An AI-ish view of Probability, Conditional Probability & Bayes Theorem

Size: px
Start display at page:

Download "An AI-ish view of Probability, Conditional Probability & Bayes Theorem"

Transcription

1 An AI-ish view of Probability, Conditional Probability & Bayes Theorem

2 Review: Uncertainty and Truth Values: a mismatch Let action A t = leave for airport t minutes before flight. Will A 15 get me there on time? true/false Will A 20 get me there on time? true/false Will A 30 get me there on time? true/false Will A 200 get me there on time? true/false Problems: The world is not Fully observable (road state, other drivers plans, etc.) Deterministic (flat tire, etc.) Single agent (immense complexity modeling and predicting traffic) And often incoming information is wrong: noisy sensors (traffic reports, etc.) CIS 421/521 - Intro to AI 2

3 Making decisions under uncertainty Suppose I believe the following: P(A 25 gets me there on time ) = 0.04 P(A 90 gets me there on time ) = 0.70 P(A 120 gets me there on time ) = 0.95 P(A 1440 gets me there on time ) = Which action to choose? It still depends on my preferences for missing flight vs. time spent waiting, etc. CIS 421/521 - Intro to AI 3

4 Decision Theory Decision Theory develops methods for making optimal decisions in the presence of uncertainty. Decision Theory = utility theory + probability theory Utility theory is used to represent and infer preferences: Every state has a degree of usefulness An agent is rational if and only if it chooses an action A that yields the highest expected utility (expected usefulness). Let O be the possible outcomes of A, U(o) be the utility of outcome o, and P A (o) be the probability of o as an outcome for action A, then the Expected Utility of A is EU ( A) PA ( o) U ( o) o O CIS 421/521 - Intro to AI 4

5 Probability as Degree of Belief: An AI view of probability CIS 421/521 - Intro to AI 5

6 Probability as Degree of Belief Given the available evidence, A 25 will get me there on time with probability 0.04 Probabilistic assertions summarize the ignorance in perception and in models Theoretical ignorance: often, we simply have no complete theory of the domain, e.g. medicine Uncertainty (partial observability): Even if we know all the rules, we might be uncertain about a particular patient Laziness: Too much work to list the complete set of antecedents or consequents to ensure no exceptions CIS 421/521 - Intro to AI 6

7 Probabilities as Degrees of Belief Subjectivist (Bayesian) (Us) Probability is a model of agent s own degree of belief Frequentist (Not us, many statisticians) Probability is inherent in the process Probability is estimated from measurements CIS 421/521 - Intro to AI 7

8 Frequentists: Probability as expected frequency Frequentist (Not us, many statisticians) Probability is inherent in the process Probability is estimated from measurements P(A) = 1: A will always occur. P(A) = 0: A will never occur. 0.5 < P(A) < 1: A will occur more often than not. CIS 421/521 - Intro to AI 8

9 Bayesians: Probabilities as Degrees of Belief Subjectivist (Bayesian) (Us) Probability is a model of agent s own degree of belief P(A) = 1: Agent completely believes A is true. P(A) = 0: Agent completely believes A is false. 0.5 < P(A) < 1: Agent believes A is more likely to be true than false. Increasing evidence strengthens belief therefore changes probability estimate CIS 421/521 - Intro to AI 9

10 Frequentists vs. Bayesians I Actual dialogue one month before 2008 election Mitch (Bayesian): I think Obama now has an 80% chance of winning. Sue (Frequentist): What does that mean? It s either 100% or 0%, and we ll find out on election day. Why be Bayesian? Often need to make inferences about singular events (See above) De Finetti: It s good business If you don t use probabilities (and get them right) you ll lose bets see discussion in AIMA CIS 421/521 - Intro to AI 10

11 More AI-ish description of probability Basic assumption 1: : possible complete specifications of all possible states of the world (possible worlds) an agent is typically uncertain which describes the actual world E.g., if the world consists of only two Boolean variables Cavity and Toothache, then the sample space consists of 4 distinct elementary events: 1 : Cavity = false Toothache = false 2 : Cavity = false Toothache = true 3 : Cavity = true Toothache = false 4 : Cavity = true Toothache = true Elementary events are mutually exclusive and exhaustive CIS 421/521 - Intro to AI 11

12 AI-ish view: Discrete random variables A random variable can take on one of a set of different values, each with an associated probability. Its value at a particular time is subject to random variation. Discrete random variables take on one of a discrete (often finite) range of values Domain values must be exhaustive and mutually exclusive For us, random variables will have a discrete, countable (usually finite) domain of arbitrary values of types well beyond R Mathematical statistics calls these random elements Example: Weather is a discrete random variable with domain {sunny, rain, cloudy, snow}. Example: A Boolean random variable has the domain {true,false}, CIS 421/521 - Intro to AI 12

13 A word on notation Assume Weather is a discrete random variable with domain {sunny, rain, cloudy, snow}. Weather = sunny abbreviated sunny P(Weather=sunny)=0.72 abbreviated P(sunny)=0.72 Cavity = true abbreviated cavity Cavity = false abbreviated cavity CIS 421/521 - Intro to AI 13

14 Factored Representations: Propositions Elementary proposition constructed by assignment of a value to a random variable: e.g. Weather = sunny (abbreviated as sunny) e.g. Cavity = false (abbreviated as cavity) Complex proposition formed from elementary propositions & standard logical connectives e.g. Weather = sunny Cavity = false AI systems often work with event spaces over such propositions CIS 421/521 - Intro to AI 14

15 Joint probability distribution a Probability assignment to all combinations of values of random variables (i.e. all elementary events) toothache toothache cavity cavity The sum of the entries in this table has to be 1 Every question about a domain can be answered by the joint distribution!!! Probability of a proposition is the sum of the probabilities of elementary events in which it holds P(cavity) = 0.1 [marginal of row 1] P(toothache) = 0.05 [marginal of toothache column] CIS 421/521 - Intro to AI 15

16 More on Conditional Probabilities CIS 421/521 - Intro to AI 16

17 Review: Conditional Probability Given a probability space (Ω, P), For any two events A and B, if P B 0, we define the conditional probability that A occurs given that B occurs [ P(A B) ] as P A B = P A B P(B) From this follows Chain Rule: P A B = P A B P B P A B C = P A B C P B C = P A B C P B C P C Etc CIS 421/521 - Intro to AI 17

18 Conditional Probability toothache toothache cavity cavity P(cavity)=0.1 and P(cavity toothache)=0.04 are both prior (unconditional) probabilities Once the agent has new evidence concerning a previously unknown random variable, e.g. Toothache, we can specify a posterior (conditional) probability e.g. P(cavity Toothache=true) P(a b) = P(a b)/p(b) [Probability of a with the Universe restricted to b] The new information restricts the set of possible worlds i consistent with that new information, so changes the probability. So P(cavity toothache) = 0.04/0.05 = 0.8 CIS 421/521 - Intro to AI 18 A B A B

19 Probabilistic Inference Probabilistic inference: the computation from observed evidence of posterior probabilities (probabilities given that evidence) for query propositions. We use the full joint distribution as the knowledge base from which answers to questions may be derived. Ex: three Boolean variables Toothache (T), Cavity (C), ShowsOnXRay (X) t t x x x x c c Review: Probabilities in joint distribution sum to 1 CIS 421/521 - Intro to AI 19

20 Probabilistic Inference II Review: Probability of any proposition computed by finding atomic events where proposition is true and adding their probabilities P(cavity toothache) = = 0.28 P(cavity) = = 0.2 P(cavity) is called a marginal probability and the process of computing this is called marginalization CIS 421/521 - Intro to AI 20 t t x x x x c c

21 Probabilistic Inference III Can also compute conditional probabilities. P( cavity toothache) = P( cavity toothache)/p(toothache) = ( ) / ( ) = 0.4 Denominator is viewed as a normalization constant: t Stays constant no matter what the value of Cavity is. (Book uses a to denote normalization constant 1/P(X), for random variable X.) t x x x x c c CIS 421/521 - Intro to AI 21

22 Bayes Theorem & Naïve Bayes (some slides adapted from slides by Massimo Poesio, adapted from slides by Chris Manning)

23 Bayes Theorem & Diagnosis Posterior Likelihood Prior Normalization Useful for assessing diagnostic probability from causal probability: P(Cause Effect) = P(Effect Cause) P(Cause) P(Effect) Simple Proof: P F H = P H F P F H P H = P H F P F P F H = P( a b) P(H F) P F P(H) P( b a) P( a) Pb () (by defn of cond prob) CIS 421/521 - Intro to AI 23

24 Bayes Theorem For Diagnosis II P(Disease Symptom) = P(Symptom Disease) P(Disease) Imagine: P(Symptom) disease = TB, symptom = coughing P(Disease Symptom) is different in TB-indicated country vs. USA P(Symptom Disease) should be the same It is more widely useful to learn P(Symptom Disease) What about P(Symptom)? Use conditioning (next slide) For determining, e.g., the most likely disease given the symptom, we can just ignore P(Symptom)!!! (see next lecture) CIS 421/521 - Intro to AI 24

25 Conditioning: Computing Normalization Idea: Use conditional probabilities instead of joint probabilities In general: A = A B (A തB) P A = P A B P B + P A തB P തB Here: P(Symptom) = P(Symptom Disease) P(Disease) + P(Symptom Disease) P( Disease) CIS 421/521 - Intro to AI 25

26 Exponentials rear their ugly head again Estimating the necessary joint probability distribution for many symptoms is infeasible For D diseases, S symptoms where a person can have n of the diseases and m of the symptoms P(s d 1, d 2,, d n ) requires S D n values P(s 1, s 2,, s m ) requires S m values These numbers get big fast If S =1,000, D =100, n=4, m=7 P(s d 1, d n ) requires 1000*100 4 =10 11 values (-1) P(s 1..s m ) requires = values (-1) CIS 421/521 - Intro to AI 26

27 The Solution: Independence Random variables A and B are independent iff P(A B) = P(A) P(B) equivalently: P(A B) = P(A) and P(B A) = P(B) A and B are independent if knowing whether A occurred gives no information about B (and vice versa) Independence assumptions are essential for efficient probabilistic reasoning Cavity Toothache Weather Xray decomposes into Cavity Toothache Weather Xray P(T, X, C, W) = P(T, X, C) P(W) 15 entries (2 4-1) reduced to 8 ( ) For n independent biased coins, O(2 n ) entries O(n) CIS 421/521 - Intro to AI 27

28 Conditional Independence BUT absolute independence is rare Dentistry is a large field with hundreds of variables, none of which are independent. What to do? A and B are conditionally independent given C iff P(A B, C) = P(A C) P(B A, C) = P(B C) P(A B C) = P(A C) P(B C) Toothache (T), Spot in Xray (X), Cavity (C) None of these are independent of the other two But T and X are conditionally independent given C CIS 421/521 - Intro to AI 28

29 Conditional Independence II WHY?? If I have a cavity, the probability that the XRay shows a spot doesn t depend on whether I have a toothache (and vice versa): P(X T,C) = P(X C) From which follows: P(T X,C) = P(T C) and P(T,X C) = P(T C) P(X C) By the chain rule), given conditional independence: P(T,X,C) = P(T X,C) P(X,C) = P(T X,C) P(X C) P(C) = P(T C) P(X C) P(C) P(Toothache, Cavity, Xray) has = 7 independent entries Given conditional independence, chain rule yields = 5 independent numbers CIS 421/521 - Intro to AI 29

30 Conditional Independence III In most cases, the use of conditional independence reduces the size of the representation of the joint distribution from exponential in n to linear in n. Conditional independence is our most basic and robust form of knowledge about uncertain environments. CIS 421/521 - Intro to AI 30

31 Another Example Battery is dead (B) Radio plays (R) Starter turns over (S) None of these propositions are independent of one another BUT: R and S are conditionally independent given B CIS 421/521 - Intro to AI 31

32 Next Time: Naïve Bayes Spam or not Spam: that is the question From: "" Subject: real estate is the only way... gem oalvgkay Anyone can buy real estate with no money down Stop paying rent TODAY! There is no need to spend hundreds or even thousands for similar courses I am 22 years old and I have already purchased 6 properties using the methods outlined in this truly INCREDIBLE ebook. Change your life NOW! ================================================= Click Below to order: ================================================= CIS 421/521 - Intro to AI 32

10/18/2017. An AI-ish view of Probability, Conditional Probability & Bayes Theorem. Making decisions under uncertainty.

10/18/2017. An AI-ish view of Probability, Conditional Probability & Bayes Theorem. Making decisions under uncertainty. An AI-ish view of Probability, Conditional Probability & Bayes Theorem Review: Uncertainty and Truth Values: a mismatch Let action A t = leave for airport t minutes before flight. Will A 15 get me there

More information

10/15/2015 A FAST REVIEW OF DISCRETE PROBABILITY (PART 2) Probability, Conditional Probability & Bayes Rule. Discrete random variables

10/15/2015 A FAST REVIEW OF DISCRETE PROBABILITY (PART 2) Probability, Conditional Probability & Bayes Rule. Discrete random variables Probability, Conditional Probability & Bayes Rule A FAST REVIEW OF DISCRETE PROBABILITY (PART 2) 2 Discrete random variables A random variable can take on one of a set of different values, each with an

More information

Uncertainty. Chapter 13

Uncertainty. Chapter 13 Uncertainty Chapter 13 Uncertainty Let action A t = leave for airport t minutes before flight Will A t get me there on time? Problems: 1. partial observability (road state, other drivers' plans, noisy

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Dr Ahmed Rafat Abas Computer Science Dept, Faculty of Computers and Informatics, Zagazig University arabas@zu.edu.eg http://www.arsaliem.faculty.zu.edu.eg/ Uncertainty Chapter 13

More information

Artificial Intelligence Uncertainty

Artificial Intelligence Uncertainty Artificial Intelligence Uncertainty Ch. 13 Uncertainty Let action A t = leave for airport t minutes before flight Will A t get me there on time? A 25, A 60, A 3600 Uncertainty: partial observability (road

More information

Uncertainty. Outline

Uncertainty. Outline Uncertainty Chapter 13 Outline Uncertainty Probability Syntax and Semantics Inference Independence and Bayes' Rule 1 Uncertainty Let action A t = leave for airport t minutes before flight Will A t get

More information

Bayes Theorem & Naïve Bayes. (some slides adapted from slides by Massimo Poesio, adapted from slides by Chris Manning)

Bayes Theorem & Naïve Bayes. (some slides adapted from slides by Massimo Poesio, adapted from slides by Chris Manning) Bayes Theorem & Naïve Bayes (some slides adapted from slides by Massimo Poesio, adapted from slides by Chris Manning) Review: Bayes Theorem & Diagnosis P( a b) Posterior Likelihood Prior P( b a) P( a)

More information

Uncertainty. Chapter 13

Uncertainty. Chapter 13 Uncertainty Chapter 13 Outline Uncertainty Probability Syntax and Semantics Inference Independence and Bayes Rule Uncertainty Let s say you want to get to the airport in time for a flight. Let action A

More information

Probabilistic Reasoning

Probabilistic Reasoning Probabilistic Reasoning Philipp Koehn 4 April 2017 Outline 1 Uncertainty Probability Inference Independence and Bayes Rule 2 uncertainty Uncertainty 3 Let action A t = leave for airport t minutes before

More information

Pengju XJTU 2016

Pengju XJTU 2016 Introduction to AI Chapter13 Uncertainty Pengju Ren@IAIR Outline Uncertainty Probability Syntax and Semantics Inference Independence and Bayes Rule Wumpus World Environment Squares adjacent to wumpus are

More information

COMP9414/ 9814/ 3411: Artificial Intelligence. 14. Uncertainty. Russell & Norvig, Chapter 13. UNSW c AIMA, 2004, Alan Blair, 2012

COMP9414/ 9814/ 3411: Artificial Intelligence. 14. Uncertainty. Russell & Norvig, Chapter 13. UNSW c AIMA, 2004, Alan Blair, 2012 COMP9414/ 9814/ 3411: Artificial Intelligence 14. Uncertainty Russell & Norvig, Chapter 13. COMP9414/9814/3411 14s1 Uncertainty 1 Outline Uncertainty Probability Syntax and Semantics Inference Independence

More information

Uncertainty. Chapter 13, Sections 1 6

Uncertainty. Chapter 13, Sections 1 6 Uncertainty Chapter 13, Sections 1 6 Artificial Intelligence, spring 2013, Peter Ljunglöf; based on AIMA Slides c Stuart Russel and Peter Norvig, 2004 Chapter 13, Sections 1 6 1 Outline Uncertainty Probability

More information

Uncertainty. Chapter 13. Chapter 13 1

Uncertainty. Chapter 13. Chapter 13 1 Uncertainty Chapter 13 Chapter 13 1 Outline Uncertainty Probability Syntax and Semantics Inference Independence and Bayes Rule Chapter 13 2 Uncertainty Let action A t = leave for airport t minutes before

More information

Uncertainty. Outline. Probability Syntax and Semantics Inference Independence and Bayes Rule. AIMA2e Chapter 13

Uncertainty. Outline. Probability Syntax and Semantics Inference Independence and Bayes Rule. AIMA2e Chapter 13 Uncertainty AIMA2e Chapter 13 1 Outline Uncertainty Probability Syntax and Semantics Inference Independence and ayes Rule 2 Uncertainty Let action A t = leave for airport t minutes before flight Will A

More information

Probabilistic Reasoning

Probabilistic Reasoning Course 16 :198 :520 : Introduction To Artificial Intelligence Lecture 7 Probabilistic Reasoning Abdeslam Boularias Monday, September 28, 2015 1 / 17 Outline We show how to reason and act under uncertainty.

More information

Basic Probability and Decisions

Basic Probability and Decisions Basic Probability and Decisions Chris Amato Northeastern University Some images and slides are used from: Rob Platt, CS188 UC Berkeley, AIMA Uncertainty Let action A t = leave for airport t minutes before

More information

Outline. Uncertainty. Methods for handling uncertainty. Uncertainty. Making decisions under uncertainty. Probability. Uncertainty

Outline. Uncertainty. Methods for handling uncertainty. Uncertainty. Making decisions under uncertainty. Probability. Uncertainty Outline Uncertainty Uncertainty Chapter 13 Probability Syntax and Semantics Inference Independence and ayes Rule Chapter 13 1 Chapter 13 2 Uncertainty et action A t =leaveforairportt minutes before flight

More information

Chapter 13 Quantifying Uncertainty

Chapter 13 Quantifying Uncertainty Chapter 13 Quantifying Uncertainty CS5811 - Artificial Intelligence Nilufer Onder Department of Computer Science Michigan Technological University Outline Probability basics Syntax and semantics Inference

More information

CS 561: Artificial Intelligence

CS 561: Artificial Intelligence CS 561: Artificial Intelligence Instructor: TAs: Sofus A. Macskassy, macskass@usc.edu Nadeesha Ranashinghe (nadeeshr@usc.edu) William Yeoh (wyeoh@usc.edu) Harris Chiu (chiciu@usc.edu) Lectures: MW 5:00-6:20pm,

More information

Quantifying uncertainty & Bayesian networks

Quantifying uncertainty & Bayesian networks Quantifying uncertainty & Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2016 Soleymani Artificial Intelligence: A Modern Approach, 3 rd Edition,

More information

: A sea change in AI technologies

: A sea change in AI technologies 1980-1995: A sea change in AI technologies Example: Natural Language Processing The Great Wave off Kanagawa by Hokusai, ~1830 ] SHRDLU: 1969 NLP solved?? Person: PICK UP A BIG RED BLOCK. Computer: OK.

More information

Pengju

Pengju Introduction to AI Chapter13 Uncertainty Pengju Ren@IAIR Outline Uncertainty Probability Syntax and Semantics Inference Independence and Bayes Rule Example: Car diagnosis Wumpus World Environment Squares

More information

Probabilistic Robotics

Probabilistic Robotics Probabilistic Robotics Overview of probability, Representing uncertainty Propagation of uncertainty, Bayes Rule Application to Localization and Mapping Slides from Autonomous Robots (Siegwart and Nourbaksh),

More information

Uncertainty. 22c:145 Artificial Intelligence. Problem of Logic Agents. Foundations of Probability. Axioms of Probability

Uncertainty. 22c:145 Artificial Intelligence. Problem of Logic Agents. Foundations of Probability. Axioms of Probability Problem of Logic Agents 22c:145 Artificial Intelligence Uncertainty Reading: Ch 13. Russell & Norvig Logic-agents almost never have access to the whole truth about their environments. A rational agent

More information

Uncertain Knowledge and Reasoning

Uncertain Knowledge and Reasoning Uncertainty Part IV Uncertain Knowledge and Reasoning et action A t = leave for airport t minutes before flight Will A t get me there on time? Problems: 1) partial observability (road state, other drivers

More information

Where are we in CS 440?

Where are we in CS 440? Where are we in CS 440? Now leaving: sequential deterministic reasoning Entering: probabilistic reasoning and machine learning robability: Review of main concepts Chapter 3 Making decisions under uncertainty

More information

n How to represent uncertainty in knowledge? n Which action to choose under uncertainty? q Assume the car does not have a flat tire

n How to represent uncertainty in knowledge? n Which action to choose under uncertainty? q Assume the car does not have a flat tire Uncertainty Uncertainty Russell & Norvig Chapter 13 Let A t be the action of leaving for the airport t minutes before your flight Will A t get you there on time? A purely logical approach either 1. risks

More information

Uncertainty and Bayesian Networks

Uncertainty and Bayesian Networks Uncertainty and Bayesian Networks Tutorial 3 Tutorial 3 1 Outline Uncertainty Probability Syntax and Semantics for Uncertainty Inference Independence and Bayes Rule Syntax and Semantics for Bayesian Networks

More information

Uncertainty (Chapter 13, Russell & Norvig) Introduction to Artificial Intelligence CS 150 Lecture 14

Uncertainty (Chapter 13, Russell & Norvig) Introduction to Artificial Intelligence CS 150 Lecture 14 Uncertainty (Chapter 13, Russell & Norvig) Introduction to Artificial Intelligence CS 150 Lecture 14 Administration Last Programming assignment will be handed out later this week. I am doing probability

More information

Uncertainty. Introduction to Artificial Intelligence CS 151 Lecture 2 April 1, CS151, Spring 2004

Uncertainty. Introduction to Artificial Intelligence CS 151 Lecture 2 April 1, CS151, Spring 2004 Uncertainty Introduction to Artificial Intelligence CS 151 Lecture 2 April 1, 2004 Administration PA 1 will be handed out today. There will be a MATLAB tutorial tomorrow, Friday, April 2 in AP&M 4882 at

More information

UNCERTAINTY. In which we see what an agent should do when not all is crystal-clear.

UNCERTAINTY. In which we see what an agent should do when not all is crystal-clear. UNCERTAINTY In which we see what an agent should do when not all is crystal-clear. Outline Uncertainty Probabilistic Theory Axioms of Probability Probabilistic Reasoning Independency Bayes Rule Summary

More information

Where are we in CS 440?

Where are we in CS 440? Where are we in CS 440? Now leaving: sequential deterministic reasoning Entering: probabilistic reasoning and machine learning robability: Review of main concepts Chapter 3 Motivation: lanning under uncertainty

More information

Uncertainty. Russell & Norvig Chapter 13.

Uncertainty. Russell & Norvig Chapter 13. Uncertainty Russell & Norvig Chapter 13 http://toonut.com/wp-content/uploads/2011/12/69wp.jpg Uncertainty Let A t be the action of leaving for the airport t minutes before your flight Will A t get you

More information

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty

Lecture 10: Introduction to reasoning under uncertainty. Uncertainty Lecture 10: Introduction to reasoning under uncertainty Introduction to reasoning under uncertainty Review of probability Axioms and inference Conditional probability Probability distributions COMP-424,

More information

Web-Mining Agents Data Mining

Web-Mining Agents Data Mining Web-Mining Agents Data Mining Prof. Dr. Ralf Möller Dr. Özgür L. Özçep Universität zu Lübeck Institut für Informationssysteme Tanya Braun (Übungen) 2 Uncertainty AIMA Chapter 13 3 Outline Agents Uncertainty

More information

Resolution or modus ponens are exact there is no possibility of mistake if the rules are followed exactly.

Resolution or modus ponens are exact there is no possibility of mistake if the rules are followed exactly. THE WEAKEST LINK Resolution or modus ponens are exact there is no possibility of mistake if the rules are followed exactly. These methods of inference (also known as deductive methods) require that information

More information

CS 5100: Founda.ons of Ar.ficial Intelligence

CS 5100: Founda.ons of Ar.ficial Intelligence CS 5100: Founda.ons of Ar.ficial Intelligence Probabilistic Inference Prof. Amy Sliva November 3, 2011 Outline Discuss Midterm Class presentations start next week! Reasoning under uncertainty Probability

More information

Uncertainty. Logic and Uncertainty. Russell & Norvig. Readings: Chapter 13. One problem with logical-agent approaches: C:145 Artificial

Uncertainty. Logic and Uncertainty. Russell & Norvig. Readings: Chapter 13. One problem with logical-agent approaches: C:145 Artificial C:145 Artificial Intelligence@ Uncertainty Readings: Chapter 13 Russell & Norvig. Artificial Intelligence p.1/43 Logic and Uncertainty One problem with logical-agent approaches: Agents almost never have

More information

Basic Probability. Robert Platt Northeastern University. Some images and slides are used from: 1. AIMA 2. Chris Amato

Basic Probability. Robert Platt Northeastern University. Some images and slides are used from: 1. AIMA 2. Chris Amato Basic Probability Robert Platt Northeastern University Some images and slides are used from: 1. AIMA 2. Chris Amato (Discrete) Random variables What is a random variable? Suppose that the variable a denotes

More information

13.4 INDEPENDENCE. 494 Chapter 13. Quantifying Uncertainty

13.4 INDEPENDENCE. 494 Chapter 13. Quantifying Uncertainty 494 Chapter 13. Quantifying Uncertainty table. In a realistic problem we could easily have n>100, makingo(2 n ) impractical. The full joint distribution in tabular form is just not a practical tool for

More information

Cartesian-product sample spaces and independence

Cartesian-product sample spaces and independence CS 70 Discrete Mathematics for CS Fall 003 Wagner Lecture 4 The final two lectures on probability will cover some basic methods for answering questions about probability spaces. We will apply them to the

More information

Course Introduction. Probabilistic Modelling and Reasoning. Relationships between courses. Dealing with Uncertainty. Chris Williams.

Course Introduction. Probabilistic Modelling and Reasoning. Relationships between courses. Dealing with Uncertainty. Chris Williams. Course Introduction Probabilistic Modelling and Reasoning Chris Williams School of Informatics, University of Edinburgh September 2008 Welcome Administration Handout Books Assignments Tutorials Course

More information

Reasoning under Uncertainty: Intro to Probability

Reasoning under Uncertainty: Intro to Probability Reasoning under Uncertainty: Intro to Probability Computer Science cpsc322, Lecture 24 (Textbook Chpt 6.1, 6.1.1) March, 15, 2010 CPSC 322, Lecture 24 Slide 1 To complete your Learning about Logics Review

More information

Computer Science CPSC 322. Lecture 18 Marginalization, Conditioning

Computer Science CPSC 322. Lecture 18 Marginalization, Conditioning Computer Science CPSC 322 Lecture 18 Marginalization, Conditioning Lecture Overview Recap Lecture 17 Joint Probability Distribution, Marginalization Conditioning Inference by Enumeration Bayes Rule, Chain

More information

Probability and Decision Theory

Probability and Decision Theory Probability and Decision Theory Robert Platt Northeastern University Some images and slides are used from: 1. AIMA 2. Chris Amato 3. Stacy Marsella QUANTIFYING UNCERTAINTY WITH PROBABILITIES Generally

More information

Probabilistic representation and reasoning

Probabilistic representation and reasoning Probabilistic representation and reasoning Applied artificial intelligence (EDA132) Lecture 09 2017-02-15 Elin A. Topp Material based on course book, chapter 13, 14.1-3 1 Show time! Two boxes of chocolates,

More information

Reasoning with Uncertainty. Chapter 13

Reasoning with Uncertainty. Chapter 13 Reasoning with Uncertainty Chapter 13 1 Outline Uncertainty Probability Syntax and Semantics Inference Independence and Bayes Rule 2 The real world is an uncertain place... Example: I need a plan that

More information

Quantifying Uncertainty & Probabilistic Reasoning. Abdulla AlKhenji Khaled AlEmadi Mohammed AlAnsari

Quantifying Uncertainty & Probabilistic Reasoning. Abdulla AlKhenji Khaled AlEmadi Mohammed AlAnsari Quantifying Uncertainty & Probabilistic Reasoning Abdulla AlKhenji Khaled AlEmadi Mohammed AlAnsari Outline Previous Implementations What is Uncertainty? Acting Under Uncertainty Rational Decisions Basic

More information

Probabilistic Reasoning. Kee-Eung Kim KAIST Computer Science

Probabilistic Reasoning. Kee-Eung Kim KAIST Computer Science Probabilistic Reasoning Kee-Eung Kim KAIST Computer Science Outline #1 Acting under uncertainty Probabilities Inference with Probabilities Independence and Bayes Rule Bayesian networks Inference in Bayesian

More information

Discrete Probability and State Estimation

Discrete Probability and State Estimation 6.01, Fall Semester, 2007 Lecture 12 Notes 1 MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.01 Introduction to EECS I Fall Semester, 2007 Lecture 12 Notes

More information

Uncertainty (Chapter 13, Russell & Norvig)

Uncertainty (Chapter 13, Russell & Norvig) Uncertainty (Chapter 13, Russell & Norvig) Introduction to Artificial Intelligence CS 150 Administration Midterm next Tuesday!!! I will try to find an old one to post. The MT will cover chapters 1-6, with

More information

CSE 473: Artificial Intelligence

CSE 473: Artificial Intelligence CSE 473: Artificial Intelligence Probability Steve Tanimoto University of Washington [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials

More information

Our Status. We re done with Part I Search and Planning!

Our Status. We re done with Part I Search and Planning! Probability [These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.] Our Status We re done with Part

More information

ARTIFICIAL INTELLIGENCE. Uncertainty: probabilistic reasoning

ARTIFICIAL INTELLIGENCE. Uncertainty: probabilistic reasoning INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Uncertainty: probabilistic reasoning Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from

More information

Probabilistic Models

Probabilistic Models Bayes Nets 1 Probabilistic Models Models describe how (a portion of) the world works Models are always simplifications May not account for every variable May not account for all interactions between variables

More information

Ch.6 Uncertain Knowledge. Logic and Uncertainty. Representation. One problem with logical approaches: Department of Computer Science

Ch.6 Uncertain Knowledge. Logic and Uncertainty. Representation. One problem with logical approaches: Department of Computer Science Ch.6 Uncertain Knowledge Representation Hantao Zhang http://www.cs.uiowa.edu/ hzhang/c145 The University of Iowa Department of Computer Science Artificial Intelligence p.1/39 Logic and Uncertainty One

More information

CS 188: Artificial Intelligence. Our Status in CS188

CS 188: Artificial Intelligence. Our Status in CS188 CS 188: Artificial Intelligence Probability Pieter Abbeel UC Berkeley Many slides adapted from Dan Klein. 1 Our Status in CS188 We re done with Part I Search and Planning! Part II: Probabilistic Reasoning

More information

Probability. CS 3793/5233 Artificial Intelligence Probability 1

Probability. CS 3793/5233 Artificial Intelligence Probability 1 CS 3793/5233 Artificial Intelligence 1 Motivation Motivation Random Variables Semantics Dice Example Joint Dist. Ex. Axioms Agents don t have complete knowledge about the world. Agents need to make decisions

More information

Artificial Intelligence CS 6364

Artificial Intelligence CS 6364 Artificial Intelligence CS 6364 rofessor Dan Moldovan Section 12 robabilistic Reasoning Acting under uncertainty Logical agents assume propositions are - True - False - Unknown acting under uncertainty

More information

CS 188: Artificial Intelligence Fall 2009

CS 188: Artificial Intelligence Fall 2009 CS 188: Artificial Intelligence Fall 2009 Lecture 13: Probability 10/8/2009 Dan Klein UC Berkeley 1 Announcements Upcoming P3 Due 10/12 W2 Due 10/15 Midterm in evening of 10/22 Review sessions: Probability

More information

Artificial Intelligence Programming Probability

Artificial Intelligence Programming Probability Artificial Intelligence Programming Probability Chris Brooks Department of Computer Science University of San Francisco Department of Computer Science University of San Francisco p.1/?? 13-0: Uncertainty

More information

Reasoning under Uncertainty: Intro to Probability

Reasoning under Uncertainty: Intro to Probability Reasoning under Uncertainty: Intro to Probability Computer Science cpsc322, Lecture 24 (Textbook Chpt 6.1, 6.1.1) Nov, 2, 2012 CPSC 322, Lecture 24 Slide 1 Tracing Datalog proofs in AIspace You can trace

More information

Lecture Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 11: Uncertainty. Uncertainty.

Lecture Overview. Introduction to Artificial Intelligence COMP 3501 / COMP Lecture 11: Uncertainty. Uncertainty. Lecture Overview COMP 3501 / COMP 4704-4 Lecture 11: Uncertainty Return HW 1/Midterm Short HW 2 discussion Uncertainty / Probability Prof. JGH 318 Uncertainty Previous approaches dealt with relatively

More information

Probability theory: elements

Probability theory: elements Probability theory: elements Peter Antal antal@mit.bme.hu A.I. February 17, 2017 1 Joint distribution Conditional robability Indeendence, conditional indeendence Bayes rule Marginalization/Exansion Chain

More information

Probability Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 27 Mar 2012

Probability Hal Daumé III. Computer Science University of Maryland CS 421: Introduction to Artificial Intelligence 27 Mar 2012 1 Hal Daumé III (me@hal3.name) Probability 101++ Hal Daumé III Computer Science University of Maryland me@hal3.name CS 421: Introduction to Artificial Intelligence 27 Mar 2012 Many slides courtesy of Dan

More information

Probabilistic representation and reasoning

Probabilistic representation and reasoning Probabilistic representation and reasoning Applied artificial intelligence (EDAF70) Lecture 04 2019-02-01 Elin A. Topp Material based on course book, chapter 13, 14.1-3 1 Show time! Two boxes of chocolates,

More information

Why Probability? It's the right way to look at the world.

Why Probability? It's the right way to look at the world. Probability Why Probability? It's the right way to look at the world. Discrete Random Variables We denote discrete random variables with capital letters. A boolean random variable may be either true or

More information

Brief Intro. to Bayesian Networks. Extracted and modified from four lectures in Intro to AI, Spring 2008 Paul S. Rosenbloom

Brief Intro. to Bayesian Networks. Extracted and modified from four lectures in Intro to AI, Spring 2008 Paul S. Rosenbloom Brief Intro. to Bayesian Networks Extracted and modified from four lectures in Intro to AI, Spring 2008 Paul S. Rosenbloom Factor Graph Review Tame combinatorics in many calculations Decoding codes (origin

More information

CS 5522: Artificial Intelligence II

CS 5522: Artificial Intelligence II CS 5522: Artificial Intelligence II Bayes Nets Instructor: Alan Ritter Ohio State University [These slides were adapted from CS188 Intro to AI at UC Berkeley. All materials available at http://ai.berkeley.edu.]

More information

Bayesian networks. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018

Bayesian networks. Soleymani. CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Bayesian networks CE417: Introduction to Artificial Intelligence Sharif University of Technology Spring 2018 Soleymani Slides have been adopted from Klein and Abdeel, CS188, UC Berkeley. Outline Probability

More information

Fusion in simple models

Fusion in simple models Fusion in simple models Peter Antal antal@mit.bme.hu A.I. February 8, 2018 1 Basic concepts of probability theory Joint distribution Conditional probability Bayes rule Chain rule Marginalization General

More information

Stochastic Methods. 5.0 Introduction 5.1 The Elements of Counting 5.2 Elements of Probability Theory

Stochastic Methods. 5.0 Introduction 5.1 The Elements of Counting 5.2 Elements of Probability Theory 5 Stochastic Methods 5.0 Introduction 5.1 The Elements of Counting 5.2 Elements of Probability Theory 5.4 The Stochastic Approach to Uncertainty 5.4 Epilogue and References 5.5 Exercises Note: The slides

More information

Bayesian Reasoning. Adapted from slides by Tim Finin and Marie desjardins.

Bayesian Reasoning. Adapted from slides by Tim Finin and Marie desjardins. Bayesian Reasoning Adapted from slides by Tim Finin and Marie desjardins. 1 Outline Probability theory Bayesian inference From the joint distribution Using independence/factoring From sources of evidence

More information

CS 188: Artificial Intelligence Fall 2009

CS 188: Artificial Intelligence Fall 2009 CS 188: Artificial Intelligence Fall 2009 Lecture 14: Bayes Nets 10/13/2009 Dan Klein UC Berkeley Announcements Assignments P3 due yesterday W2 due Thursday W1 returned in front (after lecture) Midterm

More information

CS 343: Artificial Intelligence

CS 343: Artificial Intelligence CS 343: Artificial Intelligence Bayes Nets Prof. Scott Niekum The University of Texas at Austin [These slides based on those of Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188

More information

PROBABILITY. Inference: constraint propagation

PROBABILITY. Inference: constraint propagation PROBABILITY Inference: constraint propagation! Use the constraints to reduce the number of legal values for a variable! Possible to find a solution without searching! Node consistency " A node is node-consistent

More information

CS 188: Artificial Intelligence Spring Announcements

CS 188: Artificial Intelligence Spring Announcements CS 188: Artificial Intelligence Spring 2011 Lecture 14: Bayes Nets II Independence 3/9/2011 Pieter Abbeel UC Berkeley Many slides over the course adapted from Dan Klein, Stuart Russell, Andrew Moore Announcements

More information

Discrete Probability and State Estimation

Discrete Probability and State Estimation 6.01, Spring Semester, 2008 Week 12 Course Notes 1 MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.01 Introduction to EECS I Spring Semester, 2008 Week

More information

Uncertain Knowledge and Bayes Rule. George Konidaris

Uncertain Knowledge and Bayes Rule. George Konidaris Uncertain Knowledge and Bayes Rule George Konidaris gdk@cs.brown.edu Fall 2018 Knowledge Logic Logical representations are based on: Facts about the world. Either true or false. We may not know which.

More information

Y. Xiang, Inference with Uncertain Knowledge 1

Y. Xiang, Inference with Uncertain Knowledge 1 Inference with Uncertain Knowledge Objectives Why must agent use uncertain knowledge? Fundamentals of Bayesian probability Inference with full joint distributions Inference with Bayes rule Bayesian networks

More information

Probability Review Lecturer: Ji Liu Thank Jerry Zhu for sharing his slides

Probability Review Lecturer: Ji Liu Thank Jerry Zhu for sharing his slides Probability Review Lecturer: Ji Liu Thank Jerry Zhu for sharing his slides slide 1 Inference with Bayes rule: Example In a bag there are two envelopes one has a red ball (worth $100) and a black ball one

More information

In today s lecture. Conditional probability and independence. COSC343: Artificial Intelligence. Curse of dimensionality.

In today s lecture. Conditional probability and independence. COSC343: Artificial Intelligence. Curse of dimensionality. In today s lecture COSC343: Artificial Intelligence Lecture 5: Bayesian Reasoning Conditional probability independence Curse of dimensionality Lech Szymanski Dept. of Computer Science, University of Otago

More information

Modeling and reasoning with uncertainty

Modeling and reasoning with uncertainty CS 2710 Foundations of AI Lecture 18 Modeling and reasoning with uncertainty Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square KB systems. Medical example. We want to build a KB system for the diagnosis

More information

Probabilistic Models. Models describe how (a portion of) the world works

Probabilistic Models. Models describe how (a portion of) the world works Probabilistic Models Models describe how (a portion of) the world works Models are always simplifications May not account for every variable May not account for all interactions between variables All models

More information

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty

Uncertainty. Variables. assigns to each sentence numerical degree of belief between 0 and 1. uncertainty Bayes Classification n Uncertainty & robability n Baye's rule n Choosing Hypotheses- Maximum a posteriori n Maximum Likelihood - Baye's concept learning n Maximum Likelihood of real valued function n Bayes

More information

Reasoning Under Uncertainty: Conditioning, Bayes Rule & the Chain Rule

Reasoning Under Uncertainty: Conditioning, Bayes Rule & the Chain Rule Reasoning Under Uncertainty: Conditioning, Bayes Rule & the Chain Rule Alan Mackworth UBC CS 322 Uncertainty 2 March 13, 2013 Textbook 6.1.3 Lecture Overview Recap: Probability & Possible World Semantics

More information

Discrete Random Variables

Discrete Random Variables Probability Discrete Random Variables We denote discrete random variables with capital letters. A boolean random variable may be either true or false A = true or A=false. P(a), or P(A=true) denotes the

More information

Bayesian Networks. Vibhav Gogate The University of Texas at Dallas

Bayesian Networks. Vibhav Gogate The University of Texas at Dallas Bayesian Networks Vibhav Gogate The University of Texas at Dallas Intro to AI (CS 4365) Many slides over the course adapted from either Dan Klein, Luke Zettlemoyer, Stuart Russell or Andrew Moore 1 Outline

More information

Bayesian Networks. Vibhav Gogate The University of Texas at Dallas

Bayesian Networks. Vibhav Gogate The University of Texas at Dallas Bayesian Networks Vibhav Gogate The University of Texas at Dallas Intro to AI (CS 6364) Many slides over the course adapted from either Dan Klein, Luke Zettlemoyer, Stuart Russell or Andrew Moore 1 Outline

More information

CS188 Outline. We re done with Part I: Search and Planning! Part II: Probabilistic Reasoning. Part III: Machine Learning

CS188 Outline. We re done with Part I: Search and Planning! Part II: Probabilistic Reasoning. Part III: Machine Learning CS188 Outline We re done with Part I: Search and Planning! Part II: Probabilistic Reasoning Diagnosis Speech recognition Tracking objects Robot mapping Genetics Error correcting codes lots more! Part III:

More information

Answering. Question Answering: Result. Application of the Theorem Prover: Question. Overview. Question Answering: Example.

Answering. Question Answering: Result. Application of the Theorem Prover: Question. Overview. Question Answering: Example. ! &0/ $% &) &% &0/ $% &) &% 5 % 4! pplication of the Theorem rover: Question nswering iven a database of facts (ground instances) and axioms we can pose questions in predicate calculus and answer them

More information

CS 188: Artificial Intelligence Fall 2008

CS 188: Artificial Intelligence Fall 2008 CS 188: Artificial Intelligence Fall 2008 Lecture 14: Bayes Nets 10/14/2008 Dan Klein UC Berkeley 1 1 Announcements Midterm 10/21! One page note sheet Review sessions Friday and Sunday (similar) OHs on

More information

Basic Probability and Statistics

Basic Probability and Statistics Basic Probability and Statistics Yingyu Liang yliang@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [based on slides from Jerry Zhu, Mark Craven] slide 1 Reasoning with Uncertainty

More information

Our Status in CSE 5522

Our Status in CSE 5522 Our Status in CSE 5522 We re done with Part I Search and Planning! Part II: Probabilistic Reasoning Diagnosis Speech recognition Tracking objects Robot mapping Genetics Error correcting codes lots more!

More information

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012

Outline. CSE 573: Artificial Intelligence Autumn Agent. Partial Observability. Markov Decision Process (MDP) 10/31/2012 CSE 573: Artificial Intelligence Autumn 2012 Reasoning about Uncertainty & Hidden Markov Models Daniel Weld Many slides adapted from Dan Klein, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 Outline

More information

CS 188: Artificial Intelligence Fall 2011

CS 188: Artificial Intelligence Fall 2011 CS 188: Artificial Intelligence Fall 2011 Lecture 12: Probability 10/4/2011 Dan Klein UC Berkeley 1 Today Probability Random Variables Joint and Marginal Distributions Conditional Distribution Product

More information

Probability and Uncertainty. Bayesian Networks

Probability and Uncertainty. Bayesian Networks Probability and Uncertainty Bayesian Networks First Lecture Today (Tue 28 Jun) Review Chapters 8.1-8.5, 9.1-9.2 (optional 9.5) Second Lecture Today (Tue 28 Jun) Read Chapters 13, & 14.1-14.5 Next Lecture

More information

COMP9414: Artificial Intelligence Reasoning Under Uncertainty

COMP9414: Artificial Intelligence Reasoning Under Uncertainty COMP9414, Monday 16 April, 2012 Reasoning Under Uncertainty 2 COMP9414: Artificial Intelligence Reasoning Under Uncertainty Overview Problems with Logical Approach What Do the Numbers Mean? Wayne Wobcke

More information

Probabilistic Robotics. Slides from Autonomous Robots (Siegwart and Nourbaksh), Chapter 5 Probabilistic Robotics (S. Thurn et al.

Probabilistic Robotics. Slides from Autonomous Robots (Siegwart and Nourbaksh), Chapter 5 Probabilistic Robotics (S. Thurn et al. robabilistic Robotics Slides from Autonomous Robots Siegwart and Nourbaksh Chapter 5 robabilistic Robotics S. Thurn et al. Today Overview of probability Representing uncertainty ropagation of uncertainty

More information

Basic notions of probability theory

Basic notions of probability theory Basic notions of probability theory Contents o Boolean Logic o Definitions of probability o Probability laws Why a Lecture on Probability? Lecture 1, Slide 22: Basic Definitions Definitions: experiment,

More information