 - Numerical Analysis Mid-Term Test Solutions. Short Answers (a) A sufficient and necessary condition for the bisection method to find a root of f(x) on the interval [a,b] is f(a)f(b) < 0 or f(a)

More information

Appendix 8 Numerical Methods for Solving Nonlinear Equations 1

Appendix 8 Numerical Methods for Solving Nonlinear Equations 1 Appendix 8 Numerical Methods for Solving Nonlinear Equations 1 An equation is said to be nonlinear when it involves terms of degree higher than 1 in the unknown quantity. These terms may be polynomial

More information

Finding the Roots of f(x) = 0. Gerald W. Recktenwald Department of Mechanical Engineering Portland State University

Finding the Roots of f(x) = 0. Gerald W. Recktenwald Department of Mechanical Engineering Portland State University Finding the Roots of f(x) = 0 Gerald W. Recktenwald Department of Mechanical Engineering Portland State University gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with Matlab:

More information

Finding the Roots of f(x) = 0

Finding the Roots of f(x) = 0 Finding the Roots of f(x) = 0 Gerald W. Recktenwald Department of Mechanical Engineering Portland State University gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with Matlab:

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 5 Nonlinear Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Question Bank (I scheme )

Question Bank (I scheme ) Question Bank (I scheme ) Name of subject: Applied Mathematics Subject code: 22206/22224/22210/22201 Course : CH/CM/CE/EJ/IF/EE/ME Semester: II UNIT-3 (CO3) Unit Test : II (APPLICATION OF INTEGRATION)

More information

Numerical Analysis MTH603. Virtual University of Pakistan Knowledge beyond the boundaries

Numerical Analysis MTH603. Virtual University of Pakistan Knowledge beyond the boundaries Numerical Analysis MTH6 Virtual University of Pakistan Knowledge beyond the boundaries Table of Contents Lecture # Topics Page # Lecture Introduction Lecture Errors in Computations 6 Lecture Solution of

More information

Scientific Computing. Roots of Equations

Scientific Computing. Roots of Equations ECE257 Numerical Methods and Scientific Computing Roots of Equations Today s s class: Roots of Equations Polynomials Polynomials A polynomial is of the form: ( x) = a 0 + a 1 x + a 2 x 2 +L+ a n x n f

More information

Nonlinearity Root-finding Bisection Fixed Point Iteration Newton s Method Secant Method Conclusion. Nonlinear Systems

Nonlinearity Root-finding Bisection Fixed Point Iteration Newton s Method Secant Method Conclusion. Nonlinear Systems Nonlinear Systems CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Nonlinear Systems 1 / 24 Part III: Nonlinear Problems Not all numerical problems

More information

Unit 2: Solving Scalar Equations. Notes prepared by: Amos Ron, Yunpeng Li, Mark Cowlishaw, Steve Wright Instructor: Steve Wright

Unit 2: Solving Scalar Equations. Notes prepared by: Amos Ron, Yunpeng Li, Mark Cowlishaw, Steve Wright Instructor: Steve Wright cs416: introduction to scientific computing 01/9/07 Unit : Solving Scalar Equations Notes prepared by: Amos Ron, Yunpeng Li, Mark Cowlishaw, Steve Wright Instructor: Steve Wright 1 Introduction We now

More information

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method

COURSE Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method COURSE 7 3. Numerical integration of functions (continuation) 3.3. The Romberg s iterative generation method The presence of derivatives in the remainder difficulties in applicability to practical problems

More information

CHAPTER 4 ROOTS OF EQUATIONS

CHAPTER 4 ROOTS OF EQUATIONS CHAPTER 4 ROOTS OF EQUATIONS Chapter 3 : TOPIC COVERS (ROOTS OF EQUATIONS) Definition of Root of Equations Bracketing Method Graphical Method Bisection Method False Position Method Open Method One-Point

More information

Justify all your answers and write down all important steps. Unsupported answers will be disregarded.

Justify all your answers and write down all important steps. Unsupported answers will be disregarded. Numerical Analysis FMN011 10058 The exam lasts 4 hours and has 13 questions. A minimum of 35 points out of the total 70 are required to get a passing grade. These points will be added to those you obtained

More information

Computational Methods. Solving Equations

Computational Methods. Solving Equations Computational Methods Solving Equations Manfred Huber 2010 1 Solving Equations Solving scalar equations is an elemental task that arises in a wide range of applications Corresponds to finding parameters

More information

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places.

NUMERICAL METHODS. x n+1 = 2x n x 2 n. In particular: which of them gives faster convergence, and why? [Work to four decimal places. NUMERICAL METHODS 1. Rearranging the equation x 3 =.5 gives the iterative formula x n+1 = g(x n ), where g(x) = (2x 2 ) 1. (a) Starting with x = 1, compute the x n up to n = 6, and describe what is happening.

More information

SOLVING EQUATIONS OF ONE VARIABLE

SOLVING EQUATIONS OF ONE VARIABLE 1 SOLVING EQUATIONS OF ONE VARIABLE ELM1222 Numerical Analysis Some of the contents are adopted from Laurene V. Fausett, Applied Numerical Analysis using MATLAB. Prentice Hall Inc., 1999 2 Today s lecture

More information

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY, COIMBATORE- 10 DEPARTMENT OF SCIENCE AND HUMANITIES B.E - EEE & CIVIL UNIT I

SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY, COIMBATORE- 10 DEPARTMENT OF SCIENCE AND HUMANITIES B.E - EEE & CIVIL UNIT I SRI RAMAKRISHNA INSTITUTE OF TECHNOLOGY, COIMBATORE- 10 DEPARTMENT OF SCIENCE AND HUMANITIES B.E - EEE & CIVIL SUBJECT: NUMERICAL METHODS ( SEMESTER VI ) UNIT I SOLUTIONS OF EQUATIONS AND EIGEN VALUE PROBLEMS

More information

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS Math 473: Practice Problems for Test 1, Fall 011, SOLUTIONS Show your work: 1. (a) Compute the Taylor polynomials P n (x) for f(x) = sin x and x 0 = 0. Solution: Compute f(x) = sin x, f (x) = cos x, f

More information

CHAPTER 2 POLYNOMIALS KEY POINTS

CHAPTER 2 POLYNOMIALS KEY POINTS CHAPTER POLYNOMIALS KEY POINTS 1. Polynomials of degrees 1, and 3 are called linear, quadratic and cubic polynomials respectively.. A quadratic polynomial in x with real coefficient is of the form a x

More information

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by

(f(x) P 3 (x)) dx. (a) The Lagrange formula for the error is given by 1. QUESTION (a) Given a nth degree Taylor polynomial P n (x) of a function f(x), expanded about x = x 0, write down the Lagrange formula for the truncation error, carefully defining all its elements. How

More information

Numerical Analysis. EE, NCKU Tien-Hao Chang (Darby Chang)

Numerical Analysis. EE, NCKU Tien-Hao Chang (Darby Chang) Numerical Analysis EE, NCKU Tien-Hao Chang (Darby Chang) 1 In the previous slide Error (motivation) Floating point number system difference to real number system problem of roundoff Introduced/propagated

More information

NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR)

NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR) NUMERICAL AND STATISTICAL COMPUTING (MCA-202-CR) Autumn Session UNIT 1 Numerical analysis is the study of algorithms that uses, creates and implements algorithms for obtaining numerical solutions to problems

More information

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes)

Motivation: We have already seen an example of a system of nonlinear equations when we studied Gaussian integration (p.8 of integration notes) AMSC/CMSC 460 Computational Methods, Fall 2007 UNIT 5: Nonlinear Equations Dianne P. O Leary c 2001, 2002, 2007 Solving Nonlinear Equations and Optimization Problems Read Chapter 8. Skip Section 8.1.1.

More information

Applied Mathematics Letters. Combined bracketing methods for solving nonlinear equations

Applied Mathematics Letters. Combined bracketing methods for solving nonlinear equations Applied Mathematics Letters 5 (01) 1755 1760 Contents lists available at SciVerse ScienceDirect Applied Mathematics Letters journal homepage: www.elsevier.com/locate/aml Combined bracketing methods for

More information

Outline. Scientific Computing: An Introductory Survey. Nonlinear Equations. Nonlinear Equations. Examples: Nonlinear Equations

Outline. Scientific Computing: An Introductory Survey. Nonlinear Equations. Nonlinear Equations. Examples: Nonlinear Equations Methods for Systems of Methods for Systems of Outline Scientific Computing: An Introductory Survey Chapter 5 1 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

Scientific Computing. Roots of Equations

Scientific Computing. Roots of Equations ECE257 Numerical Methods and Scientific Computing Roots of Equations Today s s class: Roots of Equations Bracketing Methods Roots of Equations Given a function f(x), the roots are those values of x that

More information

Nonlinear Equations. Chapter The Bisection Method

Nonlinear Equations. Chapter The Bisection Method Chapter 6 Nonlinear Equations Given a nonlinear function f(), a value r such that f(r) = 0, is called a root or a zero of f() For eample, for f() = e 016064, Fig?? gives the set of points satisfying y

More information

Root Finding Methods

Root Finding Methods Root Finding Methods Let's take a simple problem ax 2 +bx+c=0 Can calculate roots using the quadratic equation or just by factoring Easy and does not need any numerical methods How about solving for the

More information

Numerical Methods in Physics and Astrophysics

Numerical Methods in Physics and Astrophysics Kostas Kokkotas 2 October 20, 2014 2 http://www.tat.physik.uni-tuebingen.de/ kokkotas Kostas Kokkotas 3 TOPICS 1. Solving nonlinear equations 2. Solving linear systems of equations 3. Interpolation, approximation

More information

Edexcel GCE Further Pure Mathematics (FP1) Required Knowledge Information Sheet. Daniel Hammocks

Edexcel GCE Further Pure Mathematics (FP1) Required Knowledge Information Sheet. Daniel Hammocks Edexcel GCE Further Pure Mathematics (FP1) Required Knowledge Information Sheet FP1 Formulae Given in Mathematical Formulae and Statistical Tables Booklet Summations o =1 2 = 1 + 12 + 1 6 o =1 3 = 1 64

More information

Numerical Methods in Informatics

Numerical Methods in Informatics Numerical Methods in Informatics Lecture 2, 30.09.2016: Nonlinear Equations in One Variable http://www.math.uzh.ch/binf4232 Tulin Kaman Institute of Mathematics, University of Zurich E-mail: tulin.kaman@math.uzh.ch

More information

Nonlinear Equations. Not guaranteed to have any real solutions, but generally do for astrophysical problems.

Nonlinear Equations. Not guaranteed to have any real solutions, but generally do for astrophysical problems. Nonlinear Equations Often (most of the time??) the relevant system of equations is not linear in the unknowns. Then, cannot decompose as Ax = b. Oh well. Instead write as: (1) f(x) = 0 function of one

More information

Root Finding For NonLinear Equations Bisection Method

Root Finding For NonLinear Equations Bisection Method Root Finding For NonLinear Equations Bisection Method P. Sam Johnson November 17, 2014 P. Sam Johnson (NITK) Root Finding For NonLinear Equations Bisection MethodNovember 17, 2014 1 / 26 Introduction The

More information

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018

CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 CLASS NOTES Models, Algorithms and Data: Introduction to computing 2018 Petros Koumoutsakos, Jens Honore Walther (Last update: April 16, 2018) IMPORTANT DISCLAIMERS 1. REFERENCES: Much of the material

More information

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45

Two hours. To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER. 29 May :45 11:45 Two hours MATH20602 To be provided by Examinations Office: Mathematical Formula Tables. THE UNIVERSITY OF MANCHESTER NUMERICAL ANALYSIS 1 29 May 2015 9:45 11:45 Answer THREE of the FOUR questions. If more

More information

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004

Department of Applied Mathematics and Theoretical Physics. AMA 204 Numerical analysis. Exam Winter 2004 Department of Applied Mathematics and Theoretical Physics AMA 204 Numerical analysis Exam Winter 2004 The best six answers will be credited All questions carry equal marks Answer all parts of each question

More information

MA 8019: Numerical Analysis I Solution of Nonlinear Equations

MA 8019: Numerical Analysis I Solution of Nonlinear Equations MA 8019: Numerical Analysis I Solution of Nonlinear Equations Suh-Yuh Yang ( 楊肅煜 ) Department of Mathematics, National Central University Jhongli District, Taoyuan City 32001, Taiwan syyang@math.ncu.edu.tw

More information

Numerical Methods in Physics and Astrophysics

Numerical Methods in Physics and Astrophysics Kostas Kokkotas 2 October 17, 2017 2 http://www.tat.physik.uni-tuebingen.de/ kokkotas Kostas Kokkotas 3 TOPICS 1. Solving nonlinear equations 2. Solving linear systems of equations 3. Interpolation, approximation

More information

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 4

2.29 Numerical Fluid Mechanics Spring 2015 Lecture 4 2.29 Spring 2015 Lecture 4 Review Lecture 3 Truncation Errors, Taylor Series and Error Analysis Taylor series: 2 3 n n i1 i i i i i n f( ) f( ) f '( ) f ''( ) f '''( )... f ( ) R 2! 3! n! n1 ( n1) Rn f

More information

x y More precisely, this equation means that given any ε > 0, there exists some δ > 0 such that

x y More precisely, this equation means that given any ε > 0, there exists some δ > 0 such that Chapter 2 Limits and continuity 21 The definition of a it Definition 21 (ε-δ definition) Let f be a function and y R a fixed number Take x to be a point which approaches y without being equal to y If there

More information

Variable. Peter W. White Fall 2018 / Numerical Analysis. Department of Mathematics Tarleton State University

Variable. Peter W. White Fall 2018 / Numerical Analysis. Department of Mathematics Tarleton State University Newton s Iterative s Peter W. White white@tarleton.edu Department of Mathematics Tarleton State University Fall 2018 / Numerical Analysis Overview Newton s Iterative s Newton s Iterative s Newton s Iterative

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

Virtual University of Pakistan

Virtual University of Pakistan Virtual University of Pakistan File Version v.0.0 Prepared For: Final Term Note: Use Table Of Content to view the Topics, In PDF(Portable Document Format) format, you can check Bookmarks menu Disclaimer:

More information

Numerical Methods. Roots of Equations

Numerical Methods. Roots of Equations Roots of Equations by Norhayati Rosli & Nadirah Mohd Nasir Faculty of Industrial Sciences & Technology norhayati@ump.edu.my, nadirah@ump.edu.my Description AIMS This chapter is aimed to compute the root(s)

More information

Chapter 2 Solutions of Equations of One Variable

Chapter 2 Solutions of Equations of One Variable Chapter 2 Solutions of Equations of One Variable 2.1 Bisection Method In this chapter we consider one of the most basic problems of numerical approximation, the root-finding problem. This process involves

More information

Integration, differentiation, and root finding. Phys 420/580 Lecture 7

Integration, differentiation, and root finding. Phys 420/580 Lecture 7 Integration, differentiation, and root finding Phys 420/580 Lecture 7 Numerical integration Compute an approximation to the definite integral I = b Find area under the curve in the interval Trapezoid Rule:

More information