Kriging approach for the experimental cross-section covariances estimation

Size: px
Start display at page:

Download "Kriging approach for the experimental cross-section covariances estimation"

Transcription

1 EPJ Web of Conferences, () DOI:./ epjconf/ C Owned by te autors, publised by EDP Sciences, Kriging approac for te experimental cross-section covariances estimation S. Varet,a, P. Dossantos-Uzarralde, N. Vayatis, A. Garlaud, and E. Bauge CEA-DAM-DIF, 9 Arpajon Cedex ENS Cacan ENSIIE Abstract. In te classical use of a generalized χ to determine te evaluated cross section uncertainty, we need te covariance matrix of te experimental cross sections. Te usual propagation error metod to estimate te covariances is ardly usable and te lack of data prevents from using te direct empirical estimator. We propose in tis paper to apply te kriging metod wic allows to estimate te covariances via te distances between te points and wit some assumptions on te covariance matrix structure. All te results are illustrated wit te Mn nucleus measurements. Introduction Te use of a generalized χ for te evaluated cross section uncertainty determination needs to take into account te correlations and te uncertainties of te experimental measurements. As te covariances are not provided, we need to estimate te covariance matrix Σ F of te experimental cross sections wit its inverse. As in many cases only one measure per energy is available te direct empirical estimator is not available and te classical metod of error propagation [] is rarely usable due to te lack of information on te experimental parameters and due to te linearity assumption tat is not fullfilled. Te kriging is a valuable tool for covariances evaluation under te stationnarity assumption (constant mean, constant variance and covariances unvariant by translation) ([],[] and []). Here tis metod is introduced in te field of experimental cross-section covariances determination. Most of te time and until now, we dispose of only one measurement per energy. In tis case kriging is appropriate since it is a linear interpolation metod. Te aim of tis work is to estimate te experimental covariances troug te kriging. Te particularity of tis metod is tat te coefficients of te linear decomposition are determined wit wat we call te variogram. Te variogram is a continuous function wic depends on te distance (on te x axis in dimension ) of te data to interpolate. Under some assumptions, like te second order stationarity of te data, we can rely on te covariance function and te variogram. Tus, te resulting kriging model depends on te data covariance matrix and in particular it depends on te inverse covariance matrix. Te covariance matrix is estimated troug te estimation of te variogram. As te inverse covariance matrix is needed, te covariance matrix estimation must be invertible. In te litterature some functions for te variogram are known to lead to an invertible covariance matrix. Terefore in te kriging metod te covariance matrix is estimated in adjusting a parametrical function to te empirical variogram. a suzanne.varet@cea.fr Tis is an Open Access article distributed under te terms of te Creative Commons Attribution License., wic permits unrestricted use, distribution, and reproduction in any medium, provided te original work is properly cited. Article available at ttp:// or ttp://dx.doi.org/./epjconf/

2 EPJ Web of Conferences Here, we illustrate tis approac wit real data measurement of Mn nucleus. In te next section we introduce te needed notations. We present te kriging for te covariance evaluation in te tird section. Te entire approac is illustrated in te case of te Mn nucleus in te fourt section. Notations We assume tat te response (in our case te experimental cross-section) is a stocastic process, writen F (E), wic depends on te s-dimensional variable E (in our case s = and E is te energy) and tat we observe only at a finite number N of points E j, j =,..., N. We write F = (F,..., F N ) t te random vector of te measured cross section at te N distinct energies. Te covariance matrix of F is denoted by Σ F. We assume tat we can observe one realisation of te F vector tat we write F mes,..., F mes N. Te kriging Te kriging is a linear interpolation metod. More precisely te kriging metod supposes tat we can write te response (in our case te experimental cross section) at a given point E E (in our case at a fixed energy) as a linear combination of te observed responses F mes,..., F mes F (E) = i= λ i F mes i. In order to find te coefficients λ i, i =,..., N, we suppose tat we can write te experimental cross section F (E) = µ(e) + δ(e) were µ(e) is a deterministic component wic represents te trend function and δ(e) is a centered stocastic process wic represents te residuals. In te simple kriging µ(e) is assumed to be a known constant, in te ordinary kriging µ(e) is assumed to be an unknown constant and in te universal kriging µ(e) is assumed to be a linear combination of functions wic depend on te position E tat must be estimated. As a first approximation we suppose in tis paper tat we are in te ordinary kriging case. Te coefficients λ i, i =,..., N are estimated in minimising te variance of te prediction wit a non bias constraint. To deal wit te unicity of te observation at a given point E i, te kriging imposes a stationarity assumption on F (E) (or equivalently in te ordinary kriging case on δ(e)). In kriging, tere is two types of stationnarity assumptions: te second order stationnarity (constant mean and covariance invariant by translation) and te intrinsic stationarity (te increment process as a constant mean and a variance invariant by translation). If F (E) is assumed to be a second order stationary process ten it is a intrinsic stationary process but te inverse is not true in general. Te variogram γ is define as te variance of te increment process: N : = Var(F (E + ) F (E)). () We assume now tat F (E) is a second order stationary process. Tat is { IE(F (E)) = m E E Cov(F (E + ), F (E)) = C() E, E + E. Te C function is te covariance function also called te covariogram. Under te second order stationarity assumption, te covariogram can be relied on te variogram by te following equation = (C() C()). () () t denotes te transpose of a vector. () -p.

3 WONDER- Tis relation is a convenient way for te covariances estimation. Tus, for te experimental cross section covariances estimation, we assume tat F (E) is a second order stationary process. Now we must estimate te variogram γ. Te empirical estimation ˆγ of γ is ˆ = D() (i,j) D() (F mes i F mes j ) () were D() = {(i, j) N suc tat E i E j = } and D() is te cardinal of D(). Te value C() is te variance of F (E) (assumed constant by te second order stationarity ypotesis) estimated by were F = N i= F mes i ˆσ = N i= (F mes i F ) () is te empirical mean. Ten we can estimate te covariances by Ĉ() = ˆσ ˆ. However te obtained matrix can be non invertible. Moreover we need a continuous covariance function in order to interpolate at energies were no measurement ave been done. In te litterature some continuous functions for te covariogram are known to lead to an invertible covariance matrix. Terefore we must find te most adapted covariogram function to te empirical variogram. In tis paper we ave used te exponential, gaussian and sperical functions: ( exponential: C θ () = σ exp gaussian: C θ () = σ exp θ ( ) θ ) sperical: C θ () = if > θ and C θ () = σ ( θ + ( θ )) oterwise. Te covariance matrix estimation Σ F is ten given by: C θ () C θ ( )... C θ ( N ) Σ F = () C θ ( N ) C θ ( N )... C θ () Te kriging model F is ten given, in minimising te mean square error, by: F mes m F (E) = m + (C θ ( E E ),..., C θ ( E E N )) Σ F.. m F mes N Application to te M n nucleus We present in tis section te results of te variogram study for te M n nucleus measurements. Te measurements of te total and te (n,γ) cross sections are extracted from te EXFOR database ([]) and te (n,n) cross sections measurements are extracted from []. Please note tat in order to prevent from te effect of ig variations in te energy range and in te cross section range, we center and reduce te data. Ten we calibrate te variogram model to te empirical variogram of te reduced data. Note also tat wen te number of measurements is ig enoug, in order to find a compromise between te D() cardinal and te ˆγ sample size, we introduce a tolerance ε (a positive real) on te distance in te D() definition. Tat is D ε () = {(i, j) N suc tat ε E i E j + ε}. Te variogram -p.

4 EPJ Web of Conferences model parameters are calibrated via a cross validation wit te estimation of te mean square error as criterion: mse(ˆγ, γ) = H (ˆγ( k ) γ( k )) H k= were H is te ˆγ sample size. For te M n (n,n), total and (n,γ) cross sections, te empirical variogram and te tree variogram models (exponential, gaussian and sperical) are illustrated on figures (a) (a) and (a) respectively. For eac of tese cross sections, te covariance matrix associated to te lowest mean square error model is represented ((b) (b) and (b) respectively). For te Mn (n,n) cross section, te covariance matrix obtained wit te variogram calibration seems to indicate tat te correlations are iger at ig energies. In te contrary, te Mn (n,γ) covariance matrix seems to indicate tat te correlations are iger at low energies. Finally, in te case of te total cross section, te correlations seems similar for all energies. Empirical variogram (tolerance = ) Exponential model (θ = ) Gaussian model (θ =.) Sperical model (θ = )... (a) Empirical variogram for te Mn (n,n) (b) Covariance matrix for te Mn (n,n) cross section wit gaussian model.. Fig.. Variogram and covariance matrix for te Mn (n,n)... empirical variogram exponential model gaussian model sperical model (a) Empirical variogram for te Mn total (b) Covariance matrix for te Mn total cross section wit exponential model. Fig.. Variogram and covariance matrix for te Mn total -p.

5 WONDER-.. Empirical variogram (tolerance =.8) Exponential model (θ =.) Gaussian model (θ =.) Sperical model (θ =.) x (a) Empirical variogram for te Mn (n,γ) (b) Covariance matrix for te Mn (n,γ) cross section wit sperical model. Fig.. Variogram and covariance matrix for te Mn (n,γ) Conclusion In tis paper an ordinary kriging metod for experimental cross section covariance matrix estimation as been presented. Te aim of tis work is to apply tis metod to observed experimental cross section data. We focus on te situation were te lack of measurements prevents from using te direct empirical estimator and te informations on te experimental protocol are not available. To deal wit te problem of one measurement per energy, te kriging approac makes strong assumptions on te covariance matrix structure. In tis work we ave assumed te variance stationarity and te decreasing correlations as te distance between measurements increases. In tis context te covariance matrix can be easily approximated via te variogram study. Te results could be compared wit tose obtained wit anoter optimisation metod []. Finally te consideration of less restrictive assumptions, like a non stationary mean, lead to a universal kriging approac wic still remains a point to explore. References. M. Ionescu-Bujor and D. G. Cacuci, A comparative review of sensitivity and uncertainty analysis of large-scale systems I: Deterministic metods, Nuclear Science and Engineering (), 89. O. Roustant, D. Ginsbourger and Y. Deville, DiceKriging, DiceOptim: Two R packages for te analysis of computer experiments by kriging-based metamodelling and optimization, (re-sent after minor revision in June ), Journal of Statistical Software,.. M. Stein, Interpolation of spatial data, some teory for kriging, 999, Springer.. E. Vasquez and E. Walter, Coix d une covariance pour la prédiction par krigeage de séries cronologiques écantillonnées irrégulièrement I-Revue, GRETSI, Groupe d Etudes du Traitement du Signal et des Images,.. ttp:// A. Milocco, A. Trkov, and R. Capote Noy Nuclear data evaluation of Mn by te EMPIRE code wit empasis on te capture cross-section, Nuclear Engineering and Design (), -.. S. Varet, P. Dossantos-Uzarralde, N. Vayatis and E. Bauge, Pseudo-measurement simulations and bootstrap for te experimental cross-section covariances estimation wit quality quantification, WONDER. -p.

Pseudo-measurement simulations and bootstrap for the experimental cross-section covariances estimation with quality quantification

Pseudo-measurement simulations and bootstrap for the experimental cross-section covariances estimation with quality quantification Pseudo-measurement simulations and bootstrap for the experimental cross-section covariances estimation with quality quantification S. Varet 1 P. Dossantos-Uzarralde 1 N. Vayatis 2 E. Bauge 1 1 CEA-DAM-DIF

More information

Numerical Differentiation

Numerical Differentiation Numerical Differentiation Finite Difference Formulas for te first derivative (Using Taylor Expansion tecnique) (section 8.3.) Suppose tat f() = g() is a function of te variable, and tat as 0 te function

More information

Financial Econometrics Prof. Massimo Guidolin

Financial Econometrics Prof. Massimo Guidolin CLEFIN A.A. 2010/2011 Financial Econometrics Prof. Massimo Guidolin A Quick Review of Basic Estimation Metods 1. Were te OLS World Ends... Consider two time series 1: = { 1 2 } and 1: = { 1 2 }. At tis

More information

A = h w (1) Error Analysis Physics 141

A = h w (1) Error Analysis Physics 141 Introduction In all brances of pysical science and engineering one deals constantly wit numbers wic results more or less directly from experimental observations. Experimental observations always ave inaccuracies.

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximatinga function fx, wose values at a set of distinct points x, x, x,, x n are known, by a polynomial P x suc

More information

Symmetry Labeling of Molecular Energies

Symmetry Labeling of Molecular Energies Capter 7. Symmetry Labeling of Molecular Energies Notes: Most of te material presented in tis capter is taken from Bunker and Jensen 1998, Cap. 6, and Bunker and Jensen 2005, Cap. 7. 7.1 Hamiltonian Symmetry

More information

Order of Accuracy. ũ h u Ch p, (1)

Order of Accuracy. ũ h u Ch p, (1) Order of Accuracy 1 Terminology We consider a numerical approximation of an exact value u. Te approximation depends on a small parameter, wic can be for instance te grid size or time step in a numerical

More information

4.2 - Richardson Extrapolation

4.2 - Richardson Extrapolation . - Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Definition Let x n n converge to a number x. Suppose tat n n is a sequence

More information

(4.2) -Richardson Extrapolation

(4.2) -Richardson Extrapolation (.) -Ricardson Extrapolation. Small-O Notation: Recall tat te big-o notation used to define te rate of convergence in Section.: Suppose tat lim G 0 and lim F L. Te function F is said to converge to L as

More information

LECTURE 14 NUMERICAL INTEGRATION. Find

LECTURE 14 NUMERICAL INTEGRATION. Find LECTURE 14 NUMERCAL NTEGRATON Find b a fxdx or b a vx ux fx ydy dx Often integration is required. However te form of fx may be suc tat analytical integration would be very difficult or impossible. Use

More information

The total error in numerical differentiation

The total error in numerical differentiation AMS 147 Computational Metods and Applications Lecture 08 Copyrigt by Hongyun Wang, UCSC Recap: Loss of accuracy due to numerical cancellation A B 3, 3 ~10 16 In calculating te difference between A and

More information

Math 1241 Calculus Test 1

Math 1241 Calculus Test 1 February 4, 2004 Name Te first nine problems count 6 points eac and te final seven count as marked. Tere are 120 points available on tis test. Multiple coice section. Circle te correct coice(s). You do

More information

How to Find the Derivative of a Function: Calculus 1

How to Find the Derivative of a Function: Calculus 1 Introduction How to Find te Derivative of a Function: Calculus 1 Calculus is not an easy matematics course Te fact tat you ave enrolled in suc a difficult subject indicates tat you are interested in te

More information

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim

Math Spring 2013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, (1/z) 2 (1/z 1) 2 = lim Mat 311 - Spring 013 Solutions to Assignment # 3 Completion Date: Wednesday May 15, 013 Question 1. [p 56, #10 (a)] 4z Use te teorem of Sec. 17 to sow tat z (z 1) = 4. We ave z 4z (z 1) = z 0 4 (1/z) (1/z

More information

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1

Numerical Analysis MTH603. dy dt = = (0) , y n+1. We obtain yn. Therefore. and. Copyright Virtual University of Pakistan 1 Numerical Analysis MTH60 PREDICTOR CORRECTOR METHOD Te metods presented so far are called single-step metods, were we ave seen tat te computation of y at t n+ tat is y n+ requires te knowledge of y n only.

More information

Polynomial Interpolation

Polynomial Interpolation Capter 4 Polynomial Interpolation In tis capter, we consider te important problem of approximating a function f(x, wose values at a set of distinct points x, x, x 2,,x n are known, by a polynomial P (x

More information

7 Semiparametric Methods and Partially Linear Regression

7 Semiparametric Methods and Partially Linear Regression 7 Semiparametric Metods and Partially Linear Regression 7. Overview A model is called semiparametric if it is described by and were is nite-dimensional (e.g. parametric) and is in nite-dimensional (nonparametric).

More information

Quantum Theory of the Atomic Nucleus

Quantum Theory of the Atomic Nucleus G. Gamow, ZP, 51, 204 1928 Quantum Teory of te tomic Nucleus G. Gamow (Received 1928) It as often been suggested tat non Coulomb attractive forces play a very important role inside atomic nuclei. We can

More information

Department of Statistics & Operations Research, Aligarh Muslim University, Aligarh, India

Department of Statistics & Operations Research, Aligarh Muslim University, Aligarh, India Open Journal of Optimization, 04, 3, 68-78 Publised Online December 04 in SciRes. ttp://www.scirp.org/ournal/oop ttp://dx.doi.org/0.436/oop.04.34007 Compromise Allocation for Combined Ratio Estimates of

More information

Chapter 1. Density Estimation

Chapter 1. Density Estimation Capter 1 Density Estimation Let X 1, X,..., X n be observations from a density f X x. Te aim is to use only tis data to obtain an estimate ˆf X x of f X x. Properties of f f X x x, Parametric metods f

More information

Applied Linear Statistical Models. Simultaneous Inference Topics. Simultaneous Estimation of β 0 and β 1 Issues. Simultaneous Inference. Dr.

Applied Linear Statistical Models. Simultaneous Inference Topics. Simultaneous Estimation of β 0 and β 1 Issues. Simultaneous Inference. Dr. Applied Linear Statistical Models Simultaneous Inference Dr. DH Jones Simultaneous Inference Topics Simultaneous estimation of β 0 and β 1 Bonferroni Metod Simultaneous estimation of several mean responses

More information

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example,

NUMERICAL DIFFERENTIATION. James T. Smith San Francisco State University. In calculus classes, you compute derivatives algebraically: for example, NUMERICAL DIFFERENTIATION James T Smit San Francisco State University In calculus classes, you compute derivatives algebraically: for example, f( x) = x + x f ( x) = x x Tis tecnique requires your knowing

More information

Section 3.1: Derivatives of Polynomials and Exponential Functions

Section 3.1: Derivatives of Polynomials and Exponential Functions Section 3.1: Derivatives of Polynomials and Exponential Functions In previous sections we developed te concept of te derivative and derivative function. Te only issue wit our definition owever is tat it

More information

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems

5 Ordinary Differential Equations: Finite Difference Methods for Boundary Problems 5 Ordinary Differential Equations: Finite Difference Metods for Boundary Problems Read sections 10.1, 10.2, 10.4 Review questions 10.1 10.4, 10.8 10.9, 10.13 5.1 Introduction In te previous capters we

More information

Global Existence of Classical Solutions for a Class Nonlinear Parabolic Equations

Global Existence of Classical Solutions for a Class Nonlinear Parabolic Equations Global Journal of Science Frontier Researc Matematics and Decision Sciences Volume 12 Issue 8 Version 1.0 Type : Double Blind Peer Reviewed International Researc Journal Publiser: Global Journals Inc.

More information

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014

Solutions to the Multivariable Calculus and Linear Algebra problems on the Comprehensive Examination of January 31, 2014 Solutions to te Multivariable Calculus and Linear Algebra problems on te Compreensive Examination of January 3, 24 Tere are 9 problems ( points eac, totaling 9 points) on tis portion of te examination.

More information

DEFINITION OF A DERIVATIVE

DEFINITION OF A DERIVATIVE DEFINITION OF A DERIVATIVE Section 2.1 Calculus AP/Dual, Revised 2017 viet.dang@umbleisd.net 2.1: Definition of a Derivative 1 DEFINITION A. Te derivative of a function allows you to find te SLOPE OF THE

More information

lecture 26: Richardson extrapolation

lecture 26: Richardson extrapolation 43 lecture 26: Ricardson extrapolation 35 Ricardson extrapolation, Romberg integration Trougout numerical analysis, one encounters procedures tat apply some simple approximation (eg, linear interpolation)

More information

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point

1 The concept of limits (p.217 p.229, p.242 p.249, p.255 p.256) 1.1 Limits Consider the function determined by the formula 3. x since at this point MA00 Capter 6 Calculus and Basic Linear Algebra I Limits, Continuity and Differentiability Te concept of its (p.7 p.9, p.4 p.49, p.55 p.56). Limits Consider te function determined by te formula f Note

More information

REVIEW LAB ANSWER KEY

REVIEW LAB ANSWER KEY REVIEW LAB ANSWER KEY. Witout using SN, find te derivative of eac of te following (you do not need to simplify your answers): a. f x 3x 3 5x x 6 f x 3 3x 5 x 0 b. g x 4 x x x notice te trick ere! x x g

More information

The Verlet Algorithm for Molecular Dynamics Simulations

The Verlet Algorithm for Molecular Dynamics Simulations Cemistry 380.37 Fall 2015 Dr. Jean M. Standard November 9, 2015 Te Verlet Algoritm for Molecular Dynamics Simulations Equations of motion For a many-body system consisting of N particles, Newton's classical

More information

3.1 Extreme Values of a Function

3.1 Extreme Values of a Function .1 Etreme Values of a Function Section.1 Notes Page 1 One application of te derivative is finding minimum and maimum values off a grap. In precalculus we were only able to do tis wit quadratics by find

More information

Kernel Density Estimation

Kernel Density Estimation Kernel Density Estimation Univariate Density Estimation Suppose tat we ave a random sample of data X 1,..., X n from an unknown continuous distribution wit probability density function (pdf) f(x) and cumulative

More information

IEOR 165 Lecture 10 Distribution Estimation

IEOR 165 Lecture 10 Distribution Estimation IEOR 165 Lecture 10 Distribution Estimation 1 Motivating Problem Consider a situation were we ave iid data x i from some unknown distribution. One problem of interest is estimating te distribution tat

More information

Digital Filter Structures

Digital Filter Structures Digital Filter Structures Te convolution sum description of an LTI discrete-time system can, in principle, be used to implement te system For an IIR finite-dimensional system tis approac is not practical

More information

A MONTE CARLO ANALYSIS OF THE EFFECTS OF COVARIANCE ON PROPAGATED UNCERTAINTIES

A MONTE CARLO ANALYSIS OF THE EFFECTS OF COVARIANCE ON PROPAGATED UNCERTAINTIES A MONTE CARLO ANALYSIS OF THE EFFECTS OF COVARIANCE ON PROPAGATED UNCERTAINTIES Ronald Ainswort Hart Scientific, American Fork UT, USA ABSTRACT Reports of calibration typically provide total combined uncertainties

More information

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx.

Consider a function f we ll specify which assumptions we need to make about it in a minute. Let us reformulate the integral. 1 f(x) dx. Capter 2 Integrals as sums and derivatives as differences We now switc to te simplest metods for integrating or differentiating a function from its function samples. A careful study of Taylor expansions

More information

Numerical Experiments Using MATLAB: Superconvergence of Nonconforming Finite Element Approximation for Second-Order Elliptic Problems

Numerical Experiments Using MATLAB: Superconvergence of Nonconforming Finite Element Approximation for Second-Order Elliptic Problems Applied Matematics, 06, 7, 74-8 ttp://wwwscirporg/journal/am ISSN Online: 5-7393 ISSN Print: 5-7385 Numerical Experiments Using MATLAB: Superconvergence of Nonconforming Finite Element Approximation for

More information

POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY

POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY APPLICATIONES MATHEMATICAE 36, (29), pp. 2 Zbigniew Ciesielski (Sopot) Ryszard Zieliński (Warszawa) POLYNOMIAL AND SPLINE ESTIMATORS OF THE DISTRIBUTION FUNCTION WITH PRESCRIBED ACCURACY Abstract. Dvoretzky

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

MTH-112 Quiz 1 Name: # :

MTH-112 Quiz 1 Name: # : MTH- Quiz Name: # : Please write our name in te provided space. Simplif our answers. Sow our work.. Determine weter te given relation is a function. Give te domain and range of te relation.. Does te equation

More information

Research Article New Results on Multiple Solutions for Nth-Order Fuzzy Differential Equations under Generalized Differentiability

Research Article New Results on Multiple Solutions for Nth-Order Fuzzy Differential Equations under Generalized Differentiability Hindawi Publising Corporation Boundary Value Problems Volume 009, Article ID 395714, 13 pages doi:10.1155/009/395714 Researc Article New Results on Multiple Solutions for Nt-Order Fuzzy Differential Equations

More information

Function Composition and Chain Rules

Function Composition and Chain Rules Function Composition and s James K. Peterson Department of Biological Sciences and Department of Matematical Sciences Clemson University Marc 8, 2017 Outline 1 Function Composition and Continuity 2 Function

More information

The Derivative as a Function

The Derivative as a Function Section 2.2 Te Derivative as a Function 200 Kiryl Tsiscanka Te Derivative as a Function DEFINITION: Te derivative of a function f at a number a, denoted by f (a), is if tis limit exists. f (a) f(a + )

More information

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist

1. Questions (a) through (e) refer to the graph of the function f given below. (A) 0 (B) 1 (C) 2 (D) 4 (E) does not exist Mat 1120 Calculus Test 2. October 18, 2001 Your name Te multiple coice problems count 4 points eac. In te multiple coice section, circle te correct coice (or coices). You must sow your work on te oter

More information

Combining functions: algebraic methods

Combining functions: algebraic methods Combining functions: algebraic metods Functions can be added, subtracted, multiplied, divided, and raised to a power, just like numbers or algebra expressions. If f(x) = x 2 and g(x) = x + 2, clearly f(x)

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL IFFERENTIATION FIRST ERIVATIVES Te simplest difference formulas are based on using a straigt line to interpolate te given data; tey use two data pints to estimate te derivative. We assume tat

More information

Security Constrained Optimal Power Flow

Security Constrained Optimal Power Flow Security Constrained Optimal Power Flow 1. Introduction and notation Fiure 1 below compares te optimal power flow (OPF wit te security-constrained optimal power flow (SCOPF. Fi. 1 Some comments about tese

More information

The derivative function

The derivative function Roberto s Notes on Differential Calculus Capter : Definition of derivative Section Te derivative function Wat you need to know already: f is at a point on its grap and ow to compute it. Wat te derivative

More information

Click here to see an animation of the derivative

Click here to see an animation of the derivative Differentiation Massoud Malek Derivative Te concept of derivative is at te core of Calculus; It is a very powerful tool for understanding te beavior of matematical functions. It allows us to optimize functions,

More information

Differentiation in higher dimensions

Differentiation in higher dimensions Capter 2 Differentiation in iger dimensions 2.1 Te Total Derivative Recall tat if f : R R is a 1-variable function, and a R, we say tat f is differentiable at x = a if and only if te ratio f(a+) f(a) tends

More information

Derivation Of The Schwarzschild Radius Without General Relativity

Derivation Of The Schwarzschild Radius Without General Relativity Derivation Of Te Scwarzscild Radius Witout General Relativity In tis paper I present an alternative metod of deriving te Scwarzscild radius of a black ole. Te metod uses tree of te Planck units formulas:

More information

Efficient algorithms for for clone items detection

Efficient algorithms for for clone items detection Efficient algoritms for for clone items detection Raoul Medina, Caroline Noyer, and Olivier Raynaud Raoul Medina, Caroline Noyer and Olivier Raynaud LIMOS - Université Blaise Pascal, Campus universitaire

More information

Quantum Numbers and Rules

Quantum Numbers and Rules OpenStax-CNX module: m42614 1 Quantum Numbers and Rules OpenStax College Tis work is produced by OpenStax-CNX and licensed under te Creative Commons Attribution License 3.0 Abstract Dene quantum number.

More information

Diffraction. S.M.Lea. Fall 1998

Diffraction. S.M.Lea. Fall 1998 Diffraction.M.Lea Fall 1998 Diffraction occurs wen EM waves approac an aperture (or an obstacle) wit dimension d > λ. We sall refer to te region containing te source of te waves as region I and te region

More information

Higher Derivatives. Differentiable Functions

Higher Derivatives. Differentiable Functions Calculus 1 Lia Vas Higer Derivatives. Differentiable Functions Te second derivative. Te derivative itself can be considered as a function. Te instantaneous rate of cange of tis function is te second derivative.

More information

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1

Chapter 2. Limits and Continuity 16( ) 16( 9) = = 001. Section 2.1 Rates of Change and Limits (pp ) Quick Review 2.1 Capter Limits and Continuity Section. Rates of Cange and Limits (pp. 969) Quick Review..... f ( ) ( ) ( ) 0 ( ) f ( ) f ( ) sin π sin π 0 f ( ). < < < 6. < c c < < c 7. < < < < < 8. 9. 0. c < d d < c

More information

Basic Nonparametric Estimation Spring 2002

Basic Nonparametric Estimation Spring 2002 Basic Nonparametric Estimation Spring 2002 Te following topics are covered today: Basic Nonparametric Regression. Tere are four books tat you can find reference: Silverman986, Wand and Jones995, Hardle990,

More information

Artificial Neural Network Model Based Estimation of Finite Population Total

Artificial Neural Network Model Based Estimation of Finite Population Total International Journal of Science and Researc (IJSR), India Online ISSN: 2319-7064 Artificial Neural Network Model Based Estimation of Finite Population Total Robert Kasisi 1, Romanus O. Odiambo 2, Antony

More information

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines

Lecture 15. Interpolation II. 2 Piecewise polynomial interpolation Hermite splines Lecture 5 Interpolation II Introduction In te previous lecture we focused primarily on polynomial interpolation of a set of n points. A difficulty we observed is tat wen n is large, our polynomial as to

More information

Chapter 4: Numerical Methods for Common Mathematical Problems

Chapter 4: Numerical Methods for Common Mathematical Problems 1 Capter 4: Numerical Metods for Common Matematical Problems Interpolation Problem: Suppose we ave data defined at a discrete set of points (x i, y i ), i = 0, 1,..., N. Often it is useful to ave a smoot

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 =

Test 2 Review. 1. Find the determinant of the matrix below using (a) cofactor expansion and (b) row reduction. A = 3 2 = Test Review Find te determinant of te matrix below using (a cofactor expansion and (b row reduction Answer: (a det + = (b Observe R R R R R R R R R Ten det B = (((det Hence det Use Cramer s rule to solve:

More information

N igerian Journal of M athematics and Applications V olume 23, (2014), 1 13

N igerian Journal of M athematics and Applications V olume 23, (2014), 1 13 N igerian Journal of M atematics and Applications V olume 23, (24), 3 c N ig. J. M at. Appl. ttp : //www.kwsman.com CONSTRUCTION OF POLYNOMIAL BASIS AND ITS APPLICATION TO ORDINARY DIFFERENTIAL EQUATIONS

More information

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT

LIMITS AND DERIVATIVES CONDITIONS FOR THE EXISTENCE OF A LIMIT LIMITS AND DERIVATIVES Te limit of a function is defined as te value of y tat te curve approaces, as x approaces a particular value. Te limit of f (x) as x approaces a is written as f (x) approaces, as

More information

ch (for some fixed positive number c) reaching c

ch (for some fixed positive number c) reaching c GSTF Journal of Matematics Statistics and Operations Researc (JMSOR) Vol. No. September 05 DOI 0.60/s4086-05-000-z Nonlinear Piecewise-defined Difference Equations wit Reciprocal and Cubic Terms Ramadan

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

3. Using your answers to the two previous questions, evaluate the Mratio

3. Using your answers to the two previous questions, evaluate the Mratio MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MASSACHUSETTS 0219 2.002 MECHANICS AND MATERIALS II HOMEWORK NO. 4 Distributed: Friday, April 2, 2004 Due: Friday,

More information

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations

Parameter Fitted Scheme for Singularly Perturbed Delay Differential Equations International Journal of Applied Science and Engineering 2013. 11, 4: 361-373 Parameter Fitted Sceme for Singularly Perturbed Delay Differential Equations Awoke Andargiea* and Y. N. Reddyb a b Department

More information

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error.

AMS 147 Computational Methods and Applications Lecture 09 Copyright by Hongyun Wang, UCSC. Exact value. Effect of round-off error. Lecture 09 Copyrigt by Hongyun Wang, UCSC Recap: Te total error in numerical differentiation fl( f ( x + fl( f ( x E T ( = f ( x Numerical result from a computer Exact value = e + f x+ Discretization error

More information

Applications of the van Trees inequality to non-parametric estimation.

Applications of the van Trees inequality to non-parametric estimation. Brno-06, Lecture 2, 16.05.06 D/Stat/Brno-06/2.tex www.mast.queensu.ca/ blevit/ Applications of te van Trees inequality to non-parametric estimation. Regular non-parametric problems. As an example of suc

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

Lecture 10: Carnot theorem

Lecture 10: Carnot theorem ecture 0: Carnot teorem Feb 7, 005 Equivalence of Kelvin and Clausius formulations ast time we learned tat te Second aw can be formulated in two ways. e Kelvin formulation: No process is possible wose

More information

Exercises for numerical differentiation. Øyvind Ryan

Exercises for numerical differentiation. Øyvind Ryan Exercises for numerical differentiation Øyvind Ryan February 25, 2013 1. Mark eac of te following statements as true or false. a. Wen we use te approximation f (a) (f (a +) f (a))/ on a computer, we can

More information

Lab 6 Derivatives and Mutant Bacteria

Lab 6 Derivatives and Mutant Bacteria Lab 6 Derivatives and Mutant Bacteria Date: September 27, 20 Assignment Due Date: October 4, 20 Goal: In tis lab you will furter explore te concept of a derivative using R. You will use your knowledge

More information

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001

Investigating Euler s Method and Differential Equations to Approximate π. Lindsay Crowl August 2, 2001 Investigating Euler s Metod and Differential Equations to Approximate π Lindsa Crowl August 2, 2001 Tis researc paper focuses on finding a more efficient and accurate wa to approximate π. Suppose tat x

More information

New Distribution Theory for the Estimation of Structural Break Point in Mean

New Distribution Theory for the Estimation of Structural Break Point in Mean New Distribution Teory for te Estimation of Structural Break Point in Mean Liang Jiang Singapore Management University Xiaou Wang Te Cinese University of Hong Kong Jun Yu Singapore Management University

More information

Functions of the Complex Variable z

Functions of the Complex Variable z Capter 2 Functions of te Complex Variable z Introduction We wis to examine te notion of a function of z were z is a complex variable. To be sure, a complex variable can be viewed as noting but a pair of

More information

Practice Problem Solutions: Exam 1

Practice Problem Solutions: Exam 1 Practice Problem Solutions: Exam 1 1. (a) Algebraic Solution: Te largest term in te numerator is 3x 2, wile te largest term in te denominator is 5x 2 3x 2 + 5. Tus lim x 5x 2 2x 3x 2 x 5x 2 = 3 5 Numerical

More information

Dynamics and Relativity

Dynamics and Relativity Dynamics and Relativity Stepen Siklos Lent term 2011 Hand-outs and examples seets, wic I will give out in lectures, are available from my web site www.damtp.cam.ac.uk/user/stcs/dynamics.tml Lecture notes,

More information

Development of a Best Linear Unbiased Estimator in Sampling: Simple Random Sample without Replacement when n = 2 and N = 3. Bo Xu

Development of a Best Linear Unbiased Estimator in Sampling: Simple Random Sample without Replacement when n = 2 and N = 3. Bo Xu Introduction Development of a Best Linear Unbiased Estimator in Sampling: Simple Random Sample witout Replacement wen n = and N = Bo Xu We discuss a simple example of simple random sampling witout replacement

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

Research Article Error Analysis for a Noisy Lacunary Cubic Spline Interpolation and a Simple Noisy Cubic Spline Quasi Interpolation

Research Article Error Analysis for a Noisy Lacunary Cubic Spline Interpolation and a Simple Noisy Cubic Spline Quasi Interpolation Advances in Numerical Analysis Volume 204, Article ID 35394, 8 pages ttp://dx.doi.org/0.55/204/35394 Researc Article Error Analysis for a Noisy Lacunary Cubic Spline Interpolation and a Simple Noisy Cubic

More information

Minimal surfaces of revolution

Minimal surfaces of revolution 5 April 013 Minimal surfaces of revolution Maggie Miller 1 Introduction In tis paper, we will prove tat all non-planar minimal surfaces of revolution can be generated by functions of te form f = 1 C cos(cx),

More information

Lesson 6: The Derivative

Lesson 6: The Derivative Lesson 6: Te Derivative Def. A difference quotient for a function as te form f(x + ) f(x) (x + ) x f(x + x) f(x) (x + x) x f(a + ) f(a) (a + ) a Notice tat a difference quotient always as te form of cange

More information

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM

MA119-A Applied Calculus for Business Fall Homework 4 Solutions Due 9/29/ :30AM MA9-A Applied Calculus for Business 006 Fall Homework Solutions Due 9/9/006 0:0AM. #0 Find te it 5 0 + +.. #8 Find te it. #6 Find te it 5 0 + + = (0) 5 0 (0) + (0) + =.!! r + +. r s r + + = () + 0 () +

More information

EFFICIENT REPLICATION VARIANCE ESTIMATION FOR TWO-PHASE SAMPLING

EFFICIENT REPLICATION VARIANCE ESTIMATION FOR TWO-PHASE SAMPLING Statistica Sinica 13(2003), 641-653 EFFICIENT REPLICATION VARIANCE ESTIMATION FOR TWO-PHASE SAMPLING J. K. Kim and R. R. Sitter Hankuk University of Foreign Studies and Simon Fraser University Abstract:

More information

Poisson Equation in Sobolev Spaces

Poisson Equation in Sobolev Spaces Poisson Equation in Sobolev Spaces OcMountain Dayligt Time. 6, 011 Today we discuss te Poisson equation in Sobolev spaces. It s existence, uniqueness, and regularity. Weak Solution. u = f in, u = g on

More information

MVT and Rolle s Theorem

MVT and Rolle s Theorem AP Calculus CHAPTER 4 WORKSHEET APPLICATIONS OF DIFFERENTIATION MVT and Rolle s Teorem Name Seat # Date UNLESS INDICATED, DO NOT USE YOUR CALCULATOR FOR ANY OF THESE QUESTIONS In problems 1 and, state

More information

Chapter 1D - Rational Expressions

Chapter 1D - Rational Expressions - Capter 1D Capter 1D - Rational Expressions Definition of a Rational Expression A rational expression is te quotient of two polynomials. (Recall: A function px is a polynomial in x of degree n, if tere

More information

arxiv: v1 [math.pr] 28 Dec 2018

arxiv: v1 [math.pr] 28 Dec 2018 Approximating Sepp s constants for te Slepian process Jack Noonan a, Anatoly Zigljavsky a, a Scool of Matematics, Cardiff University, Cardiff, CF4 4AG, UK arxiv:8.0v [mat.pr] 8 Dec 08 Abstract Slepian

More information

The structure of the atoms

The structure of the atoms Te structure of te atoms Atomos = indivisible University of Pécs, Medical Scool, Dept. Biopysics All tat exists are atoms and empty space; everyting else is merely tougt to exist. Democritus, 415 B.C.

More information

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these.

4. The slope of the line 2x 7y = 8 is (a) 2/7 (b) 7/2 (c) 2 (d) 2/7 (e) None of these. Mat 11. Test Form N Fall 016 Name. Instructions. Te first eleven problems are wort points eac. Te last six problems are wort 5 points eac. For te last six problems, you must use relevant metods of algebra

More information

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods

Chapter 8. Numerical Solution of Ordinary Differential Equations. Module No. 2. Predictor-Corrector Methods Numerical Analysis by Dr. Anita Pal Assistant Professor Department of Matematics National Institute of Tecnology Durgapur Durgapur-7109 email: anita.buie@gmail.com 1 . Capter 8 Numerical Solution of Ordinary

More information

INTEGRATING IMPERFECTION OF INFORMATION INTO THE PROMETHEE MULTICRITERIA DECISION AID METHODS: A GENERAL FRAMEWORK

INTEGRATING IMPERFECTION OF INFORMATION INTO THE PROMETHEE MULTICRITERIA DECISION AID METHODS: A GENERAL FRAMEWORK F O U N D A T I O N S O F C O M P U T I N G A N D D E C I S I O N S C I E N C E S Vol. 7 (0) No. DOI: 0.478/v009-0-000-0 INTEGRATING IMPERFECTION OF INFORMATION INTO THE PROMETHEE MULTICRITERIA DECISION

More information

New families of estimators and test statistics in log-linear models

New families of estimators and test statistics in log-linear models Journal of Multivariate Analysis 99 008 1590 1609 www.elsevier.com/locate/jmva ew families of estimators and test statistics in log-linear models irian Martín a,, Leandro Pardo b a Department of Statistics

More information

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here!

Precalculus Test 2 Practice Questions Page 1. Note: You can expect other types of questions on the test than the ones presented here! Precalculus Test 2 Practice Questions Page Note: You can expect oter types of questions on te test tan te ones presented ere! Questions Example. Find te vertex of te quadratic f(x) = 4x 2 x. Example 2.

More information

158 Calculus and Structures

158 Calculus and Structures 58 Calculus and Structures CHAPTER PROPERTIES OF DERIVATIVES AND DIFFERENTIATION BY THE EASY WAY. Calculus and Structures 59 Copyrigt Capter PROPERTIES OF DERIVATIVES. INTRODUCTION In te last capter you

More information

3. Semiconductor heterostructures and nanostructures

3. Semiconductor heterostructures and nanostructures 3. Semiconductor eterostructures and nanostructures We discussed before ow te periodicity of a crystal results in te formation of bands. or a 1D crystal, we obtained: a (x) x In 3D, te crystal lattices

More information

More on generalized inverses of partitioned matrices with Banachiewicz-Schur forms

More on generalized inverses of partitioned matrices with Banachiewicz-Schur forms More on generalized inverses of partitioned matrices wit anaciewicz-scur forms Yongge Tian a,, Yosio Takane b a Cina Economics and Management cademy, Central University of Finance and Economics, eijing,

More information