Priors, Total Probability, Expectation, Multiple Trials

Size: px
Start display at page:

Download "Priors, Total Probability, Expectation, Multiple Trials"

Transcription

1 Priors, Total Probability, Expectation, Multiple Trials CS 2800: Discrete Structures, Fall 2014 Sid Chaudhuri

2 Bayes' Theorem Given: prior probabilities of hypotheses, and the probability that each hypothesis produces the observed evidence Produces: probability of a particular hypothesis, given the observed evidence. P( A B)= P(B A) P( A) P (B)

3 Estimating P(B) Total Probability Theorem: If A 1, A 2, A 3, is a (finite or countably infinite) partition of S (they are pairwise disjoint subsets and their union is S), and B is any event in S, then P(B) = P( i (B A i )) (Set theory) = i P(B A i ) (Axiom 3) = i P(B A i ) P(A i ) (Definition)

4 S A 2 A 1 A 3

5 S B A 2 A 1 B A 1 B A 2 B A 3 A 3

6 Recall: Medical Diagnosis Suppose: 1 in 1000 people carry a disease, for which there is a pretty reliable test Probability of a false negative (carrier tests negative) is 1% (so probability of carrier testing positive is 99%) Probability of a false positive (non-carrier tests positive) is 5% A person just tested positive. What are the chances (s)he is a carrier of the disease?

7 A counter-intuitive result The reliable test gives a positive result, but the chance the patient has the disease is only about 2%. Informally: the rarity of the disease outweighs the small chance of error.

8 Should we stop worrying? Scrubs

9 No. Should we stop worrying?

10 Should we stop worrying? No. The consequences of being wrong are pretty severe.

11 Should we stop worrying? No. The consequences of being wrong are pretty severe. How can we better interpret this result?

12 You live Possibilities

13 Possibilities You live You die (let's assume the disease is always fatal)

14 Possibilities You live You die (let's assume the disease is always fatal) Improvement to your current state: +1 (if we agree living longer can enrich our life experience)

15 Possibilities You live Improvement to your current state: +1 (if we agree living longer can enrich our life experience) You die (let's assume the disease is always fatal) Improvement to your current state:

16 Possibilities You live Improvement to your current state: +1 (if we agree living longer can enrich our life experience) You die (let's assume the disease is always fatal) Improvement to your current state: (Yes, I'm pulling these numbers out of a (nonprobabilistic) posterior, but they're illustrative)

17 Expectation P(Living Positive) Utility of living + P(Dying Positive) Utility of dying

18 Expectation P(Living Positive) Utility of living + P(Dying Positive) Utility of dying =

19 Expectation P(Living Positive) Utility of living + P(Dying Positive) Utility of dying =

20 Expectation P(Living Positive) Utility of living + P(Dying Positive) Utility of dying = The exact value isn't meaningful in this example. Just note that despite a small probability of a bad outcome, the highly negative weighted average suggests we might have reason to be worried.

21 Expectation The expectation (or expected outcome, or expected value...) of an experiment with possible outcomes {x 1, x 2, x 3,...} is E(x) = i P(x i ) x i

22 Expectation The expectation (or expected outcome, or expected value...) of an experiment with possible outcomes {x 1, x 2, x 3,...} is E(x) = i P(x i ) x i If the outcomes are not numbers (or more generally, not elements of a vector space) which can be meaningfully added/scaled, we can assign them numeric utility values u(x), and inspect the expected utility i P(x i ) u(x i )

23 Expected Weather in Ithaca P(sunny) P(rainy) Expected weather P(cloudy) P(snow)

24 Expected Weather in SoCal P(sunny) Expected weather P(cloudy) P(rainy) P(snow)

25 Expectation Think of it as a center of mass, with the probabilities being the masses and the outcomes/utilities their (point) positions A useful statistic, but only a guide, not a complete picture of human decision-making Gold Medal Bodies

26

27

28

29 Multiple Tests First test: T 1 = { Positive, Negative } Second test: T 2 = { Positive, Negative } Ignoring patient status for the moment

30 Multiple Tests First test: T 1 = { Positive, Negative } Second test: T 2 = { Positive, Negative } Ignoring patient status for the moment T = T 1 T 2 = { (Positive, Positive), (Positive, Negative), (Negative, Positive), (Negative, Negative) }

31 Multiple Tests First test: T 1 = { Positive, Negative } Second test: T 2 = { Positive, Negative } Ignoring patient status for the moment T = T 1 T 2 = { (Positive, Positive), (Positive, Negative), (Negative, Positive), (Negative, Negative) } Positive in first test = A 1 =?

32 Multiple Tests First test: T 1 = { Positive, Negative } Second test: T 2 = { Positive, Negative } Ignoring patient status for the moment T = T 1 T 2 = { (Positive, Positive), (Positive, Negative), (Negative, Positive), (Negative, Negative) } Positive in first test = A 1 = { (Positive, Positive), (Positive, Negative) }

33 Multiple Tests First test: T 1 = { Positive, Negative } Second test: T 2 = { Positive, Negative } Ignoring patient status for the moment T = T 1 T 2 = { (Positive, Positive), (Positive, Negative), (Negative, Positive), (Negative, Negative) } Positive in first test = A 1 = { (Positive, Positive), (Positive, Negative) } Positive in second test = A 2 =?

34 Multiple Tests First test: T 1 = { Positive, Negative } Second test: T 2 = { Positive, Negative } Ignoring patient status for the moment T = T 1 T 2 = { (Positive, Positive), (Positive, Negative), (Negative, Positive), (Negative, Negative) } Positive in first test = A 1 = { (Positive, Positive), (Positive, Negative) } Positive in second test = A 2 = { (Positive, Positive), (Negative, Positive) }

35 Multiple Tests D = { Carrier, NotCarrier } Sample space of first test S 1 = T 1 D Sample space of second test S 2 = T 2 D Full sample space S = T 1 T 2 D E.g. event that first test is positive, second is unknown, and person is a carrier: { (Positive, Positive, Carrier), (Positive, Negative, Carrier) }

36 Multiple Tests E.g. event that person is a carrier: { (Positive, Positive, Carrier), (Positive, Negative, Carrier), (Negative, Positive, Carrier), (Negative, Negative, Carrier) } E.g. event that first test is positive: { (Positive, Positive, Carrier), (Positive, Negative, Carrier), (Positive, Positive, NotCarrier), (Positive, Negative, NotCarrier) }

37 Multiple Independent Tests We often make the assumption that the test results are independent of each other (but not, of course, of the patient's carrier status). In other words: P(Test 1 positive and Test 2 positive Carrier) = P(Test 1 positive Carrier) P(Test 2 positive Carrier) and similarly for all other combinations.

38 Thought for the Day #1 When might this assumption be unjustified?

39 P (C Y 1 Y 2 ) Multiple Independent Tests

40 Multiple Independent Tests P (C Y 1 Y 2 ) Is Carrier Second test positive (said Yes ) First test positive (said Yes )

41 Multiple Independent Tests P (Y 1 Y 2 C) P (C ) P (C Y 1 Y 2 ) = (Bayes' Theorem) P (Y 1 Y 2 )

42 Multiple Independent Tests P (C Y 1 Y 2 ) = P (Y 1 Y 2 C) P (C ) P (Y 1 Y 2 ) (Bayes' Theorem) = P (Y 1 Y 2 C ) P (C) P (Y 1 Y 2 C ) P (C )+ P (Y 1 Y 2 C ') P (C ') (Total Probability Theorem)

43 Multiple Independent Tests P (C Y 1 Y 2 ) = P (Y 1 Y 2 C) P (C ) P (Y 1 Y 2 ) (Bayes' Theorem) = = P (Y 1 Y 2 C ) P (C) P (Y 1 Y 2 C ) P (C )+ P (Y 1 Y 2 C ') P (C ') (Total Probability Theorem) P (Y 1 C) P (Y 2 C) P (C) P (Y 1 C) P (Y 2 C) P (C)+ P (Y 1 C ') P (Y 2 C ') P (C ') (Independence assumption)

44 Multiple Independent Tests P (C Y 1 Y 2 ) = P (Y 1 Y 2 C) P (C ) P (Y 1 Y 2 ) (Bayes' Theorem) = P (Y 1 Y 2 C ) P (C) P (Y 1 Y 2 C ) P (C )+ P (Y 1 Y 2 C ') P (C ') (Total Probability Theorem) = = P (Y 1 C) P (Y 2 C) P (C) P (Y 1 C) P (Y 2 C) P (C)+ P (Y 1 C ') P (Y 2 C ') P (C ') (Independence assumption) (From problem statement. The modeling assumption is that these values also apply to the product space)

45 Multiple Independent Tests P (C Y 1 Y 2 ) = P (Y 1 Y 2 C) P (C ) P (Y 1 Y 2 ) (Bayes' Theorem) = P (Y 1 Y 2 C ) P (C) P (Y 1 Y 2 C ) P (C )+ P (Y 1 Y 2 C ') P (C ') (Total Probability Theorem) = = P (Y 1 C) P (Y 2 C) P (C) P (Y 1 C) P (Y 2 C) P (C)+ P (Y 1 C ') P (Y 2 C ') P (C ') (Independence assumption) = (From problem statement. The modeling assumption is that these values also apply to the product space)

46 Thought for the Day #2 Can you write down, in full, all the outcomes in each event involved in the previous slide? Note that these events are all subsets of S = T 1 T 2 D

47 Thought for the Day #3 Can you work out the probability of the patient being a carrier, for every other combination of test results?

Information Science 2

Information Science 2 Information Science 2 Probability Theory: An Overview Week 12 College of Information Science and Engineering Ritsumeikan University Agenda Terms and concepts from Week 11 Basic concepts of probability

More information

2. AXIOMATIC PROBABILITY

2. AXIOMATIC PROBABILITY IA Probability Lent Term 2. AXIOMATIC PROBABILITY 2. The axioms The formulation for classical probability in which all outcomes or points in the sample space are equally likely is too restrictive to develop

More information

Lecture 1: Probability Fundamentals

Lecture 1: Probability Fundamentals Lecture 1: Probability Fundamentals IB Paper 7: Probability and Statistics Carl Edward Rasmussen Department of Engineering, University of Cambridge January 22nd, 2008 Rasmussen (CUED) Lecture 1: Probability

More information

Statistical Methods in Particle Physics. Lecture 2

Statistical Methods in Particle Physics. Lecture 2 Statistical Methods in Particle Physics Lecture 2 October 17, 2011 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2011 / 12 Outline Probability Definition and interpretation Kolmogorov's

More information

Recitation 2: Probability

Recitation 2: Probability Recitation 2: Probability Colin White, Kenny Marino January 23, 2018 Outline Facts about sets Definitions and facts about probability Random Variables and Joint Distributions Characteristics of distributions

More information

Probability calculus and statistics

Probability calculus and statistics A Probability calculus and statistics A.1 The meaning of a probability A probability can be interpreted in different ways. In this book, we understand a probability to be an expression of how likely it

More information

Probability. Paul Schrimpf. January 23, Definitions 2. 2 Properties 3

Probability. Paul Schrimpf. January 23, Definitions 2. 2 Properties 3 Probability Paul Schrimpf January 23, 2018 Contents 1 Definitions 2 2 Properties 3 3 Random variables 4 3.1 Discrete........................................... 4 3.2 Continuous.........................................

More information

Lecture 2. Conditional Probability

Lecture 2. Conditional Probability Math 408 - Mathematical Statistics Lecture 2. Conditional Probability January 18, 2013 Konstantin Zuev (USC) Math 408, Lecture 2 January 18, 2013 1 / 9 Agenda Motivation and Definition Properties of Conditional

More information

4. Conditional Probability

4. Conditional Probability 1 of 13 7/15/2009 9:25 PM Virtual Laboratories > 2. Probability Spaces > 1 2 3 4 5 6 7 4. Conditional Probability Definitions and Interpretations The Basic Definition As usual, we start with a random experiment

More information

Formal Modeling in Cognitive Science

Formal Modeling in Cognitive Science Formal Modeling in Cognitive Science Lecture 9: Application of Bayes Theorem; Discrete Random Variables; Steve Renals (notes by Frank Keller) School of Informatics University of Edinburgh s.renals@ed.ac.uk

More information

Basic Probabilistic Reasoning SEG

Basic Probabilistic Reasoning SEG Basic Probabilistic Reasoning SEG 7450 1 Introduction Reasoning under uncertainty using probability theory Dealing with uncertainty is one of the main advantages of an expert system over a simple decision

More information

Formal Modeling in Cognitive Science Lecture 19: Application of Bayes Theorem; Discrete Random Variables; Distributions. Background.

Formal Modeling in Cognitive Science Lecture 19: Application of Bayes Theorem; Discrete Random Variables; Distributions. Background. Formal Modeling in Cognitive Science Lecture 9: ; Discrete Random Variables; Steve Renals (notes by Frank Keller) School of Informatics University of Edinburgh s.renals@ed.ac.uk February 7 Probability

More information

Sample Spaces, Random Variables

Sample Spaces, Random Variables Sample Spaces, Random Variables Moulinath Banerjee University of Michigan August 3, 22 Probabilities In talking about probabilities, the fundamental object is Ω, the sample space. (elements) in Ω are denoted

More information

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 CS 70 Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Note 14 Introduction One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten

More information

STAT:5100 (22S:193) Statistical Inference I

STAT:5100 (22S:193) Statistical Inference I STAT:5100 (22S:193) Statistical Inference I Week 3 Luke Tierney University of Iowa Fall 2015 Luke Tierney (U Iowa) STAT:5100 (22S:193) Statistical Inference I Fall 2015 1 Recap Matching problem Generalized

More information

Conditional Probability

Conditional Probability Conditional Probability Idea have performed a chance experiment but don t know the outcome (ω), but have some partial information (event A) about ω. Question: given this partial information what s the

More information

Dynamic Programming Lecture #4

Dynamic Programming Lecture #4 Dynamic Programming Lecture #4 Outline: Probability Review Probability space Conditional probability Total probability Bayes rule Independent events Conditional independence Mutual independence Probability

More information

Chapter 2 Class Notes

Chapter 2 Class Notes Chapter 2 Class Notes Probability can be thought of in many ways, for example as a relative frequency of a long series of trials (e.g. flips of a coin or die) Another approach is to let an expert (such

More information

Probability and Probability Distributions. Dr. Mohammed Alahmed

Probability and Probability Distributions. Dr. Mohammed Alahmed Probability and Probability Distributions 1 Probability and Probability Distributions Usually we want to do more with data than just describing them! We might want to test certain specific inferences about

More information

Vibhav Gogate University of Texas, Dallas

Vibhav Gogate University of Texas, Dallas Review of Probability and Statistics 101 Elements of Probability Theory Events, Sample Space and Random Variables Axioms of Probability Independent Events Conditional Probability Bayes Theorem Joint Probability

More information

Lecture 16. Lectures 1-15 Review

Lecture 16. Lectures 1-15 Review 18.440: Lecture 16 Lectures 1-15 Review Scott Sheffield MIT 1 Outline Counting tricks and basic principles of probability Discrete random variables 2 Outline Counting tricks and basic principles of probability

More information

Chapter 15. Probability Rules! Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 15. Probability Rules! Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 15 Probability Rules! Copyright 2012, 2008, 2005 Pearson Education, Inc. The General Addition Rule When two events A and B are disjoint, we can use the addition rule for disjoint events from Chapter

More information

Deep Learning for Computer Vision

Deep Learning for Computer Vision Deep Learning for Computer Vision Lecture 3: Probability, Bayes Theorem, and Bayes Classification Peter Belhumeur Computer Science Columbia University Probability Should you play this game? Game: A fair

More information

Conditional Probability

Conditional Probability Conditional Probability When we obtain additional information about a probability experiment, we want to use the additional information to reassess the probabilities of events given the new information.

More information

Statistical Methods for Astronomy

Statistical Methods for Astronomy Statistical Methods for Astronomy Probability (Lecture 1) Statistics (Lecture 2) Why do we need statistics? Useful Statistics Definitions Error Analysis Probability distributions Error Propagation Binomial

More information

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary)

Probability deals with modeling of random phenomena (phenomena or experiments whose outcomes may vary) Chapter 14 From Randomness to Probability How to measure a likelihood of an event? How likely is it to answer correctly one out of two true-false questions on a quiz? Is it more, less, or equally likely

More information

Why Probability? It's the right way to look at the world.

Why Probability? It's the right way to look at the world. Probability Why Probability? It's the right way to look at the world. Discrete Random Variables We denote discrete random variables with capital letters. A boolean random variable may be either true or

More information

Probability. Lecture Notes. Adolfo J. Rumbos

Probability. Lecture Notes. Adolfo J. Rumbos Probability Lecture Notes Adolfo J. Rumbos October 20, 204 2 Contents Introduction 5. An example from statistical inference................ 5 2 Probability Spaces 9 2. Sample Spaces and σ fields.....................

More information

Probability Notes (A) , Fall 2010

Probability Notes (A) , Fall 2010 Probability Notes (A) 18.310, Fall 2010 We are going to be spending around four lectures on probability theory this year. These notes cover approximately the first three lectures on it. Probability theory

More information

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability

ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 1 Probability Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Applications Elementary Set Theory Random

More information

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability

Chapter 2. Conditional Probability and Independence. 2.1 Conditional Probability Chapter 2 Conditional Probability and Independence 2.1 Conditional Probability Probability assigns a likelihood to results of experiments that have not yet been conducted. Suppose that the experiment has

More information

Announcements. Topics: To Do:

Announcements. Topics: To Do: Announcements Topics: In the Probability and Statistics module: - Sections 1 + 2: Introduction to Stochastic Models - Section 3: Basics of Probability Theory - Section 4: Conditional Probability; Law of

More information

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1

Topic -2. Probability. Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Topic -2 Probability Larson & Farber, Elementary Statistics: Picturing the World, 3e 1 Probability Experiments Experiment : An experiment is an act that can be repeated under given condition. Rolling a

More information

Let us think of the situation as having a 50 sided fair die; any one number is equally likely to appear.

Let us think of the situation as having a 50 sided fair die; any one number is equally likely to appear. Probability_Homework Answers. Let the sample space consist of the integers through. {, 2, 3,, }. Consider the following events from that Sample Space. Event A: {a number is a multiple of 5 5, 0, 5,, }

More information

Brief Review of Probability

Brief Review of Probability Brief Review of Probability Nuno Vasconcelos (Ken Kreutz-Delgado) ECE Department, UCSD Probability Probability theory is a mathematical language to deal with processes or experiments that are non-deterministic

More information

9/6. Grades. Exam. Card Game. Homework/quizzes: 15% (two lowest scores dropped) Midterms: 25% each Final Exam: 35%

9/6. Grades. Exam. Card Game. Homework/quizzes: 15% (two lowest scores dropped) Midterms: 25% each Final Exam: 35% 9/6 Wednesday, September 06, 2017 Grades Homework/quizzes: 15% (two lowest scores dropped) Midterms: 25% each Final Exam: 35% Exam Midterm exam 1 Wednesday, October 18 8:50AM - 9:40AM Midterm exam 2 Final

More information

1 The Basic Counting Principles

1 The Basic Counting Principles 1 The Basic Counting Principles The Multiplication Rule If an operation consists of k steps and the first step can be performed in n 1 ways, the second step can be performed in n ways [regardless of how

More information

Dept. of Linguistics, Indiana University Fall 2015

Dept. of Linguistics, Indiana University Fall 2015 L645 Dept. of Linguistics, Indiana University Fall 2015 1 / 34 To start out the course, we need to know something about statistics and This is only an introduction; for a fuller understanding, you would

More information

MA : Introductory Probability

MA : Introductory Probability MA 320-001: Introductory Probability David Murrugarra Department of Mathematics, University of Kentucky http://www.math.uky.edu/~dmu228/ma320/ Spring 2017 David Murrugarra (University of Kentucky) MA 320:

More information

An AI-ish view of Probability, Conditional Probability & Bayes Theorem

An AI-ish view of Probability, Conditional Probability & Bayes Theorem An AI-ish view of Probability, Conditional Probability & Bayes Theorem Review: Uncertainty and Truth Values: a mismatch Let action A t = leave for airport t minutes before flight. Will A 15 get me there

More information

10/18/2017. An AI-ish view of Probability, Conditional Probability & Bayes Theorem. Making decisions under uncertainty.

10/18/2017. An AI-ish view of Probability, Conditional Probability & Bayes Theorem. Making decisions under uncertainty. An AI-ish view of Probability, Conditional Probability & Bayes Theorem Review: Uncertainty and Truth Values: a mismatch Let action A t = leave for airport t minutes before flight. Will A 15 get me there

More information

Introduction to Probability Theory, Algebra, and Set Theory

Introduction to Probability Theory, Algebra, and Set Theory Summer School on Mathematical Philosophy for Female Students Introduction to Probability Theory, Algebra, and Set Theory Catrin Campbell-Moore and Sebastian Lutz July 28, 2014 Question 1. Draw Venn diagrams

More information

Conditional Probability

Conditional Probability Chapter 3 Conditional Probability 3.1 Definition of conditional probability In spite of our misgivings, let us persist with the frequency definition of probability. Consider an experiment conducted N times

More information

Week 2: Probability: Counting, Sets, and Bayes

Week 2: Probability: Counting, Sets, and Bayes Statistical Methods APPM 4570/5570, STAT 4000/5000 21 Probability Introduction to EDA Week 2: Probability: Counting, Sets, and Bayes Random variable Random variable is a measurable quantity whose outcome

More information

Basics of Probability

Basics of Probability Basics of Probability Lecture 1 Doug Downey, Northwestern EECS 474 Events Event space E.g. for dice, = {1, 2, 3, 4, 5, 6} Set of measurable events S 2 E.g., = event we roll an even number = {2, 4, 6} S

More information

Probability. 25 th September lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.)

Probability. 25 th September lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Probability 25 th September 2017 lecture based on Hogg Tanis Zimmerman: Probability and Statistical Inference (9th ed.) Properties of Probability Methods of Enumeration Conditional Probability Independent

More information

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables

Why study probability? Set theory. ECE 6010 Lecture 1 Introduction; Review of Random Variables ECE 6010 Lecture 1 Introduction; Review of Random Variables Readings from G&S: Chapter 1. Section 2.1, Section 2.3, Section 2.4, Section 3.1, Section 3.2, Section 3.5, Section 4.1, Section 4.2, Section

More information

COMP61011 : Machine Learning. Probabilis*c Models + Bayes Theorem

COMP61011 : Machine Learning. Probabilis*c Models + Bayes Theorem COMP61011 : Machine Learning Probabilis*c Models + Bayes Theorem Probabilis*c Models - one of the most active areas of ML research in last 15 years - foundation of numerous new technologies - enables decision-making

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University August 30, 2017 Today: Decision trees Overfitting The Big Picture Coming soon Probabilistic learning MLE,

More information

Randomized Algorithms

Randomized Algorithms Randomized Algorithms Prof. Tapio Elomaa tapio.elomaa@tut.fi Course Basics A new 4 credit unit course Part of Theoretical Computer Science courses at the Department of Mathematics There will be 4 hours

More information

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events...

Probability COMP 245 STATISTICS. Dr N A Heard. 1 Sample Spaces and Events Sample Spaces Events Combinations of Events... Probability COMP 245 STATISTICS Dr N A Heard Contents Sample Spaces and Events. Sample Spaces........................................2 Events........................................... 2.3 Combinations

More information

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc.

Chapter 14. From Randomness to Probability. Copyright 2012, 2008, 2005 Pearson Education, Inc. Chapter 14 From Randomness to Probability Copyright 2012, 2008, 2005 Pearson Education, Inc. Dealing with Random Phenomena A random phenomenon is a situation in which we know what outcomes could happen,

More information

SS257a Midterm Exam Monday Oct 27 th 2008, 6:30-9:30 PM Talbot College 342 and 343. You may use simple, non-programmable scientific calculators.

SS257a Midterm Exam Monday Oct 27 th 2008, 6:30-9:30 PM Talbot College 342 and 343. You may use simple, non-programmable scientific calculators. SS657a Midterm Exam, October 7 th 008 pg. SS57a Midterm Exam Monday Oct 7 th 008, 6:30-9:30 PM Talbot College 34 and 343 You may use simple, non-programmable scientific calculators. This exam has 5 questions

More information

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ).

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% (these are called false negatives ). CS 70 Discrete Mathematics for CS Spring 2006 Vazirani Lecture 8 Conditional Probability A pharmaceutical company is marketing a new test for a certain medical condition. According to clinical trials,

More information

Axioms of Probability

Axioms of Probability MAT 2379 3X (Spring 2012) (Introduction to Probability (part II)) The theory of probability as a mathematical discipline can and should be developed from axioms in exactly the same way as geometry and

More information

Probability Review I

Probability Review I Probability Review I Harvard Math Camp - Econometrics Ashesh Rambachan Summer 2018 Outline Random Experiments The sample space and events σ-algebra and measures Basic probability rules Conditional Probability

More information

Lecture 7. Bayes formula and independence

Lecture 7. Bayes formula and independence 18.440: Lecture 7 Bayes formula and independence Scott Sheffield MIT 1 Outline Bayes formula Independence 2 Outline Bayes formula Independence 3 Recall definition: conditional probability Definition: P(E

More information

P (E) = P (A 1 )P (A 2 )... P (A n ).

P (E) = P (A 1 )P (A 2 )... P (A n ). Lecture 9: Conditional probability II: breaking complex events into smaller events, methods to solve probability problems, Bayes rule, law of total probability, Bayes theorem Discrete Structures II (Summer

More information

tossing a coin selecting a card from a deck measuring the commuting time on a particular morning

tossing a coin selecting a card from a deck measuring the commuting time on a particular morning 2 Probability Experiment An experiment or random variable is any activity whose outcome is unknown or random upfront: tossing a coin selecting a card from a deck measuring the commuting time on a particular

More information

Probability Space: Formalism Simplest physical model of a uniform probability space:

Probability Space: Formalism Simplest physical model of a uniform probability space: Lecture 16: Continuing Probability Probability Space: Formalism Simplest physical model of a uniform probability space: Probability Space: Formalism Simplest physical model of a non-uniform probability

More information

Basic Probability. Robert Platt Northeastern University. Some images and slides are used from: 1. AIMA 2. Chris Amato

Basic Probability. Robert Platt Northeastern University. Some images and slides are used from: 1. AIMA 2. Chris Amato Basic Probability Robert Platt Northeastern University Some images and slides are used from: 1. AIMA 2. Chris Amato (Discrete) Random variables What is a random variable? Suppose that the variable a denotes

More information

Decision Trees. Nicholas Ruozzi University of Texas at Dallas. Based on the slides of Vibhav Gogate and David Sontag

Decision Trees. Nicholas Ruozzi University of Texas at Dallas. Based on the slides of Vibhav Gogate and David Sontag Decision Trees Nicholas Ruozzi University of Texas at Dallas Based on the slides of Vibhav Gogate and David Sontag Supervised Learning Input: labelled training data i.e., data plus desired output Assumption:

More information

18.600: Lecture 7 Bayes formula and independence

18.600: Lecture 7 Bayes formula and independence 18.600 Lecture 7 18.600: Lecture 7 Bayes formula and independence Scott Sheffield MIT 18.600 Lecture 7 Outline Bayes formula Independence 18.600 Lecture 7 Outline Bayes formula Independence Recall definition:

More information

18.175: Lecture 2 Extension theorems, random variables, distributions

18.175: Lecture 2 Extension theorems, random variables, distributions 18.175: Lecture 2 Extension theorems, random variables, distributions Scott Sheffield MIT Outline Extension theorems Characterizing measures on R d Random variables Outline Extension theorems Characterizing

More information

Quantifying Uncertainty & Probabilistic Reasoning. Abdulla AlKhenji Khaled AlEmadi Mohammed AlAnsari

Quantifying Uncertainty & Probabilistic Reasoning. Abdulla AlKhenji Khaled AlEmadi Mohammed AlAnsari Quantifying Uncertainty & Probabilistic Reasoning Abdulla AlKhenji Khaled AlEmadi Mohammed AlAnsari Outline Previous Implementations What is Uncertainty? Acting Under Uncertainty Rational Decisions Basic

More information

Sample Space: Specify all possible outcomes from an experiment. Event: Specify a particular outcome or combination of outcomes.

Sample Space: Specify all possible outcomes from an experiment. Event: Specify a particular outcome or combination of outcomes. Chapter 2 Introduction to Probability 2.1 Probability Model Probability concerns about the chance of observing certain outcome resulting from an experiment. However, since chance is an abstraction of something

More information

Statistical Inference. Hypothesis Testing

Statistical Inference. Hypothesis Testing Statistical Inference Hypothesis Testing Previously, we introduced the point and interval estimation of an unknown parameter(s), say µ and σ 2. However, in practice, the problem confronting the scientist

More information

1 Preliminaries Sample Space and Events Interpretation of Probability... 13

1 Preliminaries Sample Space and Events Interpretation of Probability... 13 Summer 2017 UAkron Dept. of Stats [3470 : 461/561] Applied Statistics Ch 2: Probability Contents 1 Preliminaries 3 1.1 Sample Space and Events...........................................................

More information

Probability Basics Review

Probability Basics Review CS70: Jean Walrand: Lecture 16 Events, Conditional Probability, Independence, Bayes Rule Probability Basics Review Setup: Set notation review A B A [ B A \ B 1 Probability Basics Review 2 Events 3 Conditional

More information

Probability- describes the pattern of chance outcomes

Probability- describes the pattern of chance outcomes Chapter 6 Probability the study of randomness Probability- describes the pattern of chance outcomes Chance behavior is unpredictable in the short run, but has a regular and predictable pattern in the long

More information

With Question/Answer Animations. Chapter 7

With Question/Answer Animations. Chapter 7 With Question/Answer Animations Chapter 7 Chapter Summary Introduction to Discrete Probability Probability Theory Bayes Theorem Section 7.1 Section Summary Finite Probability Probabilities of Complements

More information

CS70: Jean Walrand: Lecture 16.

CS70: Jean Walrand: Lecture 16. CS70: Jean Walrand: Lecture 16. Events, Conditional Probability, Independence, Bayes Rule 1. Probability Basics Review 2. Events 3. Conditional Probability 4. Independence of Events 5. Bayes Rule Probability

More information

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces.

Probability Theory. Introduction to Probability Theory. Principles of Counting Examples. Principles of Counting. Probability spaces. Probability Theory To start out the course, we need to know something about statistics and probability Introduction to Probability Theory L645 Advanced NLP Autumn 2009 This is only an introduction; for

More information

1 What are probabilities? 2 Sample Spaces. 3 Events and probability spaces

1 What are probabilities? 2 Sample Spaces. 3 Events and probability spaces 1 What are probabilities? There are two basic schools of thought as to the philosophical status of probabilities. One school of thought, the frequentist school, considers the probability of an event to

More information

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events

LECTURE 1. 1 Introduction. 1.1 Sample spaces and events LECTURE 1 1 Introduction The first part of our adventure is a highly selective review of probability theory, focusing especially on things that are most useful in statistics. 1.1 Sample spaces and events

More information

Single Maths B: Introduction to Probability

Single Maths B: Introduction to Probability Single Maths B: Introduction to Probability Overview Lecturer Email Office Homework Webpage Dr Jonathan Cumming j.a.cumming@durham.ac.uk CM233 None! http://maths.dur.ac.uk/stats/people/jac/singleb/ 1 Introduction

More information

CS626 Data Analysis and Simulation

CS626 Data Analysis and Simulation CS626 Data Analysis and Simulation Instructor: Peter Kemper R 104A, phone 221-3462, email:kemper@cs.wm.edu Today: Probability Primer Quick Reference: Sheldon Ross: Introduction to Probability Models 9th

More information

MATH 556: PROBABILITY PRIMER

MATH 556: PROBABILITY PRIMER MATH 6: PROBABILITY PRIMER 1 DEFINITIONS, TERMINOLOGY, NOTATION 1.1 EVENTS AND THE SAMPLE SPACE Definition 1.1 An experiment is a one-off or repeatable process or procedure for which (a there is a well-defined

More information

Module 1. Probability

Module 1. Probability Module 1 Probability 1. Introduction In our daily life we come across many processes whose nature cannot be predicted in advance. Such processes are referred to as random processes. The only way to derive

More information

STAT2201. Analysis of Engineering & Scientific Data. Unit 3

STAT2201. Analysis of Engineering & Scientific Data. Unit 3 STAT2201 Analysis of Engineering & Scientific Data Unit 3 Slava Vaisman The University of Queensland School of Mathematics and Physics What we learned in Unit 2 (1) We defined a sample space of a random

More information

Statistical Inference

Statistical Inference Statistical Inference Lecture 1: Probability Theory MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 11, 2018 Outline Introduction Set Theory Basics of Probability Theory

More information

Sociology 6Z03 Topic 10: Probability (Part I)

Sociology 6Z03 Topic 10: Probability (Part I) Sociology 6Z03 Topic 10: Probability (Part I) John Fox McMaster University Fall 2014 John Fox (McMaster University) Soc 6Z03: Probability I Fall 2014 1 / 29 Outline: Probability (Part I) Introduction Probability

More information

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability?

Probability: Why do we care? Lecture 2: Probability and Distributions. Classical Definition. What is Probability? Probability: Why do we care? Lecture 2: Probability and Distributions Sandy Eckel seckel@jhsph.edu 22 April 2008 Probability helps us by: Allowing us to translate scientific questions into mathematical

More information

CS 500: Database Theory !!! Data, Responsibly! ! Julia Stoyanovich

CS 500: Database Theory !!! Data, Responsibly! ! Julia Stoyanovich CS 500: Database Theory!!! Data, Responsibly!!!! (stoyanovich@drexel.edu) Analyzing user profiles Data analysis: What patterns are we looking for? How do we look for patterns? Why do we look for them?!

More information

Stochastic Methods. 5.0 Introduction 5.1 The Elements of Counting 5.2 Elements of Probability Theory

Stochastic Methods. 5.0 Introduction 5.1 The Elements of Counting 5.2 Elements of Probability Theory 5 Stochastic Methods 5.0 Introduction 5.1 The Elements of Counting 5.2 Elements of Probability Theory 5.4 The Stochastic Approach to Uncertainty 5.4 Epilogue and References 5.5 Exercises Note: The slides

More information

4. What is the probability that the two values differ by 4 or more in absolute value? There are only six

4. What is the probability that the two values differ by 4 or more in absolute value? There are only six 1. Short Questions: 2/2/2/2/2 Provide a clear and concise justification of your answer. In this problem, you roll two balanced six-sided dice. Hint: Draw a picture. 1. What is the probability that the

More information

COMP61011! Probabilistic Classifiers! Part 1, Bayes Theorem!

COMP61011! Probabilistic Classifiers! Part 1, Bayes Theorem! COMP61011 Probabilistic Classifiers Part 1, Bayes Theorem Reverend Thomas Bayes, 1702-1761 p ( T W ) W T ) T ) W ) Bayes Theorem forms the backbone of the past 20 years of ML research into probabilistic

More information

CS37300 Class Notes. Jennifer Neville, Sebastian Moreno, Bruno Ribeiro

CS37300 Class Notes. Jennifer Neville, Sebastian Moreno, Bruno Ribeiro CS37300 Class Notes Jennifer Neville, Sebastian Moreno, Bruno Ribeiro 2 Background on Probability and Statistics These are basic definitions, concepts, and equations that should have been covered in your

More information

18.600: Lecture 7 Bayes formula and independence

18.600: Lecture 7 Bayes formula and independence 18.600: Lecture 7 Bayes formula and independence Scott Sheffield MIT Outline Bayes formula Independence Outline Bayes formula Independence Recall definition: conditional probability Definition: P(E F )

More information

7.1 What is it and why should we care?

7.1 What is it and why should we care? Chapter 7 Probability In this section, we go over some simple concepts from probability theory. We integrate these with ideas from formal language theory in the next chapter. 7.1 What is it and why should

More information

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem

Recall from last time: Conditional probabilities. Lecture 2: Belief (Bayesian) networks. Bayes ball. Example (continued) Example: Inference problem Recall from last time: Conditional probabilities Our probabilistic models will compute and manipulate conditional probabilities. Given two random variables X, Y, we denote by Lecture 2: Belief (Bayesian)

More information

Bayesian Updating: Discrete Priors: Spring

Bayesian Updating: Discrete Priors: Spring Bayesian Updating: Discrete Priors: 18.05 Spring 2017 http://xkcd.com/1236/ Learning from experience Which treatment would you choose? 1. Treatment 1: cured 100% of patients in a trial. 2. Treatment 2:

More information

Probabilistic models

Probabilistic models Probabilistic models Kolmogorov (Andrei Nikolaevich, 1903 1987) put forward an axiomatic system for probability theory. Foundations of the Calculus of Probabilities, published in 1933, immediately became

More information

Discrete Random Variable

Discrete Random Variable Discrete Random Variable Outcome of a random experiment need not to be a number. We are generally interested in some measurement or numerical attribute of the outcome, rather than the outcome itself. n

More information

Continuing Probability.

Continuing Probability. Continuing Probability. Wrap up: Probability Formalism. Events, Conditional Probability, Independence, Bayes Rule Probability Space: Formalism Simplest physical model of a uniform probability space: Red

More information

Uncertainty. Logic and Uncertainty. Russell & Norvig. Readings: Chapter 13. One problem with logical-agent approaches: C:145 Artificial

Uncertainty. Logic and Uncertainty. Russell & Norvig. Readings: Chapter 13. One problem with logical-agent approaches: C:145 Artificial C:145 Artificial Intelligence@ Uncertainty Readings: Chapter 13 Russell & Norvig. Artificial Intelligence p.1/43 Logic and Uncertainty One problem with logical-agent approaches: Agents almost never have

More information

Discrete Probability and State Estimation

Discrete Probability and State Estimation 6.01, Spring Semester, 2008 Week 12 Course Notes 1 MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.01 Introduction to EECS I Spring Semester, 2008 Week

More information

AST 418/518 Instrumentation and Statistics

AST 418/518 Instrumentation and Statistics AST 418/518 Instrumentation and Statistics Class Website: http://ircamera.as.arizona.edu/astr_518 Class Texts: Practical Statistics for Astronomers, J.V. Wall, and C.R. Jenkins Measuring the Universe,

More information

Statistical methods in recognition. Why is classification a problem?

Statistical methods in recognition. Why is classification a problem? Statistical methods in recognition Basic steps in classifier design collect training images choose a classification model estimate parameters of classification model from training images evaluate model

More information

Joint, Conditional, & Marginal Probabilities

Joint, Conditional, & Marginal Probabilities Joint, Conditional, & Marginal Probabilities The three axioms for probability don t discuss how to create probabilities for combined events such as P [A B] or for the likelihood of an event A given that

More information