Boolean Function Representation based on disjoint-support decompositions. Λ

Size: px
Start display at page:

Download "Boolean Function Representation based on disjoint-support decompositions. Λ"

Transcription

1 Booln Funtion Rprsnttion s on isjoint-support ompositions. Λ Vlri Brto n Murizio Dmini Diprtimnto i Elttroni Inormti Univrsitá i Pov, Vi Grnio 6/A, 353 Pov, ITALY -mil: rin@i.unip.it mini@i.unip.it Tl: F: Astrt Th Multi-Lvl Domposition Dirms (s) prsnt in this ppr provi nonil rprsnttion o Booln untions whil mkin pliit isjoint-support omposition. This rprsnttion n irtly mpp to nonil multi-lvl t ntwork o loi untion with AND/OR or NOR-only (NAND-only) ts. Usin s w r l to ru th mmory ouption with rspt to tritionl ROBDDs or svrl nhmrk untions, y omposin loi untions rursivly into simplr - n mor onivisil - omponnts. Bus o this proprty, nlysis o th rphs llow us to somtims intiy nw n ttr vril orrin or svrl nhmrk iruits. W pt th proprtis o s to usul in svrl ontts, most notly loi synthsis, thnoloy mppin, n squntil hrwr vriition. Introution Ru, Orr Binry Dision Dirms (ROB- DDs) [] r proly th most powrul t strutur known so r or th mnipultion o lr loi untions, n or this rson thy hv om prvsiv in loi synthsis n vriition nvironmnts [2, 3, 4, 5]. Onoin rsrh is ttmptin to tn thir ppliility to othr omins, suh s th solution o rph prolms n intr-linr prormmin [6, 7]. Still, som ky iniinis (n ponntil lowup or som lsss o untions, th unpritility o th ROBDD siz n shp with rspt to th vril orrin hosn, t...) motivt n inrsin rsrh tivity in this r. Rsrh irtions inlu in prtiulr: Eiint implmnttions [8, 9], vlopmnt o orrin huristis [,, 2], n ltrntiv rprsnttions ltothr [3, 4, 5, 6, 7]. In [8], th uthors prsnt n ition to th si ROBDD rprsnttion, s on th nloy o ROBDDs with trministi init utomt. Th nw rprsnttion ws ountrprt o nontrministi utomton (hn possily mor ompt), in whih untion root t h ROBDD no ws rprsnt s loi OR o simplr, isjoint-support omponnts. This rsrh ws prtilly support y th ESPRIT III Bsi Rsrh Prormm o th EC unr ontrt No. 972 (Projt GEPP- COM) n y CNR rnt # CT7 In this ppr, w to th si ROBDD rprsnttion th pility o isovrin th prsn o ritrry, multipl-lvl tr ompositions o untions. Th rprsnttion shrs with ROBDDs noniity, irtyli rph strutur, n rursiv onstrution thniqu. Unlik ROBDDs, howvr, nos my rprsnt not only two-input MUXs, ut lso unlimit-nin OR / AND (or NAND-only, NOR-only) ts. It is worth notin tht, us o t-lik nos, our rprsnttion is ssntilly multipl-lvl iruit. Throuh th us o multipl-lvl NOR-only (or NAND-only) omposition, w mintin onstnt-tim omplmnttion; n us o th tr omposition, th rprsnttion is siniintly lss orr-snsitiv thn ROBDDs. In prtiulr, w intii lss o untions or whih th rprsnttion is totlly inpnnt rom th vril orr hosn, n or whih som iiult prolms (lik, Booln NPN mthin [9]) n solv in linr tim. Ths turs rprsnt sustntil improvmnt ovr th work [8], whr sinl-lvl OR omposition ws us, n omplmnttion ws iiult. Eprimntlly, w oun tht th nw rprsnttion is mmorywis siniintly mor ompt thn ROBDDs, us omposl untions n shr omponnts. Mor intrstinly, howvr, th nw rprsnttion ivs us som systmti n t insiht on th rol o th input vrils o loi untion. This insiht is rr to spil-purpos huristis (suh s ynmi rorrin) in th s o ROBDDs. Th rst o th ppr is orniz s ollows. Stions 2 n 3 introu isjoint-support omposition n s, rsptivly. Stion 4 sris th prours us or mnipultion, n vntully Stion 5 prsnts th primntl rsults. Proos o Thorms r rr to th Appni, or th sk o rility. 2 Disjoint support omposition Th rprsnttion prsnt in this ppr is s on th notion o tr omposition o untion. In this stion, w introu th si initions onrnin this omposition. W onsir th omposition o untions into th NOR (NAND, OR, AND) o isjoint-support suuntions, whnvr possil. This notion will l to rursiv (.. tr) omposition styl n to th inition o Multi Lvl Domposition Dirms (s).

2 Dinition. Lt : B n! B not non-onstnt Booln untion o n vrils ; ; n. W sy tht pns on i i is not intilly. W ll support o (init y S( )) th st o Booln vrils pns on. 2 Dinition 2. A st o non-onstnt untions ; k, k, with rsptiv supports S( i ) is ll isjointsupport NOR omposition o i: + + k = ; S( i ) S( j )=;; i 6= j() A isjoint support NOR omposition is miml i no untion i is urthr omposl in th OR o othr untions with isjoint support. W in isjoint support OR, AND, NAND ompositions in similr shion. W init y D NOR () ny suh miml omposition. 2 Empl. Th untion = ( + )( + ) hs th ollowin isjoint-support ompositions: 2 l AND: =( + ) n 2 =( + ); l NOR: =( + ) n 2 =( + ) ; l NAND n OR:. In th rst o th ppr, isjoint-support ompositions r rrr to s ompositions, or short. Morovr, w ous only on NOR omposition, s th rsults or th othr ompositions n otin rily y stnr Booln lr. 2. Tr ompositions Domposition n ppli rursivly to loi untions. In this s, w otin rprsnttion o F s on NOR tr. Empl 2. Th untion F =( + )( + + ) th omposition tr. Similrly w n in TD NAND n TD AND/OR. 2 Thorm () low stts n intuitiv ut rlvnt rsult. Thorm. For ivn untion, th ollowin proprtis hol:. thr is uniqu D NOR ; 2. thr is uniqu TD NOR Tr-omposl untions. Whn omposin untion, it my possil tht th lvs o th omposition ru only to primry inputs or thir omplmnts. This is th s, or mpl, o th untion F =(+)(++) =[(+) +(++) ]. Dinition 4. A loi untion (;:::; n ) is tromposl i th input suuntions o its TD NOR lon to th st ;:::; n ; ;:::; n, i.. th st o inputs vrils n thir omplmnts. 2 I untion is tr omposl, thn Thorm () inits tht its omposition tr TD NOR is nonil rprsnttion. Not vry untion,howvr, is tromposl. For instn, th untion F = + nnot rprsnt s th NOR o ny isjoint-support suuntions. Hn, NOR omposition trs r not univrsl rprsnttion styl. W n nlr, howvr, th st o tr-rprsntl untions s ollows. Somtims th omplmnt o non-omposl untion my omposl. In this s th omplmnt F = ( + )( + + ) is in tr-omposl. W n thus ploit th omposility o F in rprsntin th D NOR o F y simply ppnin NOT t t th root o th NOR tr. Fi. (2) shows th rprsnttion. Fiur 2. Rursiv omposition with NOT t root. Fiur. A rursivly omposl untion. is rursivly NOR omposl. From th irst omposition w otin = ( + ) n 2 = [ +( + ) + ( + ) ]. Ths untions r thn in omposl until rhin th input vrils, s rport in Fi. (). 2 Dinition 3. A tr omposition o loi untion is rursiv omposition o into NOR-only tr o suuntions, whr th untions t th inputs o h NOR r mimlly ompos. W init y TD NOR Th only rminin qustion is whthr th introution o NOT ts t th root prsrvs noniity, tht is, whthr tr-omposl untion n hv two omposition trs, on with NOT t th root n nothr without it. To this rr, th ollowin rsult hols: Thorm 2. I loi untion F is tr-omposl, thn its omplmnt F is not. 2 Bus o Thorm (2), NOT ts n ppr only t th root or th lvs o th TD NOR. Suppos, y ontrition, tht topoloy lik in Fi. (3) wr possil. In this s, w oul mr th NOR t N 2 with N. This 2

3 woul init tht tht w h not ompos mimlly th untion rprsnt y th NOR N. N2 Fiur 3. An impossil topoloy or NOR omposition trs. Bs on rursiv D NOR, w hv now prtion loi untions into thr lsss:. tr-omposl untions; 2. untions tr-omposl with th us o NOT ts; 3. untions not tr-omposl. In th nt stion, w sri how th notion o tr omposition n omposility is us or otinin hyri rprsnttion styl or ritrry loi untions. This rprsnttion will ontin NOR trs n BDD nos. W onlu this stion with som osrvtions on tromposl untions: Cnoniity n vril orrins. As mntion, or tr-omposl untions, th tr omposition is nonil. Morovr, unlik ROBDDs, th tr rprsnttion is trivilly inpnnt rom th vril orrin. In, vn i untion F is not ntirly tr-omposl, th knowl o prtil omposition inits orrin strtis or th input vrils o F.IF is omposl s, sy, F =( + 2), thn optiml orrins will pl ll th vrils o on top o thos o 2 (or vivrs), n th siz o th ROBDD o F will th sum o thos o n 2. Hn, it ollows in prtiulr tht th ROBDD o ny tr-omposl untion, with n optiml vril orrin, is linr in th numr o inputs. Booln mthin. Booln mthin is n importnt stp o thnoloy mppin [9]. It onsists o inin whthr two untions () n (y) oini tr rplin th input vrils y with prmuttion P o th input vrils. Vritions o th prolm inlu mthin moulo omplmnttion o som inputs n o on o th untions, n it is nm NPN-mthin (Ntion, Prmuttion, Ntion mthin). In nrl, this is iiult prolm, s it ntils numrtin th prmuttions o th input vtor n hkin th quivln o () with (P ). For tromposl untions, lrly mth ists i n only th trs rprsntin n r qul, pt possily or th prsn o input/ output invrtrs. Tr isomorphism n rri out in tim linr in th siz o th tr [2]. Mor nrlly, mthin n ist only i n ompos in shion similr to. Evn prtil omposility o is thus hlpul. N Booln mnipultion routins. ROBBD mnipultion routins r s on rursiv visit o th ROBDD untions. At h rursion, vril is slt n th otors ; r vlut. Rursion is m st us, y thir vry ntur, ROB- DDs llow onstnt-tim otorin. I untion is rprsnt y NOR tr, inst, thn otorin rquirs ssinin th vlu to th tr input n thn proptin th t (i.., simultin) towrs th output. This simultion tks tim proportionl to th tr pth. In th implmnttion stion it will sn how th knowl o omposition, howvr, hlps ompnstin this mor iiult otorin. 3 Multi-Lvl Domposition Dirms In this stion w ploit tr ompositions to riv nw hyri mol or rprsntin loi untions. W will rprsnt untions o th irst n son lss y tr o NOR ts. Funtions in th thir lss will rprsnt throuh th us o Shnnon pnsion with rspt to som vril, lin to BDD nos. W thn pply tr omposition n Shnnon pnsion in orr to h otor n rursivly. Empl 3. Th untion =( + + ) hs ) + ) Fiur 4. ) Tr omposition o th untion in Empl (3). ) Th sm untion with th ition o BDD nos. TD NOR s in Fi. (4.). Not tht in no s w oul urthr ompos + us o th isjoint support onstrint. Applyin Shnnon pnsion, in Fi. (4.) w otin TD NOR or h input o MUX. 2 Th nw strutur w prsnt in this ppr plors tr ompositions o ivn untion. Bus o its purpos w ll it Multi-Lvl Domposition Dirms,. W now in s s on TD NOR. In our rwins o rphs, irls rprsnt MUX vrtis, whil rrys o squrs rprsnt NOR vrtis. Dinition 5. A is irt yli rph, with l vrtis ll y Booln onstnt or vril n two kins o intrnl vrtis: NOR vrtis hv non-mpty st o outoin s, h pointin to. MUX vrtis hv two outoin s, n, n r ll y Booln vril. A ins rursivly loi untion with th ollowin ruls: 3

4 2 l A trminl vrt t ll y Booln vril or onstnt nots th untion. l A MUX vrt m ll y Booln vril ins th untion: F m = F (m) +F (m) (2) l A NOR vrt n with k outoin s ins th untion: F n = + + k (3) whr i, i = ;:::;k is th untion in y th point y i. In, whil MUX vrtis orrspon to ROBDD nos, NOR vrtis r nw tur o this mol whih mphsizs th tr ompositions o th untion. Just lik ROBDDs, w impos rution ruls n orrin ruls to s in orr to otin mor ompt nonil rprsnttion: l Thr r no two intil surphs in th sm. l Thr r no vrtis with two or mor outoin s pointin t th sm. l W impos totl orrin twn vrils llin intrnl n trminl vrtis o. Eh pth rom root to trminl must trvrs susqunt MUX nos in rspt o this orrin n h vril is vlut t most on on h pth. ) ) Th ollowin rsult is irt onsqun o th noniity o tr ompositions n rution ruls. W thus stt it without proo, or th sk o onisnss: Thorm 3. Ru Orr Dompos s r nonil. 2 Th o untion mths multi-lvl loi iruit in th ovious wy. In Fi. (6.) n (6.) w rport n th orrsponin t-lvl ntwork. Du to this vint orrsponn, hrtr w will ll rph nos inirntly vrtis or ts. Empl 4. Fi. (6.) rprsnts th nonil ) ) Fiur 6. ) Th o th untion in Empl (4). ) A loi iruit viw o th. ) Its ROBDD. or th untion =( + )( + )+ with liorphil orrin o th vrils. In this s two istint surphs shr th NOR t rprsntin. This is not otn th s or simpl untions. For mor ompl untions it is mor likly to hppn. In Fi. (6.) shows th orrsponin ROBDD. Th hs ompos oth otors n until rhin th input vrils. 2. ) 3. Proprtis o s Fiur 5. Son rution rul. ) NOR vrtis. ) Mu vrtis. It is worth notin tht, unlik ROBBDs, th son rution rul rs irnt onsquns on th two kins o intrnl vrtis. As skth in Fi. (5), rution o MUX vrt implis th ltion o th no. This is not th s or NOR vrtis. In ition to ROBDD-lik ruls, in orr to rnt noniity w must impos omposition ruls: l th suuntions point y NOR vrt must hv isjoint support. Non o thm n ompos y D OR ; l untion is rprsnt y MUX i it is not omposl, nor its omplmnt. W onlu th stion y pointin som rsults on D NOR s tht r usul or th onstrution o mnipultion routins. Thorm 4. Suppos ; ; k isdosom untion. Thn, y rsin lmnts rom th st, th nw st is lso D. 2 Thorm 5. I D NOR ( ) = ; ; k [p; ;p h n D NOR () =; ; l [p; ;p h, whr i 6= j ;i =; l; j =; k, thn:. D NOR ( ) =p; ;p h [ D NOR ([( + ::: + k ) ( + ::: + l ) ] ). 2. D NOR ( + ) = p; ;p h [ D NOR ([( + ::: + k ) +( + ::: + l ) ] ) 3. Lt not vril not in th support o or. Thn: 4

5 2 Λ D NOR ( + ) = p; ;p h [ D NOR ([ ( + ::: + k ) + ( + + l ) ] ) OR (ml op, ml op2) D(op) = D(op) D(op2); 2 D(op) = D(op) n D(op); 3 D(op2) = D(op2) n D(op); Thorm 6. Lt not vril, 62 S(), n suppos = + 4 i (trminl s) rturn (D(op) [. Thn, 5 rs = omp lookup(op, op2); trminl vlu); 6 i (rs!= NULL) rturn (D(op) [ rs); D NOR ( )=[D NOR () 7 (4) = top vr(op, op2); 8 i (top vr(op) == ) 2 9 op l = vltop(op, ); op r = vltop(op, ); ls op l = op; op r = op; 3.. Complmnttion Th o tr-omposl untion is trivilly2 i (top vr(op2) == ) symmtri s NOR tr, possily with NOT t t th root. This llows 3 lt=or (op l, op2 l); riht=or (op r, op2 r); onstnt tim n sp omplmnttion. 4 rs = ml in (lt, riht, ); It is wll known [8] tht or MUX nos, th insrtion 5 omp insrt (op, op2, rs); o NOT ts (i.. omplmnt s), n ris noniity 6 rturn (D(op) [ rs); prolms. To t roun this prolm w us NOT t rution ruls similr to thos o [8]. Ths r pit in Fi. (7). Fiur 8. Psuoo o OR() Fiur 7. Equivlnt s 4 mnipultion routins As w hv sn, this mol hs som o th ROBDD turs. Amon ths, t strutur tht n mnipult throuh rursiv prours. Th t strutur w implmnt rlizs vrtis uniormly with n-tupls, th irst lmnt in n intr, ll th othrs in pointrs to othr s. In th irst lmnt w no th typ o no (i.., MUX or NOR vrt), th numr o lmnts in th n-tupl (or MUX nos it is lwys 2) n th top vril o th untion rprsnt. W mintin th strutur in stron nonil orm, i.., two quivlnt untions r intii y th sm pointr, y th milir hshin mhnism. W hv thn implmnt Booln oprtion routins. As n mpl, Fi. (8) rports th psuo-o or th loi OR o two untions. Rows, 2 n 3 r th pplition o Thorm 5, s 2. W sk ommon lmnts in th oprns n rmov thm rom th rursiv oprtion. This rmovl n rsult in str ution us w hv simplr oprns. D(op) inits th st o lmnts o th omposition o op. In NOR vrt op, it is th st o ll outoin pointrs (n init st oprtion o irn). Th situtions or whih op is MUX is spil s. For uniorm mnmnt o th strutur n untions rprsnt, w init s D(op) o MUX vrt op, pointr to th omplmnt o th untion root t op. W lso mintin omput tl, lik tht o stnr ROBDD prours, whr w stor prtil rsults. Th rmovl o ommon suuntions lso hlps voiin th ovrill o this tl us w n ploit th nri sinl ntry o th tl F + G = H or rtrivin rsults o vry oprtion (F + ) +(G + ) =(H + ) whn vris, whih onsquntly ns not stor. I th srh in th omput tl ils, w strt rursion. First o ll w in th top vril o th oprns, whih is immit u to its noin in th irst lmnt o th t strutur. Prour vltop(, vlu) rturns th o untion =vlu ssumin is th top vr. o. This stp orrspons to tkin otors in ROBDDs. Atr rursion, ml in() rts rom top vr. n its otors. W now nlyz in mor til ths thr stps, nmly, trminl ss, otorin, n rtion. Trminl ss n vlus pn on th oprtion w r pplyin. For th Booln OR w roniz th ollowin situtions: trminl s rturn vlu op=, op2= op=, op2= op2, op op = op2 op 9; 2 DSD(op ); 2 DSD(op2 ) Prour vltop() is rsponsil or otorin. Its psuo-o is rport in Fi. (9, n Fi. () shows its oprtion. vltop() rursivly os own th tr omposition until it rhs th MUX no ll with th top vril o th, n it tks its otor. In Fi. (.), this is th MUX ll y. Rturnin up rom rursion, it sustituts NOR vrtis with nwly nrt ons, whil mintinin noniity (th sh ts o Fi. (.)). 5

6 Λ Λ vltop (ml op, ooln vlu) i (op is MUX no) rturn (op.vlu); Fiur. An mpl o vltop() pplition ml in(ml lt, ml riht, top vr ) i (lt == riht) rturn (lt); 2 i = lmnt o op suh tht op.topvr = op.i.topvr; 2 i (riht == ) 3 opr = vltop(op.i, vlu); 3 nw vrt = in or rt(,, ); 4 D(op) = D(op) n op.i; 4 D(rs) = nw vrt [ riht; 5 D(rs) = D(opr) [ D(op); 5 rturn(rs); 6 rturn (rs); 6 i (riht == ) similrly 7 i (lt == or lt == ) symmtri s Fiur 9. Psuoo o vltop() 8 i (lt ρ D(riht)) 9 D(riht) = D(riht) n lt; nw vrt = ml in(, riht, ); [ D(rs) = nw vrt lt; 2 rturn(rs); 3 i (riht ρ D(lt)) symmtri s 4 D(op) = D(lt) D(riht); 5 i ( D(op) = ; ) rturn( in or rt(lt, riht, ) ); 6 D(lt) = D(lt) n D(op); 7 D(riht) = D(riht) n D(op); 8 nw vrt = ml in(lt, riht, ); 9 D(rs) = D(op) [ nw vrt; 2 rturn(rs); Fiur. Psuoo o ml in() Th o o vltop() works s ollows: Lin hks or n-o-rursion-s, i.. rhin o MUX no rom whih w n tk th rqust otor. Othrwis w hv to in th ritil lmnt in our NOR vrt list to us or oin own on lvl. Lin 3 mks th rursiv ll with this ritil lmnt. Atr rursion w sustitut th ritil lmnt in th list with th rturn rph. For mpl i th ritil lmnt ws MUX vrt w sustitut it with its otor. Whil oin this work w my hv to mr list n/or hk or spil ss (or mpl i th rturn rph is th onstnt, w simply rturn th onstnt ) n mintin noniity (rution ruls). Prour ml in() is skth in Fi. (). It uils tryin to isovr vry possil ommon trm rom th two otors. First o ll, it hks or simpl ss (rows 2 to 8). Thy r pplition o Thorm 6. For mpl, rows 2 to 5 min th sitution or riht =, i.., th untion to nrt is = lt. With NOR suh untion is ivn y =( + l + + l n ) (l i r th omponnts o lt). W hv rprsnt ths trminl ss in Fi. (2). in or rt() provis th rtion or rtrivl o MUX or trminl vrt whil kpin up to t uniqu tl similr to tht o ROBDD. In rows 8-3 w hk or on o th two nrl ss, whr non o th otors is onstnt. I th omplmnt o on otor is ontin in th othr s uniqu lmnt, thn thr is tr omposition. r + (r + r2 + + r n ) whr r;r2;:::;r n r th omponnts o th riht. This is quivlnt to: r +[ + (r2 + + r n ) ] W hv rport this s in Fi. (3.). Lins 4-2 l with th othr nrl s. Hr w hv to srh or ommon lmnts twn lt n riht n to tor thm out. This pplis s 3 o Thorm 5. Ths stps r skth in Fi. (3.). As mntion, vltop() n ml in() rpl otorin n th si in or rt() oprtions in ROBDDs. Whil oprtions r trivil onstnttim in ROBDDs, thy my tk O() tim in s, whr nots th tr pth. To this rr, w osrv tht is oun y th numr o vrils n it is rthr smll in prti (lwys 3 or lss or th synthsis nhmrks). Morovr, s OR is ppli to pirs o nos own in th rph, th support st o suuntions will hv wr lmnts n so th numr o lls to vltop(). Empl 5. W hv rport in Fi. (4) miml pth tr omposl untion = ((( + 2)3 + 4)5 + :::. 2 5 s vrsus ROBDDs In this stion w prsnt som omprisons in rprsntin untions with s n ROBDDs. 6

7 ) ) 2 Fiur 4. A miml tr omposl untion Fiur 2. Intiition o D urin trvrsl - trminl ss n- 2n Fiur 5. Th PAD or th untions F n 5.2 Tsts on nhmrk iruits ml H ml ml H ml H ml I ml J ) ) ml H Fiur 3. Intiition o D urin trvrsl - nrl ss 5. Eponntil rowth In this sustion w ontrst s with ROBDDs with rspt to prtiulr lss o orr-snsitiv untions, nmly, th untions: F n =( + 2)(3 + 4) (2n + 2n) (5) It is wll known tht with n impropr orrin o th vrils (or mpl, plin th o-ll vrils up top) rsults in ROBDD or F n with ovr 2 n nos []. Morovr, in spit o th simpliity o th untion, most vril orrins or F n n prov. Th or th untion is shown in Fi. (5). It onsists o two-lvl NOR iruit, rrlss o th orr hosn or th vrils i n it is lwys linr. Empl 6. Consir th untion =(A + B) + ( + AB), with n orrin o vrils plin on top. Sin = 6= =, ny ROBDD hs th spt shown in Fi. (6.). In nrl, w my think o s whr th two otors look lik untion n o Eq. (5), ut with irnt omintion o prouts. Any orrin o ; A; ; B whih optimizs on rnh is oun to suoptiml or th othr rnh o th ROBDD. Fi. (6.) illustrts th or th sm untion. Both rnhs r utomtilly ompos optimlly. 2 ml I ml J W hv ompr our nw mol with ROBDDs in numr o nhmrk iruits in trms o mmory ouption n CPU tim n to uil th output untion rphs. Th nhmrks r ivi in thr stions: multilvl iruits, two-lvl n thir stion tstin th omintionl prt o synhronous iruits. All ths nhmrks om rom th IWLS9 nhmrk suit [2]. Th vril orrin hosn or ths iruits ws otin y pplyin th Brkly orrin [3]. No vril rorrin took pl, howvr, urin th ution o ny pk. W hv implmnt our mol n tst it inst th Crni-Mllon ROBDD pk. W rri out omprisons on th tul mmory ouption. W ssum r-on implmnttions, in whih in prtiulr h ROBDD no tks thr mhin wors. Morovr ROB- DDs hv omplmnt s. With rrs to vrtis, w ssum n implmnttion whr h no on- ) A B A A ) A B A B Fiur 6. ) ROBDD strutur or th untion o Empl (9). ) strutur or th sm untion. 7

8 sists o n rry. As mntion, th irst lmnt stors inormtions out th no, whil othr lmnts r pointrs. This mol lso implmnts NOT ts throuh omplmnt s. CPU-tim ws tkn on HP Vtr 5/33 with 48Myts o RAM. From Tl, s turn out to mor ompt on vr o 8%. Som nhmrks iv prtiulrly oo rsults, or mpl omp n pir, nhmrks whih TD NOR is vry tiv in omposin output untions until rhin input vrils or vry simpl untions. Th CPU tim is lwys ttr or ROBDDs. Empirilly w hv oun th ollowin thr rsons: l W mk intrnl rursions in th onstrutions o s (vltop() n ml in()). Thus th numr o lls to ky prours or h omputtion is hihr. l W hv to mn rrys tht in nrl hv mor lmnts thn ROBDDs. For mpl, hsh untions r mor ompl n lso storin n rtrivin rom omput tl n uniqu tl ns mor tim. l Th strutur w us llows multipl pths rom rtin no (NOR). On th othr hn, with ROBDD th pth is uniqu. This is similr to simultion throuh NFA opposit to DFA. W hv lso implmnt ynmi rorrin in our mol with sitin-s lorithm [2]. Ovr ROBDDs, w hv th vnt to know mor out oo vril orr irtly rom th t strutur. In tl 2 w mk omprisons usin or h nhmrk th orr ivn y sitin (intrstinly, it is irnt or th two mols). Vril orrin took pl only t th n o ution. Rsults show tht, tr sitin, s improv slihtly urthr ovr ROBDDs. W think this is us urin sitin w ploit our ttr knowl o th untion s strutur n n voi to o throuh orrins tht iv smll vnt ut lok urthr improvmnts. 6 Conlusions n utur work s hv prov thmslvs iint in mkin pliit th Ds o loi untions. This proprty llows us to rh mor ompt, lil n roust rph-s rprsnttion. Morovr, this rprsnttion is losly rlt to multipl lvl iruit, n is mor inormtiv on th rol o th support vrils o untion. W pt ths proprtis to usul in ivrs pplitions, most notly thnoloy mppin or omintionl iruits n Booln mthin /rhility nlysis or vriition / ATPG in squntil iruits. 7 Appni Bnhmrk ROBDD RATIOS nos mm nos mm nos mm MultiLvl lu % 8.5% lu % 6.% p % 4.% p % 7.% % 2.% C % -8.3% C % 3.% C % -8.3% % 2.8% C % 22.4% ht % 6.9% CM % 43.8% CM % 8.4% omp % 26.% ount % -2.9% DES % 4.3% mpl % 9.4% r % 33.6% r % 6.4% k % -.5% ll % 45.8% Ars % -.% pir % 363.% plr %.2% rot % 37.% st % 48.% trm % 254.4% too lr % 7.3% ttt % 8.8% v % -.5% % 32.9% % 2.3% TwoLvl lu4.pl % 9.% p5.pl % 52.8% lip.pl % 2.% 64.pl % 79.8% mis2.pl % 39.8% mis3.pl % -.7% so2.pl % 45.8% v2.pl % 28.9% F.S.M % 29.2% % 54.3% % 22.% % 49.7% % 42.2% % 4.3% s % 6.7% s % 2.9% s % 5.% s %.% s % 34.% s % 7.6% s % 83.% s % 34.7% s % 9.2% Tl. ROBDD vs. in siz n prormn with Brkly orrin Proo o Thorm. Th proo o th irst ssrtion ollows y ontrition: W ssum th istn o two istint D NOR, nmly, ; ; p n ; ; q, n show tht this ls 8

9 Bnhmrk ROBDD RATIOS nos mm nos mm nos mm MultiLvl lu % 3.8% lu % 2.9% p % -6.5% p % 89.5% % 27.6% C % -4.4% C % -64.7% C % -4.4% % 26.% C % 45.3% ht % -27.4% CM % -.9% CM % 23.9% omp % 9.7% ount % -27.4% DES % -.2% mpl % 82.7% r % 65.6% r % 54.% k % 2.7% ll % 2.6% Ars % 9.8% pir % 6.9% plr % 2.4% rot % 49.5% st % -5.% trm % 3.4% too lr % 32.% ttt % 24.4% v % -2.8% % 3.8% % 8.4% TwoLvl lu4.pl % -.4% p5.pl % 9.8% lip.pl % 84.8% 64.pl % -8.7% mis2.pl % 6.4% mis3.pl % 94.9% so2.pl % 38.% v2.pl % 28.2% FSM % 22.3% % 56.% % 22.5% % 5.3% % 3.% % 27.6% s % 29.9% s % 34.6% s % 24.6% s % 59.3% s % 4.% s %.9% s % 32.2% s % 38.2% Tl 2. ROBDD vs. in siz n prormn tr ynmi rorrin nssrily to th violtion o som proprtis o th untions i or i. It is not rstritiv to ssum tht th two sts i; i ir us 6= i;i =; ;p:sin i; i r oth ompositions o, it must : + + p = + + q (6) or quivlntly, + + p = + + q : (7) Sin ll untions i hv isjoint support, it is possil to in n ssinmnt o th vrils in S( 2);S( 3); ;S( q) suh tht i =;i =2; ;q. Noti tht th vrils in S( ) hv not n ssin ny vlu. Corrsponin to this prtil ssinmnt, Eq. (7) oms: Λ + + Λ p = (8) In Eq. (8), Λ i nots th rsiu untion otin rom i with th ormntion prtil ssinmnt. W n now istinuish svrl ss, pnin on th ssumptions on th strutur o th lt-hn si o Eq. (8). Cs ). Th lt-hn si rus to onstnt. Hn, is onstnt, inst th ssumptions. Cs 2). Th lt-hn si ontins two or mor trms. Sin ths trms must hv isjoint support, is urthr omposl, inst th ssumptions. Cs 3). Th lt-hn si rus to sinl trm. It is not rstritiv to ssum this trm to Λ. I = Λ, thn w hv =, inst th ssumption tht irs rom ny i. Hn, it must Λ 6=, n S( )=S( Λ ) ρ S( ) stritly: (9) W now show tht lso this s ls to ontrition. Consir son ssinmnt, zroin ll untions j;j 6=. Eq. (7) now rus to = Λ + + Λ q : () By th sm rsonins rri out so r, th r.h.s. o Eq. () n ontin only on trm. W now show tht this trm must. Λ I, y ontrition, = Λ j ;j 6=, thn y Eq. (9) on woul hv S( )=S( Λ j ) S( ) () inst th ssumption o i; j in isjoint-support. Hn, it must =. Λ In this s, y rsonins similr to thos lin to Eq. (9), w t S( )=S( Λ ) ρ S( ) stritly (2) whih ontrits Eq. (9). Hn, nnot ir rom ny i, n th irst point is prov. Th proo o th son sttmnt ollows y pplyin rursivly D NOR to h o i. Sin h D is uniqu, th tr omposition is lso uniqu n th Thorm is prov. 2 Proo o Thorm 2. By ontrition. Suppos w hv untion F tht is omposl s F =( + 2) with S( ) S( 2)=; n suh tht F is lso omposl s F =( + 2) with S( ) S( 2)=;. W hv to prov ontrition in th quivln: ( + 2) = + 2 (3) For sk o rility, w in =, = 2, =, = 2 n ontrit: = + : (4) 9

10 W prtition th supports o ths untions in this wy: S = S() S() S = S() S() S = S() S() S = S() S() Som o th S ij n mpty. In th rst o th proo w show tht Eq. (4) implis tht th support o t lst on o,,, is mpty, inst th ssumptions. To this n, w will rwrit Eq. (4) unr irnt prtil ssinmnts o th vrils in S ij. For instn, y sltin n ssinmnt o S() suh tht =, w otin: = + (5) whr inits th untion otin y ssinin in th vrils o S with vlus stisyin =. Th support o is thn S. Similrly, w n hoos nothr ssinmnt in S() so tht =n otin: = + : (6) From Eqs. (5) n (6), w hv: + = =( + )( + ) : (7) W now in prssions or n. W vlut to zro, ruin th ov qution to: =( + )( + ) : (8) is otin y ssinin irst th vrils in S n thn thos in S. Du to th omplt ssinmnt, is onstnt (not nssrily ). Similrly or. So, in ruin th lst qution, w our ss:. = =. Thn =, i.. its support st is mpty inst th ssumptions. 2. =n =. Thn =. 3. =n =. Thn =. 4. = =. Thn =. Rptin th sm prour to Eq. (7) with th vlution o to, w hv th symmtri ss:. = =. Thn =. 2. =n =. Thn =. 3. =n =. Thn =. 4. = =. Thn =. Now w hv to prov th ontrition usin Eq. (7) or ll th possil omintions o ths ss.. = n =. + =( + )( + )= + (9) Th ontrition oms vint i, or mpl, w ssin =, = n =, whih ls to =, i.. S = ;. A son ssinmnt, =, =n =, ls to =, so tht lso S = ;. Thus S = S [ S = ;; woul hv to onstnt, ontrition. 2. = n =. + =( + )( + )= + (2) Sin = w know tht S = ; n isor. W onsir oth ss. I =th qution ov rus to: ( + )= + n vlutin =n =w in =, hn S = ;, n thror S() =S [ S = ;. I, inst, =w hv: + = + Assinin =n =w in =, i.. S = ;, n thn S() =S [ S = ;, inst th ssumptions. 3. = n =. Thn, S = ;, S = ; n S() = S [ S = ;, i.. is onstnt. 4. = n =. + =( + )( + )= + (2) n lso S = ; n S = ;. Sin n r onstnts, w onsir two ss: =. Thn + = + n vlutin =w in tht is onstnt, so tht S() =S [ S = ;, inst th ssumptions. I, inst, =,whv ( + )= + : Evlutin = w in =. Thn S = ; n S() =S [ S = ;. All othr situtions r rsolv y pplyin th sm rsonin s in lst ss. 2 Proo o Thorm 4. Consir rmovin sinl lmnt, sy,, rom th st. Th nw st, 2; ; k, is still omposition. It is lso miml, or i ny trm wr urthr omposl, thn th sm trm woul omposl in ; ; k, n ; ; k woul not D. 2 Proo o Thorm 5. W prov only th thir rsult, th othr ss in onptully similr. Clrly, th riht-hn si o th thir qution is NOR omposition. Thror, th only issu is its mimlity. Non o p ; ;p h n urthr ompos, or ls w woul ontrit th ssumption tht p ; p h ppr in, sy, D NOR ( ). Th only nit or urthr omposition is thn p h+ =[ ( + ::: + k ) + ( + + l ) ]. Suppos, y ontrition, tht p h+ hs D OR z ; ;z q with mor thn on lmnt. In this s, pprs in th support o only on untion z j, sy, z q. Hn, = ( + ) = = = (p + + p h + z + + z q + z q;=) = ( + ) = = = (p + + p h + z + + z q + z q;=) Sin th trms z ; ;z q ppr in n, thy nnot oini with ny o i; j. But thn n woul hv two istint D NOR s, lry prov impossil. 2 Proo o Thorm 6. Th riht-hn si is isjoint-support omposition. Its mimlity ollows rom th impossiility o rkin own or ny trm in D NOR () into sum o othr trms. 2 Rrns [] R. E. Brynt. Grph-s lorithms or ooln untion mnipultion. IEEE Trns. on Computrs, 35(8):677 69, Auust 986. [2] O. Court n J.C. Mr. A unii rmwork or th orml vriition o squntil iruits. In Pro. ICCAD, ps 26 29, Novmr 99.

11 [3] S. Mlik, A. R. Wn, R. K. Bryton, n A. Sniovnni- Vinntlli. Loi vriition usin inry ision irms in loi synthsis nvironmnt. In Pro. ICCAD, ps 6 9, Novmr 988. [4] Y. Mtsun n M. Fujit. Multi-lvl loi optimiztion usin inry ision irms. In Pro. ICCAD, ps , Novmr 989. [5] H. Touti, H. Svoj, B. Lin, R.K. Bryton, n A. Sniovnni-Vinntlli. Impliit stt numrtion o init stt mhins usin BDD s. In Pro. ICCAD, ps 3 33, Novmr 99. [6] F. Corno, P. Printto, n M. Sonz Ror. Usin symoli thniqus to in th mimum liqu in vry lr sprs rphs. In Pro. EDAC, ps , Mrh 995. [7] Y-T. Li n S. Sstry. E-vlu inry ision irms or multi-lvl hirrhil vriition. In Pro. DAC, ps , Jun 992. [8] K. S. Br, R. L. Rull, n R. E. Brynt. Eiint implmnttion o BDD pk. In Pro. DAC, ps 4 45, Jun 99. [9] H. Ohi, K. Ysuok, n S. Yjim. Brth-irst mnipultion o vry lr inry ision irms. In Pro. DAC, ps 48 55, Novmr 993. [] K. M. Butlr, D. E. Ross, R. Kpur, n M. R. Mrr. Huristis to omput vril orrins or th iint mnipultion o inry ision irms. In Pro. DAC, ps 47 42, Jun 99. [] S. J. Frimn n K. J. Supowit. Finin th optiml vril orrin or inry ision irms. IEEE Trns. on Computrs, 39:7 73, 99. [2] R. Rull. Dynmi vril orrin or orr inry ision irms. In Pro. ICCAD, ps 42 47, Novmr 993. [3] U. Kshull, E. Shurt, n W. Rosntil. Multilvl loi s on untionl ision irms. In EuroDAC, Proins o th Europn Conrn on Dsin Automtion, ps 43 47, Sptmr 992. [4] R. Drhslr, A. Sri, M. Thol, B. Bkr, n M. A. Prkowski. Eiint rprsnttion n mnipultion o o swithin untions s on orr kronkr untionl ision irms. In Pro. DAC, ps 45 49, Jun 994. [5] S.-I. Minto. Zro-supprss s or st mnipultion in omintoril prolms. In Pro. DAC, ps , Jun 993. [6] Y.-T.Li, M. Prm, n S. B. K. Vruhul. Ev-s lorithms or ilp, sptrl trnsorm n untion omposition. IEEE Trns. on CAD/ICAS, 3(8): , Auust 994. [7] R. E. Brynt. Binry ision irms n yon: nlin thnolois or orml vriition. In Pro. ICCAD, ps , 995. [8] V. Brto n M. Dmini. Booln untion rprsnttion usin prlll-ss irms. In Sith Grt Lks Symposium on VLSI, Mrh 996. [9] F. Milhot n G. DMihli. Alorithms or thnoloy mppin s on inry ision irms n on ooln oprtions. IEEE Trns. on CAD/ICAS, ps , My 993. [2] A. Aho, J. E. Hoprot, n J. D. Ullmn. Th sin n nlysis o omputr lorithms. Aison Wsly, 974. [2] S. Yn. Loi synthsis n optimiztion nhmrk usr ui, vrsion 3.. MCNC, Jnury 99.

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management

, each of which is a tree, and whose roots r 1. , respectively, are children of r. Data Structures & File Management nrl tr T is init st o on or mor nos suh tht thr is on sint no r, ll th root o T, n th rminin nos r prtition into n isjoint susts T, T,, T n, h o whih is tr, n whos roots r, r,, r n, rsptivly, r hilrn o

More information

Present state Next state Q + M N

Present state Next state Q + M N Qustion 1. An M-N lip-lop works s ollows: I MN=00, th nxt stt o th lip lop is 0. I MN=01, th nxt stt o th lip-lop is th sm s th prsnt stt I MN=10, th nxt stt o th lip-lop is th omplmnt o th prsnt stt I

More information

Boolean Function Representation Based on Disjoint-Support Decompositions.

Boolean Function Representation Based on Disjoint-Support Decompositions. Booln Funtion Rprsnttion Bs on Disjoint-Support Dompositions. Vlri Brto n Murizio Dmini Diprtimnto i Elttroni Informti Univrsit i Pov, Vi Grnigo 6/A, 353 Pov, ITALY Astrt Th Multi-Lvl Domposition Digrms

More information

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS

ECE COMBINATIONAL BUILDING BLOCKS - INVEST 13 DECODERS AND ENCODERS C 24 - COMBINATIONAL BUILDING BLOCKS - INVST 3 DCODS AND NCODS FALL 23 AP FLZ To o "wll" on this invstition you must not only t th riht nswrs ut must lso o nt, omplt n onis writups tht mk ovious wht h

More information

1 Introduction to Modulo 7 Arithmetic

1 Introduction to Modulo 7 Arithmetic 1 Introution to Moulo 7 Arithmti Bor w try our hn t solvin som hr Moulr KnKns, lt s tk los look t on moulr rithmti, mo 7 rithmti. You ll s in this sminr tht rithmti moulo prim is quit irnt rom th ons w

More information

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example

Outline. 1 Introduction. 2 Min-Cost Spanning Trees. 4 Example Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim's Alorithm Introution Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #33 3 Alorithm Gnrl Constrution Mik Joson (Univrsity o Clry)

More information

Constructive Geometric Constraint Solving

Constructive Geometric Constraint Solving Construtiv Gomtri Constrint Solving Antoni Soto i Rir Dprtmnt Llngutgs i Sistms Inormàtis Univrsitt Politèni Ctluny Brlon, Sptmr 2002 CGCS p.1/37 Prliminris CGCS p.2/37 Gomtri onstrint prolm C 2 D L BC

More information

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs

Outline. Computer Science 331. Computation of Min-Cost Spanning Trees. Costs of Spanning Trees in Weighted Graphs Outlin Computr Sin 33 Computtion o Minimum-Cost Spnnin Trs Prim s Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #34 Introution Min-Cost Spnnin Trs 3 Gnrl Constrution 4 5 Trmintion n Eiiny 6 Aitionl

More information

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology!

Cycles and Simple Cycles. Paths and Simple Paths. Trees. Problem: There is No Completely Standard Terminology! Outlin Computr Sin 331, Spnnin, n Surphs Mik Joson Dprtmnt o Computr Sin Univrsity o Clry Ltur #30 1 Introution 2 3 Dinition 4 Spnnin 5 6 Mik Joson (Univrsity o Clry) Computr Sin 331 Ltur #30 1 / 20 Mik

More information

Outline. Binary Tree

Outline. Binary Tree Outlin Similrity Srh Th Binry Brnh Distn Nikolus Austn nikolus.ustn@s..t Dpt. o Computr Sins Univrsity o Slzur http://rsrh.uni-slzur.t 1 Binry Brnh Distn Binry Rprsnttion o Tr Binry Brnhs Lowr Boun or

More information

EE1000 Project 4 Digital Volt Meter

EE1000 Project 4 Digital Volt Meter Ovrviw EE1000 Projt 4 Diitl Volt Mtr In this projt, w mk vi tht n msur volts in th rn o 0 to 4 Volts with on iit o ury. Th input is n nlo volt n th output is sinl 7-smnt iit tht tlls us wht tht input s

More information

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018

CSE 373: More on graphs; DFS and BFS. Michael Lee Wednesday, Feb 14, 2018 CSE 373: Mor on grphs; DFS n BFS Mihl L Wnsy, F 14, 2018 1 Wrmup Wrmup: Disuss with your nighor: Rmin your nighor: wht is simpl grph? Suppos w hv simpl, irt grph with x nos. Wht is th mximum numr of gs

More information

0.1. Exercise 1: the distances between four points in a graph

0.1. Exercise 1: the distances between four points in a graph Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 pg 1 Mth 707 Spring 2017 (Drij Grinrg): mitrm 3 u: W, 3 My 2017, in lss or y mil (grinr@umn.u) or lss S th wsit or rlvnt mtril. Rsults provn in th nots, or in

More information

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely

(2) If we multiplied a row of B by λ, then the value is also multiplied by λ(here lambda could be 0). namely . DETERMINANT.. Dtrminnt. Introution:I you think row vtor o mtrix s oorint o vtors in sp, thn th gomtri mning o th rnk o th mtrix is th imnsion o th prlllppi spnn y thm. But w r not only r out th imnsion,

More information

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura

Module graph.py. 1 Introduction. 2 Graph basics. 3 Module graph.py. 3.1 Objects. CS 231 Naomi Nishimura Moul grph.py CS 231 Nomi Nishimur 1 Introution Just lik th Python list n th Python itionry provi wys of storing, ssing, n moifying t, grph n viw s wy of storing, ssing, n moifying t. Bus Python os not

More information

Seven-Segment Display Driver

Seven-Segment Display Driver 7-Smnt Disply Drivr, Ron s in 7-Smnt Disply Drivr, Ron s in Prolm 62. 00 0 0 00 0000 000 00 000 0 000 00 0 00 00 0 0 0 000 00 0 00 BCD Diits in inry Dsin Drivr Loi 4 inputs, 7 outputs 7 mps, h with 6 on

More information

CS September 2018

CS September 2018 Loil los Distriut Systms 06. Loil los Assin squn numrs to msss All ooprtin prosss n r on orr o vnts vs. physil los: rport tim o y Assum no ntrl tim sour Eh systm mintins its own lol lo No totl orrin o

More information

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V

An undirected graph G = (V, E) V a set of vertices E a set of unordered edges (v,w) where v, w in V Unirt Grphs An unirt grph G = (V, E) V st o vrtis E st o unorr gs (v,w) whr v, w in V USE: to mol symmtri rltionships twn ntitis vrtis v n w r jnt i thr is n g (v,w) [or (w,v)] th g (v,w) is inint upon

More information

Designing A Concrete Arch Bridge

Designing A Concrete Arch Bridge This is th mous Shwnh ri in Switzrln, sin y Rort Millrt in 1933. It spns 37.4 mtrs (122 t) n ws sin usin th sm rphil mths tht will monstrt in this lsson. To pro with this lsson, lik on th Nxt utton hr

More information

CS 461, Lecture 17. Today s Outline. Example Run

CS 461, Lecture 17. Today s Outline. Example Run Prim s Algorithm CS 461, Ltur 17 Jr Si Univrsity o Nw Mxio In Prim s lgorithm, th st A mintin y th lgorithm orms singl tr. Th tr strts rom n ritrry root vrtx n grows until it spns ll th vrtis in V At h

More information

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS

COMPLEXITY OF COUNTING PLANAR TILINGS BY TWO BARS OMPLXITY O OUNTING PLNR TILINGS Y TWO RS KYL MYR strt. W show tht th prolm o trmining th numr o wys o tiling plnr igur with horizontl n vrtil r is #P-omplt. W uil o o th rsults o uquir, Nivt, Rmil, n Roson

More information

Garnir Polynomial and their Properties

Garnir Polynomial and their Properties Univrsity of Cliforni, Dvis Dprtmnt of Mthmtis Grnir Polynomil n thir Proprtis Author: Yu Wng Suprvisor: Prof. Gorsky Eugny My 8, 07 Grnir Polynomil n thir Proprtis Yu Wng mil: uywng@uvis.u. In this ppr,

More information

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp

CSE 373. Graphs 1: Concepts, Depth/Breadth-First Search reading: Weiss Ch. 9. slides created by Marty Stepp CSE 373 Grphs 1: Conpts, Dpth/Brth-First Srh ring: Wiss Ch. 9 slis rt y Mrty Stpp http://www.s.wshington.u/373/ Univrsity o Wshington, ll rights rsrv. 1 Wht is grph? 56 Tokyo Sttl Soul 128 16 30 181 140

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt o Computr n Inormtion Sins CSCI 2710 (Trno) Disrt Struturs TEST or Sprin Smstr, 2005 R this or strtin! This tst is los ook

More information

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008

The University of Sydney MATH2969/2069. Graph Theory Tutorial 5 (Week 12) Solutions 2008 Th Univrsity o Syny MATH2969/2069 Grph Thory Tutoril 5 (Wk 12) Solutions 2008 1. (i) Lt G th isonnt plnr grph shown. Drw its ul G, n th ul o th ul (G ). (ii) Show tht i G is isonnt plnr grph, thn G is

More information

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael.

ECE 407 Computer Aided Design for Electronic Systems. Circuit Modeling and Basic Graph Concepts/Algorithms. Instructor: Maria K. Michael. 0 Computr i Dsign or Eltroni Systms Ciruit Moling n si Grph Conptslgorithms Instrutor: Mri K. Mihl MKM - Ovrviw hviorl vs. Struturl mols Extrnl vs. Intrnl rprsnttions Funtionl moling t Logi lvl Struturl

More information

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms

learning objectives learn what graphs are in mathematical terms learn how to represent graphs in computers learn about typical graph algorithms rp loritms lrnin ojtivs loritms your sotwr systm sotwr rwr lrn wt rps r in mtmtil trms lrn ow to rprsnt rps in omputrs lrn out typil rp loritms wy rps? intuitivly, rp is orm y vrtis n s twn vrtis rps r

More information

Similarity Search. The Binary Branch Distance. Nikolaus Augsten.

Similarity Search. The Binary Branch Distance. Nikolaus Augsten. Similrity Srh Th Binry Brnh Distn Nikolus Augstn nikolus.ugstn@sg..t Dpt. of Computr Sins Univrsity of Slzurg http://rsrh.uni-slzurg.t Vrsion Jnury 11, 2017 Wintrsmstr 2016/2017 Augstn (Univ. Slzurg) Similrity

More information

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs

Organization. Dominators. Control-flow graphs 8/30/2010. Dominators, control-dependence. Dominator relation of CFGs Orniztion Domintors, ontrol-pnn n SSA orm Domintor rltion o CFGs postomintor rltion Domintor tr Computin omintor rltion n tr Dtlow lorithm Lnur n Trjn lorithm Control-pnn rltion SSA orm Control-low rphs

More information

CS 241 Analysis of Algorithms

CS 241 Analysis of Algorithms CS 241 Anlysis o Algorithms Prossor Eri Aron Ltur T Th 9:00m Ltur Mting Lotion: OLB 205 Businss HW6 u lry HW7 out tr Thnksgiving Ring: Ch. 22.1-22.3 1 Grphs (S S. B.4) Grphs ommonly rprsnt onntions mong

More information

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1.

Why the Junction Tree Algorithm? The Junction Tree Algorithm. Clique Potential Representation. Overview. Chris Williams 1. Why th Juntion Tr lgorithm? Th Juntion Tr lgorithm hris Willims 1 Shool of Informtis, Univrsity of Einurgh Otor 2009 Th JT is gnrl-purpos lgorithm for omputing (onitionl) mrginls on grphs. It os this y

More information

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph

Algorithmic and NP-Completeness Aspects of a Total Lict Domination Number of a Graph Intrntionl J.Mth. Comin. Vol.1(2014), 80-86 Algorithmi n NP-Compltnss Aspts of Totl Lit Domintion Numr of Grph Girish.V.R. (PES Institut of Thnology(South Cmpus), Bnglor, Krntk Stt, Ini) P.Ush (Dprtmnt

More information

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013

Exam 1 Solution. CS 542 Advanced Data Structures and Algorithms 2/14/2013 CS Avn Dt Struturs n Algorithms Exm Solution Jon Turnr //. ( points) Suppos you r givn grph G=(V,E) with g wights w() n minimum spnning tr T o G. Now, suppos nw g {u,v} is to G. Dsri (in wors) mtho or

More information

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am

16.unified Introduction to Computers and Programming. SOLUTIONS to Examination 4/30/04 9:05am - 10:00am 16.unii Introution to Computrs n Prormmin SOLUTIONS to Exmintion /30/0 9:05m - 10:00m Pro. I. Kristin Lunqvist Sprin 00 Grin Stion: Qustion 1 (5) Qustion (15) Qustion 3 (10) Qustion (35) Qustion 5 (10)

More information

QUESTIONS BEGIN HERE!

QUESTIONS BEGIN HERE! Points miss: Stunt's Nm: Totl sor: /100 points Est Tnnss Stt Univrsity Dprtmnt of Computr n Informtion Sins CSCI 710 (Trnoff) Disrt Struturs TEST for Fll Smstr, 00 R this for strtin! This tst is los ook

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} Introution Computr Sin & Enginring 423/823 Dsign n Anlysis of Algorithms Ltur 03 Elmntry Grph Algorithms (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) I Grphs r strt t typs tht r pplil to numrous

More information

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s?

b. How many ternary words of length 23 with eight 0 s, nine 1 s and six 2 s? MATH 3012 Finl Exm, My 4, 2006, WTT Stunt Nm n ID Numr 1. All our prts o this prolm r onrn with trnry strings o lngth n, i.., wors o lngth n with lttrs rom th lpht {0, 1, 2}.. How mny trnry wors o lngth

More information

CSC Design and Analysis of Algorithms. Example: Change-Making Problem

CSC Design and Analysis of Algorithms. Example: Change-Making Problem CSC 801- Dsign n Anlysis of Algorithms Ltur 11 Gry Thniqu Exmpl: Chng-Mking Prolm Givn unlimit mounts of oins of nomintions 1 > > m, giv hng for mount n with th lst numr of oins Exmpl: 1 = 25, 2 =10, =

More information

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Paths. Connectivity. Euler and Hamilton Paths. Planar graphs. Pths.. Eulr n Hmilton Pths.. Pth D. A pth rom s to t is squn o gs {x 0, x 1 }, {x 1, x 2 },... {x n 1, x n }, whr x 0 = s, n x n = t. D. Th lngth o pth is th numr o gs in it. {, } {, } {, } {, } {, } {,

More information

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT

Complete Solutions for MATH 3012 Quiz 2, October 25, 2011, WTT Complt Solutions or MATH 012 Quiz 2, Otor 25, 2011, WTT Not. T nswrs ivn r r mor omplt tn is xpt on n tul xm. It is intn tt t mor omprnsiv solutions prsnt r will vlul to stunts in stuyin or t inl xm. In

More information

Planar Upward Drawings

Planar Upward Drawings C.S. 252 Pro. Rorto Tmssi Computtionl Gomtry Sm. II, 1992 1993 Dt: My 3, 1993 Sri: Shmsi Moussvi Plnr Upwr Drwings 1 Thorm: G is yli i n only i it hs upwr rwing. Proo: 1. An upwr rwing is yli. Follow th

More information

Trees as operads. Lecture A formalism of trees

Trees as operads. Lecture A formalism of trees Ltur 2 rs s oprs In this ltur, w introu onvnint tgoris o trs tht will us or th inition o nroil sts. hs tgoris r gnrliztions o th simpliil tgory us to in simpliil sts. First w onsir th s o plnr trs n thn

More information

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017

MAT3707. Tutorial letter 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS. Semester 1. Department of Mathematical Sciences MAT3707/201/1/2017 MAT3707/201/1/2017 Tutoril lttr 201/1/2017 DISCRETE MATHEMATICS: COMBINATORICS MAT3707 Smstr 1 Dprtmnt o Mtmtil Sins SOLUTIONS TO ASSIGNMENT 01 BARCODE Din tomorrow. univrsity o sout ri SOLUTIONS TO ASSIGNMENT

More information

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)}

V={A,B,C,D,E} E={ (A,D),(A,E),(B,D), (B,E),(C,D),(C,E)} s s of s Computr Sin & Enginring 423/823 Dsign n Anlysis of Ltur 03 (Chptr 22) Stphn Sott (Apt from Vinohnrn N. Vriym) s of s s r strt t typs tht r pplil to numrous prolms Cn ptur ntitis, rltionships twn

More information

Problem solving by search

Problem solving by search Prolm solving y srh Tomáš voo Dprtmnt o Cyrntis, Vision or Roots n Autonomous ystms Mrh 5, 208 / 3 Outlin rh prolm. tt sp grphs. rh trs. trtgis, whih tr rnhs to hoos? trtgy/algorithm proprtis? Progrmming

More information

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review

CSE 373: AVL trees. Warmup: Warmup. Interlude: Exploring the balance invariant. AVL Trees: Invariants. AVL tree invariants review rmup CSE 7: AVL trs rmup: ht is n invrint? Mihl L Friy, Jn 9, 0 ht r th AVL tr invrints, xtly? Disuss with your nighor. AVL Trs: Invrints Intrlu: Exploring th ln invrint Cor i: xtr invrint to BSTs tht

More information

Multipoint Alternate Marking method for passive and hybrid performance monitoring

Multipoint Alternate Marking method for passive and hybrid performance monitoring Multipoint Altrnt Mrkin mtho or pssiv n hyri prormn monitorin rt-iool-ippm-multipoint-lt-mrk-00 Pru, Jul 2017, IETF 99 Giuspp Fiool (Tlom Itli) Muro Coilio (Tlom Itli) Amo Spio (Politnio i Torino) Riro

More information

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2

Graph Isomorphism. Graphs - II. Cayley s Formula. Planar Graphs. Outline. Is K 5 planar? The number of labeled trees on n nodes is n n-2 Grt Thortil Is In Computr Sin Vitor Amhik CS 15-251 Ltur 9 Grphs - II Crngi Mllon Univrsity Grph Isomorphism finition. Two simpl grphs G n H r isomorphi G H if thr is vrtx ijtion V H ->V G tht prsrvs jny

More information

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas

Using the Printable Sticker Function. Using the Edit Screen. Computer. Tablet. ScanNCutCanvas SnNCutCnvs Using th Printl Stikr Funtion On-o--kin stikrs n sily rt y using your inkjt printr n th Dirt Cut untion o th SnNCut mhin. For inormtion on si oprtions o th SnNCutCnvs, rr to th Hlp. To viw th

More information

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA.

S i m p l i f y i n g A l g e b r a SIMPLIFYING ALGEBRA. S i m p l i y i n g A l g r SIMPLIFYING ALGEBRA www.mthltis.o.nz Simpliying SIMPLIFYING Algr ALGEBRA Algr is mthmtis with mor thn just numrs. Numrs hv ix vlu, ut lgr introus vrils whos vlus n hng. Ths

More information

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f

N=4 L=4. Our first non-linear data structure! A graph G consists of two sets G = {V, E} A set of V vertices, or nodes f lulu jwtt pnlton sin towr ounrs hpl lpp lu Our irst non-linr t strutur! rph G onsists o two sts G = {V, E} st o V vrtis, or nos st o E s, rltionships twn nos surph G onsists o sust o th vrtis n s o G jnt

More information

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes.

Math 61 : Discrete Structures Final Exam Instructor: Ciprian Manolescu. You have 180 minutes. Nm: UCA ID Numr: Stion lttr: th 61 : Disrt Struturs Finl Exm Instrutor: Ciprin nolsu You hv 180 minuts. No ooks, nots or lultors r llow. Do not us your own srth ppr. 1. (2 points h) Tru/Fls: Cirl th right

More information

A Graph-Based Synthesis Algorithm for AND/XOR Networks 1. Yibin Ye Kaushik Roy. a minimum ESOP of a function except for those with

A Graph-Based Synthesis Algorithm for AND/XOR Networks 1. Yibin Ye Kaushik Roy. a minimum ESOP of a function except for those with A Grph-Bs Synthsis Algorithm or AND/XOR Ntworks Yibin Y Kushik Roy Shool o Eltril n Computr Enginring Puru Univrsity, Wst Lytt, IN 4797-285, USA Abstrt In this ppr, w introu Shr Multipl Root XORbs Domposition

More information

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals

Integration Continued. Integration by Parts Solving Definite Integrals: Area Under a Curve Improper Integrals Intgrtion Continud Intgrtion y Prts Solving Dinit Intgrls: Ar Undr Curv Impropr Intgrls Intgrtion y Prts Prticulrly usul whn you r trying to tk th intgrl o som unction tht is th product o n lgric prssion

More information

Section 10.4 Connectivity (up to paths and isomorphism, not including)

Section 10.4 Connectivity (up to paths and isomorphism, not including) Toy w will isuss two stions: Stion 10.3 Rprsnting Grphs n Grph Isomorphism Stion 10.4 Conntivity (up to pths n isomorphism, not inluing) 1 10.3 Rprsnting Grphs n Grph Isomorphism Whn w r working on n lgorithm

More information

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths.

# 1 ' 10 ' 100. Decimal point = 4 hundred. = 6 tens (or sixty) = 5 ones (or five) = 2 tenths. = 7 hundredths. How os it work? Pl vlu o imls rprsnt prts o whol numr or ojt # 0 000 Tns o thousns # 000 # 00 Thousns Hunrs Tns Ons # 0 Diml point st iml pl: ' 0 # 0 on tnth n iml pl: ' 0 # 00 on hunrth r iml pl: ' 0

More information

(a) v 1. v a. v i. v s. (b)

(a) v 1. v a. v i. v s. (b) Outlin RETIMING Struturl optimiztion mthods. Gionni D Mihli Stnford Unirsity Rtiming. { Modling. { Rtiming for minimum dly. { Rtiming for minimum r. Synhronous Logi Ntwork Synhronous Logi Ntwork Synhronous

More information

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW

XML and Databases. Outline. Recall: Top-Down Evaluation of Simple Paths. Recall: Top-Down Evaluation of Simple Paths. Sebastian Maneth NICTA and UNSW Smll Pth Quiz ML n Dtss Cn you giv n xprssion tht rturns th lst / irst ourrn o h istint pri lmnt? Ltur 8 Strming Evlution: how muh mmory o you n? Sstin Mnth NICTA n UNSW

More information

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem)

12/3/12. Outline. Part 10. Graphs. Circuits. Euler paths/circuits. Euler s bridge problem (Bridges of Konigsberg Problem) 12/3/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 Ciruits Cyl 2 Eulr

More information

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs

5/9/13. Part 10. Graphs. Outline. Circuits. Introduction Terminology Implementing Graphs Prt 10. Grphs CS 200 Algorithms n Dt Struturs 1 Introution Trminology Implmnting Grphs Outlin Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 2 Ciruits Cyl A spil yl

More information

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12

CS61B Lecture #33. Administrivia: Autograder will run this evening. Today s Readings: Graph Structures: DSIJ, Chapter 12 Aministrivi: CS61B Ltur #33 Autogrr will run this vning. Toy s Rings: Grph Struturs: DSIJ, Chptr 12 Lst moifi: W Nov 8 00:39:28 2017 CS61B: Ltur #33 1 Why Grphs? For xprssing non-hirrhilly rlt itms Exmpls:

More information

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then:

DFA Minimization. DFA minimization: the idea. Not in Sipser. Background: Questions: Assignments: Previously: Today: Then: Assinmnts: DFA Minimiztion CMPU 24 Lnu Tory n Computtion Fll 28 Assinmnt 3 out toy. Prviously: Computtionl mols or t rulr lnus: DFAs, NFAs, rulr xprssions. Toy: How o w in t miniml DFA or lnu? Tis is t

More information

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality:

CS200: Graphs. Graphs. Directed Graphs. Graphs/Networks Around Us. What can this represent? Sometimes we want to represent directionality: CS2: Grphs Prihr Ch. 4 Rosn Ch. Grphs A olltion of nos n gs Wht n this rprsnt? n A omputr ntwork n Astrtion of mp n Soil ntwork CS2 - Hsh Tls 2 Dirt Grphs Grphs/Ntworks Aroun Us A olltion of nos n irt

More information

Graph Contraction and Connectivity

Graph Contraction and Connectivity Chptr 17 Grph Contrtion n Conntivity So r w hv mostly ovr thniqus or solving prolms on grphs tht wr vlop in th ontxt o squntil lgorithms. Som o thm r sy to prllliz whil othrs r not. For xmpl, w sw tht

More information

Round 7: Graphs (part I)

Round 7: Graphs (part I) Roun 7: Grphs (prt I) Tommi Junttil Alto Univrsity Shool o Sin Dprtmnt o Computr Sin CS-A40 Dt Struturs n Alorithms Autumn 207 Tommi Junttil (Alto Univrsity) Roun 7 CS-A40 / Autumn 207 / 55 Topis: Grphs

More information

12. Traffic engineering

12. Traffic engineering lt2.ppt S-38. Introution to Tltrffi Thory Spring 200 2 Topology Pths A tlommunition ntwork onsists of nos n links Lt N not th st of nos in with n Lt J not th st of nos in with j N = {,,,,} J = {,2,3,,2}

More information

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1

Graphs. Graphs. Graphs: Basic Terminology. Directed Graphs. Dr Papalaskari 1 CSC 00 Disrt Struturs : Introuon to Grph Thory Grphs Grphs CSC 00 Disrt Struturs Villnov Univrsity Grphs r isrt struturs onsisng o vrs n gs tht onnt ths vrs. Grphs n us to mol: omputr systms/ntworks mthml

More information

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata

A 4-state solution to the Firing Squad Synchronization Problem based on hybrid rule 60 and 102 cellular automata A 4-stt solution to th Firing Squ Synhroniztion Prolm s on hyri rul 60 n 102 llulr utomt LI Ning 1, LIANG Shi-li 1*, CUI Shung 1, XU Mi-ling 1, ZHANG Ling 2 (1. Dprtmnt o Physis, Northst Norml Univrsity,

More information

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016

Greedy Algorithms, Activity Selection, Minimum Spanning Trees Scribes: Logan Short (2015), Virginia Date: May 18, 2016 Ltur 4 Gry Algorithms, Ativity Sltion, Minimum Spnning Trs Sris: Logn Short (5), Virgini Dt: My, Gry Algorithms Suppos w wnt to solv prolm, n w r l to om up with som rursiv ormultion o th prolm tht woul

More information

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem

5/7/13. Part 10. Graphs. Theorem Theorem Graphs Describing Precedence. Outline. Theorem 10-1: The Handshaking Theorem Thorm 10-1: Th Hnshkin Thorm Lt G=(V,E) n unirt rph. Thn Prt 10. Grphs CS 200 Alorithms n Dt Struturs v V (v) = 2 E How mny s r thr in rph with 10 vrtis h of r six? 10 * 6 /2= 30 1 Thorm 10-2 An unirt

More information

OpenMx Matrices and Operators

OpenMx Matrices and Operators OpnMx Mtris n Oprtors Sr Mln Mtris: t uilin loks Mny typs? Dnots r lmnt mxmtrix( typ= Zro", nrow=, nol=, nm="" ) mxmtrix( typ= Unit", nrow=, nol=, nm="" ) mxmtrix( typ= Int", nrow=, nol=, nm="" ) mxmtrix(

More information

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation

A Simple Code Generator. Code generation Algorithm. Register and Address Descriptors. Example 3/31/2008. Code Generation A Simpl Co Gnrtor Co Gnrtion Chptr 8 II Gnrt o for singl si lok How to us rgistrs? In most mhin rhitturs, som or ll of th oprnsmust in rgistrs Rgistrs mk goo tmporris Hol vlus tht r omput in on si lok

More information

Numbering Boundary Nodes

Numbering Boundary Nodes Numring Bounry Nos Lh MBri Empori Stt Univrsity August 10, 2001 1 Introution Th purpos of this ppr is to xplor how numring ltril rsistor ntworks ffts thir rspons mtrix, Λ. Morovr, wht n lrn from Λ out

More information

Limits Indeterminate Forms and L Hospital s Rule

Limits Indeterminate Forms and L Hospital s Rule Limits Indtrmint Forms nd L Hospitl s Rul I Indtrmint Form o th Tp W hv prviousl studid its with th indtrmint orm s shown in th ollowin mpls: Empl : Empl : tn [Not: W us th ivn it ] Empl : 8 h 8 [Not:

More information

Tableau algorithms defined naturally for pictures

Tableau algorithms defined naturally for pictures 1 Introution Tblu lorithms in nturlly or piturs Mr A. A. vn Luwn CWI Kruisln 413 1098 SJ Amstrm Th Nthrlns mil: M.vn.Luwn@wi.nl Abstrt W onsir piturs s in in [Zl1]. W lbort on th nrlistion o th Robinson-Shnst

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

BDD-BASED LOGIC OPTIMIZATION SYSTEM

BDD-BASED LOGIC OPTIMIZATION SYSTEM -ASE LOGIC OPTIMIZATION SYSTEM Conun Yn Mij Cisilski urry 2 TR-CSE-- yn,isils.umss.u prtmnt o Eltril n Computr Eninrin Univrsity o Msshustts Amhrst, MA 3 YANG AN CIESIELSKI: -ASE LOGIC OPTIMIZATION SYSTEM

More information

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem)

Outline. Circuits. Euler paths/circuits 4/25/12. Part 10. Graphs. Euler s bridge problem (Bridges of Konigsberg Problem) 4/25/12 Outlin Prt 10. Grphs CS 200 Algorithms n Dt Struturs Introution Trminology Implmnting Grphs Grph Trvrsls Topologil Sorting Shortst Pths Spnning Trs Minimum Spnning Trs Ciruits 1 2 Eulr s rig prolm

More information

CMSC 451: Lecture 2 Graph Basics Thursday, Aug 31, 2017

CMSC 451: Lecture 2 Graph Basics Thursday, Aug 31, 2017 Dv Mount CMSC 45: Ltur Grph Bsis Thursy, Au, 07 Rin: Chpt. in KT (Klinr n Tros) n Chpt. in DBV (Dsupt, Ppimitriou, n Vzirni). Som o our trminoloy irs rom our txt. Grphs n Dirphs: A rph G = (V, E) is strutur

More information

Decimals DECIMALS.

Decimals DECIMALS. Dimls DECIMALS www.mthltis.o.uk ow os it work? Solutions Dimls P qustions Pl vlu o imls 0 000 00 000 0 000 00 0 000 00 0 000 00 0 000 tnths or 0 thousnths or 000 hunrths or 00 hunrths or 00 0 tn thousnths

More information

Yehuda Lindell Bar-Ilan University

Yehuda Lindell Bar-Ilan University Wintr Shool on Sur Computtion n iiny Br-Iln Unirsity, Isrl 3//2-/2/2 Br Iln Unirsity Dpt. o Computr Sin Yhu Linll Br-Iln Unirsity Br Iln Unirsity Dpt. o Computr Sin Protool or nrl sur to-prty omputtion

More information

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings

SAMPLE PAGES. Primary. Primary Maths Basics Series THE SUBTRACTION BOOK. A progression of subtraction skills. written by Jillian Cockings PAGES Primry Primry Mths Bsis Sris THE SUBTRACTION BOOK A prorssion o sutrtion skills writtn y Jillin Cokins INTRODUCTION This ook is intn to hlp sur th mthmtil onpt o sutrtion in hilrn o ll s. Th mstry

More information

Logic Redundancy Identication. September 14, target specic faults and are sometimes referred to as. \fault-independent methods.

Logic Redundancy Identication. September 14, target specic faults and are sometimes referred to as. \fault-independent methods. Fix-Vlu n Stm Unosrvility Thorms or Loi Runny Intition Sptmr 14, 2003 Astrt { Thr is lss o implition-s mthos tht intiy loi runny rom iruit topoloy n without ny primry input ssinmnt. Ths mthos r lss omplx

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari

Graphs. CSC 1300 Discrete Structures Villanova University. Villanova CSC Dr Papalaskari Grphs CSC 1300 Disrt Struturs Villnov Univrsity Grphs Grphs r isrt struturs onsis?ng of vr?s n gs tht onnt ths vr?s. Grphs n us to mol: omputr systms/ntworks mthm?l rl?ons logi iruit lyout jos/prosss f

More information

Liqiong Wei, Zhanping Chen, and Kaushik Roy. Yibin Ye and Vivek De. logic circuits more feasible.

Liqiong Wei, Zhanping Chen, and Kaushik Roy. Yibin Ye and Vivek De. logic circuits more feasible. _ Mix-V th (MVT) CMOS Ciruit Dsin Mthooloy or Low Powr Applitions Liqion Wi, Zhnpin Chn, n Kushik Roy Shool o Eltril n Computr Eninrin Puru Univrsity, W. Lytt, IN 47907-1285 Yiin Y n Vivk D Intl Corp.,

More information

BDD-BASED LOGIC OPTIMIZATION SYSTEM

BDD-BASED LOGIC OPTIMIZATION SYSTEM BDD-BASED LOGIC OPTIMIZATION SYSTEM Conun Yn Mij Cisilski urry 2 TR-CSE-- yn,isil@s.umss.u Dprtmnt o Eltril n Computr Eninrin Univrsity o Msshustts Amhrst, MA 3 YANG AND CIESIELSKI: BDD-BASED LOGIC OPTIMIZATION

More information

New challenges on Independent Gate FinFET Transistor Network Generation

New challenges on Independent Gate FinFET Transistor Network Generation Nw hllngs on Inpnnt Gt FinFET Trnsistor Ntwork Gnrtion Viniius N. Possni, Anré I. Ris, Rnto P. Ris, Flip S. Mrqus, Lomr S. Ros Junior Thnology Dvlopmnt Cntr, Frl Univrsity o Plots, Plots, Brzil Institut

More information

for Performance Potsdam, NY Urbana, IL can be connected to the inputs and outputs of the LUT to

for Performance Potsdam, NY Urbana, IL can be connected to the inputs and outputs of the LUT to Thnoloy Mppin o Squntil Ciruits or LUT-s FPGAs or Prormn Pihn Pn C. L. Liu Dpt. o Eltril & Computr En. Dpt. o Computr Sin Clrkson Univrsity Univrsity o Illinois t Urn-Chmpin Potsm, NY 13699 Urn, IL 61801

More information

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4

Math 166 Week in Review 2 Sections 1.1b, 1.2, 1.3, & 1.4 Mt 166 WIR, Sprin 2012, Bnjmin urisp Mt 166 Wk in Rviw 2 Stions 1.1, 1.2, 1.3, & 1.4 1. S t pproprit rions in Vnn irm tt orrspon to o t ollowin sts. () (B ) B () ( ) B B () (B ) B 1 Mt 166 WIR, Sprin 2012,

More information

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan

SOLVED EXAMPLES. be the foci of an ellipse with eccentricity e. For any point P on the ellipse, prove that. tan LOCUS 58 SOLVED EXAMPLES Empl Lt F n F th foci of n llips with ccntricit. For n point P on th llips, prov tht tn PF F tn PF F Assum th llips to, n lt P th point (, sin ). P(, sin ) F F F = (-, 0) F = (,

More information

Fundamental Algorithms for System Modeling, Analysis, and Optimization

Fundamental Algorithms for System Modeling, Analysis, and Optimization Fundmntl Algorithms for Sstm Modling, Anlsis, nd Optimiztion Edwrd A. L, Jijt Rohowdhur, Snjit A. Sshi UC Brkl EECS 144/244 Fll 2011 Copright 2010-11, E. A. L, J. Rohowdhur, S. A. Sshi, All rights rsrvd

More information

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions

Grade 7/8 Math Circles March 4/5, Graph Theory I- Solutions ulty o Mtmtis Wtrloo, Ontrio N ntr or ution in Mtmtis n omputin r / Mt irls Mr /, 0 rp Tory - Solutions * inits lln qustion. Tr t ollowin wlks on t rp low. or on, stt wtr it is pt? ow o you know? () n

More information

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c

Chapter 18. Minimum Spanning Trees Minimum Spanning Trees. a d. a d. a d. f c Chptr 8 Minimum Spnning Trs In this hptr w ovr importnt grph prolm, Minimum Spnning Trs (MST). Th MST o n unirt, wight grph is tr tht spns th grph whil minimizing th totl wight o th gs in th tr. W irst

More information

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13

RAM Model. I/O Model. Real Machine Example: Nehalem : Algorithms in the Real World 4/9/13 4//3 RAM Mol 5-853: Algorithms in th Rl Worl Lolity I: Ch-wr lgorithms Introution Sorting List rnking B-trs Bur trs Stnr thortil mol or nlyzing lgorithms: Ininit mmory siz Uniorm ss ost Evlut n lgorithm

More information

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal?

NP-Completeness. CS3230 (Algorithm) Traveling Salesperson Problem. What s the Big Deal? Given a Problem. What s the Big Deal? What s the Big Deal? NP-Compltnss 1. Polynomil tim lgorithm 2. Polynomil tim rution 3.P vs NP 4.NP-ompltnss (som slis y P.T. Um Univrsity o Txs t Dlls r us) Trvling Slsprson Prolm Fin minimum lngth tour tht visits h ity on

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

MULTIPLE-LEVEL LOGIC OPTIMIZATION II

MULTIPLE-LEVEL LOGIC OPTIMIZATION II MUTIPE-EVE OGIC OPTIMIZATION II Booln mthos Eploit Booln proprtis Giovnni D Mihli Don t r onitions Stnfor Univrsit Minimition of th lol funtions Slowr lgorithms, ttr qulit rsults Etrnl on t r onitions

More information

Steinberg s Conjecture is false

Steinberg s Conjecture is false Stinrg s Conjtur is als arxiv:1604.05108v2 [math.co] 19 Apr 2016 Vinnt Cohn-Aa Mihal Hig Danil Král Zhntao Li Estan Salgao Astrat Stinrg onjtur in 1976 that vry planar graph with no yls o lngth our or

More information

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski

DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Leslie Rogalski Dut with Dimons Brlt DUET WITH DIAMONDS COLOR SHIFTING BRACELET By Lsli Roglski Photo y Anrw Wirth Supruo DUETS TM from BSmith rt olor shifting fft tht mks your work tk on lif of its own s you mov! This

More information