X COLLIDER PHYSICS : BASIC CONCEPTS

Size: px
Start display at page:

Download "X COLLIDER PHYSICS : BASIC CONCEPTS"

Transcription

1 COLLIDER PHYSICS : BASIC CONCEPTS 2006 Busstepp Edinburgh 1. INTRODUCTION Physics scenarios and objectives General collider characteristics 2. ELECTRON-PROTON COLLIDER HERA Quark/gluon densities; QCD coupling 3. PROTON-ANTIPROTON COLLIDER TEVATRON Top quark; W ± boson; Higgs; susy particles 4. PROTON COLLIDER LHC Higgs mechanism / elw Symmetry breaking Supersymmetric particles Extra space dimensions 5. e + e LINEAR COLLIDERS High-resolution picture : Higgs/susy/extra dimensions LHC/ILC coherence : ultimate unification

2 COLLIDER PHYSICS : BASIC CONCEPTS 2006 Busstepp Edinburgh 1. INTRODUCTION Physics scenarios and objectives General collider characteristics 2. ELECTRON-PROTON COLLIDER HERA Quark/gluon densities; QCD coupling 3. PROTON-ANTIPROTON COLLIDER TEVATRON Top quark; W ± boson; Higgs; susy particles 4. PROTON COLLIDER LHC Higgs mechanism / elw Symmetry breaking Supersymmetric particles Extra space dimensions 5. e + e LINEAR COLLIDERS High-resolution picture : Higgs/susy/extra dimensions LHC/ILC coherence : ultimate unification

3 1. INTRODUCTION High energy physics : tremendously successful in unravelling structure of matter and forces in microcosm STANDARD MODEL: [1] Matter: three generations of quarks and leptons all l, q particles identified experimentally [2] Forces: interactions of gauge theoretic nature [J = 1] SU(3) SU(2) U(1) : quantum chromodynamics QCD electroweak GSW theory gravity at classical level [J = 2] 2A

4 1. INTRODUCTION High energy physics : tremendously successful in unravelling structure of matter and forces in microcosm STANDARD MODEL: [1] Matter: three generations of quarks and leptons [2] Forces: interactions of gauge theoretic nature [J = 1] SU(3) SU(2) U(1) : quantum chromodynamics QCD electroweak GSW theory gravity at classical level [J = 2] all gauge forces [force quanta g, γ, W ±, Z] established experimentally 2B

5 STANDARD MODEL: cont d 3 [3] Mass: Higgs mechanism interaction energy of particles with non-zero vacuum field mass STANDARD MODEL / DEFICITS: internal: generating mass by Higgs mechanism experimentally not established external: 1. grand unification of three SM forces ultimate unification incldg gravity 2. symmetry pattern / flavor physics 3. structure of space-time at short distances 4. connection with cosmology : baryon asymmetry cold dark matter

6 e + e and HADRON COLLIDERS past and present collider facilities fundamental discoveries in unravelling structure of matter and forces : future hadron and e + e colliders establishing the Standard Model closing SM breakthrough discoveries beyond SM exploring domain of physics beyond SM potentially closing the system PP+G 4

7 5 E + E and HADRON COLLIDERS Collider Energy Discovery / Fund.result / Target SPEAR SLAC e + e 4 GeV charm quark, τ lepton PETRA DESY e + e 38 GeV gluon Sp ps CERN p p 600 GeV W ±, Z bosons LEP CERN e + e 210 GeV SM: elw and QCD / 3 families SLC SLAC e + e 90 GeV elw SM LC prototype Tevatron FNAL p p 2 TeV top quark HERA DESY ep 320 GeV quark/gluon structure of proton BaBar / Belle SLAC / KEK e + e 10 GeV quark mix / CP violation LHC CERN pp 14 TeV elw.sb/susy/extra.dim ILC e + e 1 TeV hi.res of elw.sb/susy/extra.dim CLIC e + e 3 5 TeV ditto VLHC pp 200 TeV discovering multi-tev physics MuC µµ sev. TeV exploring multi-tev physics

8 6 # PHYSICS RATIONAL FOR COLLIDER FACILITIES: A + B M production in 2-particle collisions: M 2 = (k + p) 2 : (a) fixed target: p = (m, 0, 0, 0) k (E, 0, 0, E) M 2mE root E law : large energy loss in E kin dense target : large collision rate / luminosity (b) collider : p (E, 0, 0, E) k (E, 0, 0, E) M 2E linear E law : no energy loss less dense bunches : small collision rates

9 7 # COLLIDER CHARACTERISTICS: (a) Energy :... from a few GeV to 100 GeV [SLC] to TeV [future] (b) Luminosity : measures collision rate of particles in colliding bunches L = N 1N 2 A f N i = number of particles in bunches A = transverse buch area f = bunch collision rate Lσ = observed rate for process with cross section σ ex: LHC : L = cm 2 s 1 ILC : L = cm 2 s fb 1 in 3 years 1ab 1 in 3 years (c) circular vs. linear collider : charged particles in circular motion : permanently accelerated towards center : emitting photons as synchrotron light E = c γ E 4 /ρ large loss of energy [hypothetical TeV collider at LEP: E E per turn] no-more sharp initial state energy

10 2. ep COLLIDER HERA 8A characteristics: asymmetric : E e = 27.5 GeV E p = 920 GeV HERA : cm energy s = 318 GeV tot lumi 1/2 to 1 fb 1 long. polarized lepton beams : e ( & ) and e + ( & ) satellite mode : e ± ( & ) + fixed polar. target p asymm detectors ZEUS, H1:

11 2. ep COLLIDER HERA characteristics: asymmetric : E e = 27.5 GeV E p = 920 GeV HERA : cm energy s = 318 GeV tot lumi 1/2 to 1 fb 1 long. polarized lepton beams : e ( & ) and e + ( & ) satellite mode : e ± ( & ) + fixed polar. target p Target: (1) quark/gluon structure of the proton (2) measurement of the QCD coupling α s (Q 2 ) (3) search and limits for : leptoquarks / R-pv SUSY e + q LQ R-currents, W, Z interactions... 8B

12 DEEP-INELASTIC SCATTERING: e p e γ, (Z) exchange : asymptotic freedom of QCD scattering on individual quarks : incoh superposition of Rutherford scattering : dσ dx dq 2 = 2πα2 x Q 4 [ [1 + (1 y)2 ] F 2 (x, Q 2 ) y 2 F L ] structure function : F 2 (x, Q 2 ) = Σe 2 q x [q(x, Q 2 ) + q(x, Q 2 )] q(x, Q 2 ) dx = # quarks mom.frct [x, x + dx] at resol. Q 1 variables: Q 2 = q 2 momentum transfer [squared] y = pq/pk energy transfer x = Q 2 /2pq Bjorken variable 9

13 STRUCTURE FUNCTION F 2 (x, Q 2 ) [... HERA] F 2 2 i x = (i = 16) x = (i = 13) x = (i = 10) x = (i = 8) x = (i = 6) x = 0.13 (i = 4) H1 ZEUS BCDMS NMC x = 0.25 (i = 2) x = 0.40 (i = 1) NLO QCD Fit x = 0.65 (i = 0) Q 2 / GeV 2 10

14 Systematics of Quark Densities parton process quark densities 1. NC tot eq eq and e q e q 4(u + ū) + (d + d) + (s + s) + 4(c + c) + (b + b) NC heavy c, c, b; b tagging c, c ; b, b 2. CC tot/diff e u νd; e d νū u ; d e + d νu; e + ū ν d d ; ū e s ν c, c tagging s e + s νc, c tagging s 3. Drell-Yan [Tev] u p + d p W + u d d p + ū p W d u complete set of measurements for quark densities decomposition : u = val + sea ū = sea val x α (1 x) β (1 + p x ) d = val + sea d = sea sea x α (1 x) β (1 + p x) s = sea s = sea up-to-date analyses: H1 and ZEUS MRST and CTEQ 11

15 QCD corrections and gluon density F 2 (x, Q 2 ) / quark densities dependent on resolution Q 1 : quark/gluon splitting: q(x, Q 2 ) reduced at large x g(x, Q 2 ) ditto accumulating at small x [cf. F 2 (x, Q 2 )] DGLAP equations : q(x,q 2 ) = α s(q 2 ) log Q 2 2π = α s(q 2 ) 2π 1 0 dx dz δ(x z x )P qq (z )q(x, Q 2 ) + [g] 1 x dx x P qq (x/x )q(x, Q 2 ) + [g] AP splitting : P qq (z ) = 4 3 [(1 + z 2 )/(1 z ) δ(z 1)] etc 12

16 q = α s(q 2 ) P log Q 2 2π qq q + α s(q 2 ) 2π g = α s(q 2 ) P log Q 2 2π gq q + α s(q 2 ) 2π P qg g P gg g analysis generalized to three loops coupled equations solved numerically [N, x] Gluon density change of F 2 (x, Q 2 ) determines g distribution other methods : high p T jets at HERA and Tevatron 13

17 Quark and Gluon densities 14 xf 1.5 ZEUS xu xu v xu xd v xd xd Q = 10 GeV xg x ZEUS-JETS fit tot. uncert. H1 PDF 2000 tot. exp. uncert. model uncert. many gluons at small x : frequent splitting g gg [int color charge; brems-sing ] perturbative picture [?] : xg(x, Q 2 ) exp log Q 2 log 1/x

18 Scheme dependence of parton densities : divergencies developg in higher order corrections, absorbed by renormalization generates scheme dependent densities accdg to prescription; schemes : DIS parton densities: F 2 remains unaltered sum of parton densities MS parton densities: only singular part absorbed finite shift from DIS QCD coupling α s (Q 2 ) in DIS [on low side of WA] world average α s (M 2 Z) = ± A

19 Scheme dependence of parton densities : 15B divergencies developg in higher order corrections, absorbed by renormalization generates scheme dependent densities accdg to prescription; schemes : DIS parton densities: F 2 remains unaltered sum of parton densities MS parton densities: only singular part absorbed finite shift from DIS QCD coupling α s (Q 2 ) world average α s (M 2 Z) = ± 0.001

20 Transition HERA LHC Q 2 / GeV HERA Experiments: H ZEUS Fixed Target Experiments: 10 3 NMC BCDMS y = E665 SLAC y = x Higgs and new particles, e.g. susy, produced at LHC for M 2 x 2 s : x M/ s 10 2 for M 100 GeV region for DGLAP evolution theoretically under good control : reliable predictions 16

21 3. p p COLLIDER TEVATRON characteristics: p p max energy in q q annihilation E p = E p Tevatron : cm energy s = TeV tot lumi 4 to 8 fb 1 [2008/9] Exps : CDF & D0 17A

22 3. p p COLLIDER TEVATRON characteristics: p p max energy in q q annihilation E p = E p Tevatron : cm energy s = TeV tot lumi 4 to 8 fb 1 [2008/9] Exps : CDF & D0 Target : (1) top quark discovery (2) elw precision physics : W mass measurement trilin cplgs : non-abelian gauge theory (3) new physics discovery : Higgs boson(s) susy particles new gauge bosons W, Z extra space dimensions... 17B

23 TOP QUARK 18 Evidence for t quark: SM anomaly free : ΣQ F = A FB (b) at 35GeV = [0 1] + 3[ ] SM PETRA/LEP : e + e b b : I 3 (b) = 1 2 top : missing iso-partner I 3 R 0 A FB (b) at m z 0.5 Γ(Z bb) 0.5 I 3 L top-quark mass prediction : [tb] loop W mass µ decay LEP : G F 2 = 4πα 8 M 2 W sin2 θ w 2πα M 2 Z sin2 2θ w [1+ ρ] ρ t = G F m 2 t 2π log m2 t M 2 W prediction : m t = 166 ± 26 GeV

24 TOP QUARK Discovery of t quark at Tevatron: present value m t = ± 2.1 GeV Agreement between top mass prediction and measurement establishes validity of electroweak GSW theory at the quantum level 19

25 W ± BOSON MASS 20A Drell-Yan production of W ±, Z bosons at Tevatron: decays : W ± l ± ν l vs. : Z l + l Tev : M W = ± GeV WAv: M W = ± GeV crucial input for testing elw sector in Standard Model and, e.g., Super- symmetry Measurement Fit O meas O fit /σ meas α (5) had (m Z ) ± m Z [GeV] ± Γ Z [GeV] ± σ 0 had [nb] ± R l ± A 0,l fb ± A l (P τ ) ± R b ± R c ± A 0,b fb ± A 0,c fb ± A b ± A c ± A l (SLD) ± sin 2 θ lept eff (Q fb ) ± m W [GeV] ± Γ W [GeV] ± m t [GeV] ±

26 W ± BOSON MASS 20B Drell-Yan production of W ±, Z bosons at Tevatron: decays : W ± l ± ν l vs. : Z l + l 80.5 LEP1 and SLD LEP2 and Tevatron (prel.) 68% CL Tev : M W = ± GeV WAv: M W = ± GeV m W [GeV] 80.4 crucial input for testing elw sector in Standard Model and, e.g., Super- symmetry 80.3 α m H [GeV] m t [GeV]

27 HIGGS BOSON(s) 21 # 1. Many SM production channels p p H, W H, ZH, jjh and results from both detectors are needed to either exclude 2 σ or discover 5 σ Higgs boson in Standard Model in low-mass region: Higgs Mass m (GeV/c ) :: non-zero chance before LHC [?] :: l H ) -1 Int. Luminosity per Exp. (fb 10 2 SUSY/Higgs Workshop ( 98-99) Higgs Sensitivity Study ( 03) statistical power only (no systematics) σ Discovery 3σ Evidence 95% CL Exclusion 2 # 2. Production rate of SUSY Higgs bosons Φ in b-quark fusion p p b bφ [Φ = h, H, A] promising in part of susy parameter space [non-decoupling region] with large Higgs mix angle tan β

28 SUSY PARTICLES 22A focus : charginos / neutralinos, susy partners of gauge and Higgs bosons squarks and gluinos, partners of quarks and gluons (1) golden channel: Drell Yan production p p χ ± 1 χ0 2 with χ 0 2 l + l χ 0 1 χ ± 1 l± ν l χ 0 1 p p l ± l + l :: trilepton signal limit [mod.d] m χ ± GeV (2) squarks and gluinos : p p q q g q g g ) BR(3l) (pb) χ 0 2 σ(χ ± ± 0 Search for χ 1 χ 2 3l+ DØ, 320 pb ± 0 0 ~ 0 M( χ1 ) M( χ2 ) 2M( χ1 ); M( l)>m( χ2 ) tanβ=3, µ>0, no slepton mixing 3l-max heavy-squarks Observed Limit Expected Limit LEP 0.1 large-m Chargino Mass (GeV)

29 SUSY PARTICLES 22B focus : charginos / neutralinos, susy partners of gauge and Higgs bosons squarks and gluinos, partners of quarks and gluons (1) golden channel: Drell Yan production p p χ ± 1 χ0 2 with χ 0 2 l + l χ 0 1 χ ± 1 l± ν l χ 0 1 (2) squarks and gluinos : p p q q g q g g exp analysis in msugra : M 0 vs. M 1/2 squark = gluino mass 387 GeV

Electroweak Physics and Searches for New Physics at HERA

Electroweak Physics and Searches for New Physics at HERA Electroweak Physics and Searches for New Physics at HERA Uwe Schneekloth DESY On behalf of the H1 and ZEUS Collaborations 14th Lomonosov Conference on Elementary Particle Physics 5.08.009 Outline Introduction

More information

Results on the proton structure from HERA

Results on the proton structure from HERA Results on the proton structure from HERA Shima Shimizu (CERN) 7/Jan/ @ KEK The world only e-p collider: HERA electron proton A unique collider at DESY, Hamburg H ZEUS Circumference: 6.3 km Operated since

More information

Lecture 18 - Beyond the Standard Model

Lecture 18 - Beyond the Standard Model Lecture 18 - Beyond the Standard Model Why is the Standard Model incomplete? Grand Unification Baryon and Lepton Number Violation More Higgs Bosons? Supersymmetry (SUSY) Experimental signatures for SUSY

More information

Standard Model of Particle Physics SS 2012

Standard Model of Particle Physics SS 2012 Lecture: Standard Model of Particle Physics Heidelberg SS 2012 W- and Z-Bosons 1 2 Contents Discovery of real W- and Z-bosons Intermezzo: QCD at Hadron Colliders LEP + Detectors W- and Z- Physics at LEP

More information

Results on the proton structure from HERA

Results on the proton structure from HERA Results on the proton structure from HERA Shima Shimizu (Univ. of Tokyo) Introduction HERA physics Proton structure The world only e-p collider: HERA electron proton A unique collider at DESY, Hamburg

More information

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1

High Energy Physics. Lecture 9. Deep Inelastic Scattering Scaling Violation. HEP Lecture 9 1 High Energy Physics Lecture 9 Deep Inelastic Scattering Scaling Violation HEP Lecture 9 1 Deep Inelastic Scattering: The reaction equation of DIS is written e+ p e+ X where X is a system of outgoing hadrons

More information

3.2 DIS in the quark parton model (QPM)

3.2 DIS in the quark parton model (QPM) Experimental studies of QCD 1. Elements of QCD 2. Tests of QCD in annihilation 3. Studies of QCD in DIS 4. QCD in collisions 3.2 DIS in the quark parton model (QPM) M W Elastic scattering: W = M only one

More information

Open Issues in DIS The High Energy Perspective

Open Issues in DIS The High Energy Perspective Open Issues in DIS The High Energy Perspective My private point of view using data from DIS in collider mode: Accelerator and Experiments HERA success story: Precision cross sections, structure functions

More information

Proton Structure Functions: Experiments, Models and Uncertainties.

Proton Structure Functions: Experiments, Models and Uncertainties. Proton Structure Functions: Experiments, Models and Uncertainties. S. Glazov, DESY IKTP seminar, July 8. Disclaimer Nothing in this talk should be interpreted as the final knowledge on proton structure.

More information

sin(2θ ) t 1 χ o o o

sin(2θ ) t 1 χ o o o Production of Supersymmetric Particles at High-Energy Colliders Tilman Plehn { Search for the MSSM { Production of Neutralinos/Charginos { Stop Mixing { Production of Stops { R Parity violating Squarks

More information

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section

Lecture 3 Cross Section Measurements. Ingredients to a Cross Section Lecture 3 Cross Section Measurements Ingredients to a Cross Section Prerequisites and Reminders... Natural Units Four-Vector Kinematics Lorentz Transformation Lorentz Boost Lorentz Invariance Rapidity

More information

Early SUSY Searches in Events with Leptons with the ATLAS-Detector

Early SUSY Searches in Events with Leptons with the ATLAS-Detector Early SUSY Searches in Events with Leptons with the ATLAS-Detector Timo Müller Johannes Gutenberg-Universität Mainz 2010-29-09 EMG Annual Retreat 2010 Timo Müller (Universität Mainz) Early SUSY Searches

More information

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden

Physics at LHC. lecture one. Sven-Olaf Moch. DESY, Zeuthen. in collaboration with Martin zur Nedden Physics at LHC lecture one Sven-Olaf Moch Sven-Olaf.Moch@desy.de DESY, Zeuthen in collaboration with Martin zur Nedden Humboldt-Universität, October 22, 2007, Berlin Sven-Olaf Moch Physics at LHC p.1 LHC

More information

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC

Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Physics at the TeV Scale Discovery Prospects Using the ATLAS Detector at the LHC Peter Krieger Carleton University Physics Motivations Experimental Theoretical New particles searches Standard Model Higgs

More information

e e Collisions at ELIC

e e Collisions at ELIC Physics With Collisions at ELIC Collisions at ELIC E. Chudakov (JLab), June 26, 26 Opportunity to build a collider using the ELIC ring Physics motivation for a high luminosity, polarized collider Discussion

More information

Probing the Connection Between Supersymmetry and Dark Matter

Probing the Connection Between Supersymmetry and Dark Matter Probing the Connection Between Supersymmetry and Dark Matter Bhaskar Dutta Texas A&M University Physics Colloquium, OSU, March 30, 2006 March 30, 2006 Probing the Connection Between SUSY and Dark Matter

More information

Physics at HERA. Contents HERA and ZEUS Electroweak results Structure of the proton. Katsuo Tokushuku (KEK, ZEUS)

Physics at HERA. Contents HERA and ZEUS Electroweak results Structure of the proton. Katsuo Tokushuku (KEK, ZEUS) Physics at HERA e p Contents HERA and ZEUS Electroweak results Structure of the proton Katsuo Tokushuku (KEK, ZEUS) 3/March/5 K.Tokushuku(KEK) @ KEKPH5 / HERA: 7.5GeV 9GeV the world largest electron microscope

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

arxiv:hep-ph/ v1 17 Apr 2000

arxiv:hep-ph/ v1 17 Apr 2000 SEARCH FOR NEW PHYSICS WITH ATLAS AT THE LHC arxiv:hep-ph/0004161v1 17 Apr 2000 V.A. MITSOU CERN, EP Division, CH-1211 Geneva 23, Switzerland and University of Athens, Physics Department, Nuclear and Particle

More information

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

BSM physics at the LHC. Akimasa Ishikawa (Kobe University) BSM physics at the LHC Akimasa Ishikawa (Kobe University) 7 Jan. 2011 If SM Higgs exists Why BSM? To solve the hierarchy and naturalness problems O(1 TeV) Quadratic divergence of Higgs mass If SM Higgs

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF

Outline: Introduction Search for new Physics Model driven Signature based General searches. Search for new Physics at CDF PE SU Outline: Introduction Search for new Physics Model driven Signature based General searches R Search for new Physics at CDF SUperSYmmetry Standard Model is theoretically incomplete SUSY: spin-based

More information

QCD Measurements at HERA

QCD Measurements at HERA QCD Measurements at HERA Armen Bunyatyan, Max-Planck-Institut für Kernphysik, Heidelberg, Germany Yerevan Physics Institute, Armenia November, 7 Abstract A review is presented of recent results in QCD

More information

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC) SUSY at Accelerators (other than the LHC) Beate Heinemann, University of Liverpool Introduction Final LEP Results First Tevatron Run 2 Results Summary and Outlook IDM 2004, Edinburgh, September 2004 Why

More information

SUSY at Accelerators (other than the LHC)

SUSY at Accelerators (other than the LHC) SUSY at Accelerators (other than the LHC) Beate Heinemann, University of Liverpool Introduction Final LEP Results First Tevatron Run 2 Results Summary and Outlook IDM 2004, Edinburgh, September 2004 Why

More information

Probing Supersymmetric Connection with Dark Matter

Probing Supersymmetric Connection with Dark Matter From サイエンス 82 Probing Supersymmetric Connection with Dark Matter Taken from Science, 1982 Teruki Kamon Department of Physics Texas A&M University November 3, 2005 Physics Colloquium, Texas Tech University

More information

Physique des Particules Avancées 2

Physique des Particules Avancées 2 Physique des Particules Avancées Interactions Fortes et Interactions Faibles Leçon 6 Les collisions p p (http://dpnc.unige.ch/~bravar/ppa/l6) enseignant Alessandro Bravar Alessandro.Bravar@unige.ch tél.:

More information

Basics of Higgs Physics

Basics of Higgs Physics Basics of iggs Physics Sven einemeyer, IFCA (Santander) Karlsruhe, 07/2007 1. The iggs Boson in the SM 2. The iggs Boson in the MSSM Sven einemeyer Basics of iggs Physics presusy07 (Karlsruhe) 23.07.2007

More information

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration Physics at HERA Summer Student Lectures 18 + 19 August 28 Kirchhoff Institut für Physik H1 Collaboration email: katja.krueger@desy.de Overview Part 2 Exotics Jet Physics Cross Sections Strong Coupling

More information

, 2004 Peter Schleper University of Hamburg Strasbourg, March 12 HC: The decade of Hadron machines L evatron HERA

, 2004 Peter Schleper University of Hamburg Strasbourg, March 12 HC: The decade of Hadron machines L evatron HERA HERA Tevatron LHC: The decade of Hadron machines University of Hamburg Strasbourg, March 12 th, 2004 1 LHC: Proton-Proton E CMS = 14 TeV HERA LHC: HERA: Elektron-Proton E CMS = 320 GeV 2 Perturbative approach

More information

Structure Functions at Very High Q 2 From HERA

Structure Functions at Very High Q 2 From HERA Structure Functions at Very High Q 2 From HERA Christopher M. Cormack For the H1 and ZEUS Collaborations Rutherford Appleton Laboratory, Chilton, Didcot, Oxford, OX11 0QX, United Kingdom Abstract. Measurements

More information

Electroweak Physics at the LHC Introductory Lecture

Electroweak Physics at the LHC Introductory Lecture Electroweak Physics at the LHC Introductory Lecture Stefan Dittmaier MPI München Universität Wien, October 2007 Stefan Dittmaier (MPI München), Electroweak Physics at the LHC Introductory Lecture 1 1 The

More information

Search for SUperSYmmetry SUSY

Search for SUperSYmmetry SUSY PART 3 Search for SUperSYmmetry SUSY SUPERSYMMETRY Symmetry between fermions (matter) and bosons (forces) for each particle p with spin s, there exists a SUSY partner p~ with spin s-1/2. q ~ g (s=1)

More information

Physics at the LHC: from Standard Model to new discoveries

Physics at the LHC: from Standard Model to new discoveries Physics at the LHC: from Standard Model to new discoveries Kirill Melnikov University of Hawaii May 2006 Sendai, June 2006 Physics at the LHC: from Standard Model to new discoveries p. 1/22 Outline Standard

More information

Physics and Physics prospects at HERA

Physics and Physics prospects at HERA Physics and Physics prospects at HERA 58 th Extended Scientific Council / 130 th Scientific Council 1/ June 004 Yuji Yamazaki (KEK, ZEUS) On behalf of the H1, ZEUS, HERMES and HERA-B collaborations The

More information

Electroweak measurements at HERA

Electroweak measurements at HERA Electroweak measurements at HERA Alex Tapper DESY forum 1 th & 13 th September 006 Precision electroweak measurements: What can HERA contribute? Outline Introduction High Q physics at HERA Review of recent

More information

QCD and low x physics

QCD and low x physics The e Project QCD and low x physics for the LHeC Study Group http://cern.ch/lhec 23rd July 2011 Machine Physics Status, Grenoble, France 2 3 What is the proton? electron electron Time 4 An incomplete history

More information

Beyond the Standard Model

Beyond the Standard Model Beyond the Standard Model The Standard Model Problems with the Standard Model New Physics Supersymmetry Extended Electroweak Symmetry Grand Unification References: 2008 TASI lectures: arxiv:0901.0241 [hep-ph]

More information

Non-Standard Higgs Decays

Non-Standard Higgs Decays Non-Standard Higgs Decays David Kaplan Johns Hopkins University in collaboration with M McEvoy, K Rehermann, and M Schwartz Standard Higgs Decays Standard Higgs Decays 1 _ bb 140 GeV WW BR for SM Higgs

More information

Physics at Hadron Colliders Partons and PDFs

Physics at Hadron Colliders Partons and PDFs Physics at Hadron Colliders Partons and PDFs Marina Cobal Thanks to D. Bettoni Università di Udine 1 2 How to probe the nucleon / quarks? Scatter high-energy lepton off a proton: Deep-Inelastic Scattering

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

LHC Collider Phenomenology

LHC Collider Phenomenology LHC Collider Phenomenology Theorist! You are a theorist working in the CMS experimental collaboration You work on LHC Collider Phenomenology related to CMS By working in the experimental collaboration

More information

Inclusive Cross Sections at HERA and Determinations of F L

Inclusive Cross Sections at HERA and Determinations of F L Inclusive Cross Sections at HERA and Determinations of F L Vladimir Chekelian (MPI for Physics, Munich) on behalf of the H and ZEUS Collaborations HERA The World s Only ep Collider HERA / DIS / NC / CC

More information

7 Physics at Hadron Colliders

7 Physics at Hadron Colliders 7 Physics at Hadron Colliders The present and future Hadron Colliders - The Tevatron and the LHC Test of the Standard Model at Hadron Colliders Jet, W/Z, Top-quark production Physics of Beauty Quarks (T.

More information

Structure Functions and Parton Distribution Functions at the HERA ep Collider

Structure Functions and Parton Distribution Functions at the HERA ep Collider Structure Functions and Parton Distribution Functions at the HERA ep Collider by Chris Targett Adams (University College London) on behalf of the ZEUS and H1 collaborations. Moriond QCD, 16/03/2005 Contents

More information

Novel Measurements of Proton Structure at HERA

Novel Measurements of Proton Structure at HERA Introduction Combined Cross Sections & QCD Fits NC & CC Cross Section Measurements F L Summary Novel Measurements of Proton Structure at HERA Katie Oliver University of Oxford On behalf of the H1 and ZEUS

More information

IX. Electroweak unification

IX. Electroweak unification IX. Electroweak unification The problem of divergence A theory of weak interactions only by means of W ± bosons leads to infinities e + e - γ W - W + e + W + ν e ν µ e - W - µ + µ Divergent integrals Figure

More information

SUPERSYMMETRY AT THE LHC

SUPERSYMMETRY AT THE LHC SUPERSYMMETRY AT THE LHC Tilman Plehn MPI München and University of Edinburgh A few MSSM conventions SUSY-Higgs at the LHC SUSY at the Tevatron SUSY searches at the LHC SUSY measurements at the LHC (and

More information

SFB 676 selected theory issues (with a broad brush)

SFB 676 selected theory issues (with a broad brush) SFB 676 selected theory issues (with a broad brush) Leszek Motyka Hamburg University, Hamburg & Jagellonian University, Krakow Physics of HERA and goals of the Large Hadron Collider The Higgs boson Supersymmetry

More information

The achievements of the CERN proton antiproton collider

The achievements of the CERN proton antiproton collider The achievements of the CERN proton antiproton collider Luigi DiLella Scuola Normale Superiore, Pisa, Italy Motivation of the project The proton antiproton collider UA1 and UA2 detectors Discovery of the

More information

Electroweak constraints from HERA. 1 Introduction. Elisabetta Gallo INFN Firenze Via G. Sansone 1 I Sesto Fiorentino, ITALY

Electroweak constraints from HERA. 1 Introduction. Elisabetta Gallo INFN Firenze Via G. Sansone 1 I Sesto Fiorentino, ITALY Elisabetta Gallo INFN Firenze Via G. Sansone I59 Sesto Fiorentino, ITALY Introduction The ep accelerator HERA at the laboratory DESY in Hamburg terminated activity on 3th June 7. The two experiments H

More information

SLHC Physics Impact Albert De Roeck/CERN

SLHC Physics Impact Albert De Roeck/CERN SLHC Physics Impact Albert De Roeck/CERN XXXVII SLAC Summer Institute 1 Today s Lecture Contents Introduction Luminosity upgrade scenario for the LHC machine Physics with the SLHC Other possible upgrades

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering University HUGS - JLab - June 2010 June 2010 HUGS 1 Sum rules You can integrate the structure functions and recover quantities like the net number of quarks. Momentum

More information

Recent Results from the Tevatron

Recent Results from the Tevatron Recent Results from the Tevatron Simona Rolli Tufts University (on behalf of the CDF and D0 Collaborations) PPC 2010: IV INTERNATIONAL WORKSHOP ON THE INTERCONNECTION BETWEEN PARTICLE PHYSICS AND COSMOLOGY

More information

Search for physics beyond the Standard Model at LEP 2

Search for physics beyond the Standard Model at LEP 2 Search for physics beyond the Standard Model at LEP 2 Theodora D. Papadopoulou NTU Athens DESY Seminar 28/10/03 1 Outline Introduction about LEP Alternatives to the Higgs mechanism Technicolor Contact

More information

The search for the (SM) Higgs Boson

The search for the (SM) Higgs Boson Tevatron and LHC WS16/17 TUM S.Bethke, F. Simon V9: Search for the Higgs Boson (1) 1 Lecture 9: The search for the (SM) Higgs Boson theoretical basics Higgs production and decay Higgs search in e + e annihilation

More information

Lepton-hadron collider for the 2020s, based on the high lumi LHC Can we add ep and ea collisions to the existing LHC pp, AA and pa programme?

Lepton-hadron collider for the 2020s, based on the high lumi LHC Can we add ep and ea collisions to the existing LHC pp, AA and pa programme? Paul Newman Birmingham University Jammu, 8 September 2013 http://cern.ch/lhec Lepton-hadron collider for the 2020s, based on the high lumi LHC Can we add ep and ea collisions to the existing LHC pp, AA

More information

Physics at Hadron Colliders Part I

Physics at Hadron Colliders Part I Physics at Hadron Colliders Part I Marina Cobal Università di Udine 1 The Standard Model Lagrangian gauge sector flavour sector EWSB sector ü ü ü ν mass sector [W. J. Stirling] and beyond? supersymmetry

More information

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor Search for Higgs Bosons at LEP Haijun Yang University of Michigan, Ann Arbor L3 On behalf of the L3 Collaboration American Physical Society Meeting(APS03), Philadelphia April 5-8, 2003 OUTLINE Introduction

More information

Quantum Chromodynamics at LHC

Quantum Chromodynamics at LHC Quantum Chromodynamics at LHC Zouina Belghobsi LPTh, Université de Jijel EPAM-2011, TAZA 26 Mars 03 Avril Today s high energy colliders past, present and future proton/antiproton colliders Tevatron (1987

More information

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration

Physics at HERA. Summer Student Lectures August Katja Krüger Kirchhoff Institut für Physik H1 Collaboration Physics at HERA Summer Student Lectures 10 13 August 009 Kirchhoff Institut für Physik H1 Collaboration email: katja.krueger@desy.de Overview Introduction to HERA Inclusive DIS & Structure Functions formalism

More information

Zhong-Bo Kang Los Alamos National Laboratory

Zhong-Bo Kang Los Alamos National Laboratory Introduction to pqcd and Jets: lecture 1 Zhong-Bo Kang Los Alamos National Laboratory Jet Collaboration Summer School University of California, Davis July 19 1, 014 Selected references on QCD! QCD and

More information

The Electroweak, The Strong and the Unknown

The Electroweak, The Strong and the Unknown The Electroweak, The Strong and the Unknown Beate Heinemann University of Liverpool UC Berkeley/LBNL, February 16 th 2006 1 Outline Introduction The Tools: Present: HERA, Tevatron Future: LHC, ILC The

More information

Finding the Higgs boson

Finding the Higgs boson Finding the Higgs boson Sally Dawson, BN XIII Mexican School of Particles and Fields ecture 1, Oct, 008 Properties of the Higgs boson Higgs production at the Tevatron and HC Discovery vs spectroscopy Collider

More information

Why a muon collider?

Why a muon collider? Why a muon collider? What will we learn? Mary Anne Cummings Northern Illinois Center for Accelerator and Detector Development Northern Illinois University 1 Why consider a Muon Collider? The current story

More information

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep.

Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. Deep Inelastic Scattering in Lepton-Hadron Collisions Probing the Parton Structure of the Nucleon with Leptons Basic Formalism (indep. of strong dynamics and parton picture) Experimental Development Fixed

More information

Recent Results on New Phenomena and Higgs Searches at DZERO

Recent Results on New Phenomena and Higgs Searches at DZERO Recent Results on New Phenomena and Higgs Searches at DZERO Neeti Parashar Louisiana Tech University Ruston, Louisiana U.S.A. 1 Outline Motivation for DØ Run II Detector at Fermilab The Fermilab Tevatron

More information

Physics at the Tevatron. Lecture IV

Physics at the Tevatron. Lecture IV Physics at the Tevatron Lecture IV Beate Heinemann University of California, Berkeley Lawrence Berkeley National Laboratory CERN, Academic Training Lectures, November 2007 1 Outline Lecture I: The Tevatron,

More information

New Physics at Large Scales at an LHeC Motivation Leptoquarks Single Top Higgs Outlook

New Physics at Large Scales at an LHeC Motivation Leptoquarks Single Top Higgs Outlook New Physics at Large Scales at an LHeC Motivation Leptoquarks Single Top Higgs Outlook Uta Klein DIS09, Future Facilities, April 28, 2009 Motivation Strong theoretical arguments that our Standard Model

More information

Proton Structure Function Measurements from HERA

Proton Structure Function Measurements from HERA Proton Structure Function Measurements from HERA Jörg Gayler DESY, Notkestrasse 85, 2263 Hamburg, Germany E-mail: gayler@mail.desy.de Abstract. Measurements of proton structure functions made in neutral

More information

Collider physics. Introduction Some e + e - collider physics. Hadronic machines. R(e + e - hadrons/ e + e - µ - µ + ) Z 0 and W at LEP

Collider physics. Introduction Some e + e - collider physics. Hadronic machines. R(e + e - hadrons/ e + e - µ - µ + ) Z 0 and W at LEP Collider physics Introduction Some e + e - collider physics R(e + e - hadrons/ e + e - µ - µ + ) Z 0 and W at LEP Hadronic machines Total cross sections Hard and soft collisions Triggers An example: LHCb

More information

arxiv: v1 [hep-ex] 8 Nov 2010

arxiv: v1 [hep-ex] 8 Nov 2010 Searches for Physics Beyond the Standard Model at CMS Sung-Won Lee, on behalf of the CMS Collaboration Texas Tech University, Lubbock, TX 799, USA Recent results on searches for physics beyond the Standard

More information

Proton Structure from HERA and the impact for the LHC

Proton Structure from HERA and the impact for the LHC Proton Structure from HERA and the impact for the LHC Katerina Lipka, DESY for the H1 and ZEUS Collaborations Lomonosov Conference on High Energy Physics 13 Proton structure: fundamental subject in matter

More information

arxiv: v1 [hep-ex] 10 Aug 2011

arxiv: v1 [hep-ex] 10 Aug 2011 The Physics Potential of SuperB F. F. Wilson 1 on behalf of the SuperB Collaboration STFC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, UK arxiv:1108.2178v1 [hep-ex] 10 Aug 2011 SuperB

More information

La ricerca dell Higgs Standard Model a CDF

La ricerca dell Higgs Standard Model a CDF La ricerca dell Higgs Standard Model a CDF Melisa Rossi INFN-TS Giornata di seminari INFN Trieste - 7 Luglio 2009 FNAL: Fermi National Accelerator Lab Tevatron currently provides the highest energy proton-antiproton

More information

arxiv:hep-ex/ v1 15 Jun 2006

arxiv:hep-ex/ v1 15 Jun 2006 arxiv:hep-ex/6636v 5 Jun 6 SEARCHES FOR NEW PHYSICS IN LEPTON FINAL STATES CATALIN I. CIOBANU FOR THE CDF AND DØ COLLABORATIONS Department of Physics, University of Illinois at Urbana-Champaign, W. Green

More information

Outline: Introduction Quantum ChromoDynamics (QCD) Jet algorithms Tests of QCD QCD analyses at HERA extraction of the proton PDFs

Outline: Introduction Quantum ChromoDynamics (QCD) Jet algorithms Tests of QCD QCD analyses at HERA extraction of the proton PDFs Outline: Introduction Quantum ChromoDynamics (QCD) Jet algorithms Tests of QCD QCD analyses at HERA etraction of the proton PDFs Etraction of the proton PDFs Etraction Etractionof of the proton protonpdfs

More information

PoS(Photon 2013)004. Proton structure and PDFs at HERA. Vladimir Chekelian MPI for Physics, Munich

PoS(Photon 2013)004. Proton structure and PDFs at HERA. Vladimir Chekelian MPI for Physics, Munich MPI for Physics, Munich E-mail: shekeln@mail.desy.de The neutral and charged current deep-inelastic ep scattering cross sections are measured in the H and ZEUS eperiments at HERA (99-7), with an electron

More information

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK

DM & SUSY Direct Search at ILC. Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK & SUSY Direct Search at ILC Tomohiko Tanabe (U. Tokyo) December 8, 2015 Tokusui Workshop 2015, KEK Contents The ILC has access to new physics via: Precision Higgs measurements Precision top measurements

More information

F λ A (x, m Q, M Q ) = a

F λ A (x, m Q, M Q ) = a Parton Distributions and their Uncertainties Jon Pumplin DPF22 Williamfburg 5/25/2 CTEQ6 PDF analysis (J. Pumplin, D. Stump, W.K. Tung, J. Huston, H. Lai, P. Nadolsky [hep-ph/21195]) include new data sets

More information

e + e - (1) Silicon Vertex Detector

e + e - (1) Silicon Vertex Detector 3.1 GeV (4) Electromagnetic Calorimeter (3) Cerenkov- Detector (2) Drift Chamber (5) 1.5 T Solenoid (6) Instrumented Iron Yoke e + e - (1) Silicon Vertex Detector 9.0 GeV e + e - Colliders as B Factories

More information

Forward physics with proton tagging at the LHC

Forward physics with proton tagging at the LHC Forward physics with proton tagging at the LHC Christophe Royon University of Kansas, Lawrence, USA LHC Forward Physics Workshop, March 0-3, Madrid, Spain QCD: structure of pomeron, jet gap jet Photon

More information

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.)

A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) Physics 557 Lecture 7 A brief history of accelerators, detectors and experiments: (See Chapter 14 and Appendix H in Rolnick.) First came the study of the debris from cosmic rays (the God-given particle

More information

E = mc 2 Opening Windows on the World

E = mc 2 Opening Windows on the World E = mc 2 Opening Windows on the World Young-Kee Kim The University of Chicago Physics Department Colloquium January 11, 2006 University of Pennsylvania Accelerators (output of Accelerator Science) are

More information

Fundamental Open Questions in Spin Physics

Fundamental Open Questions in Spin Physics Fundamental Open Questions in Spin Physics p. 1/55 Fundamental Open Questions in Spin Physics Jacques Soffer Physics Department, Temple University, Philadelphia,PA, USA Fundamental Open Questions in Spin

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements

8.882 LHC Physics. Higgs Physics and Other Essentials. [Lecture 22, April 29, 2009] Experimental Methods and Measurements 8.882 LHC Physics Experimental Methods and Measurements Higgs Physics and Other Essentials [Lecture 22, April 29, 2009] Organization Next week lectures: Monday 2pm and Tuesday 9:30am (which room?) Project

More information

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013

Experimental results on nucleon structure Lecture I. National Nuclear Physics Summer School 2013 Experimental results on nucleon structure Lecture I Barbara Badelek University of Warsaw National Nuclear Physics Summer School 2013 Stony Brook University, July 15 26, 2013 Barbara Badelek (Univ. of Warsaw

More information

Day2: Physics at TESLA

Day2: Physics at TESLA Day2: Physics at TESLA Origin of Electroweak Symmetry Breaking as one great Motivation for a Linear Collider The TESLA project Higgs Precision Physics at TESLA Leaving the Standard Model Behind Precision

More information

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve

QCD and jets physics at the LHC with CMS during the first year of data taking. Pavel Demin UCL/FYNU Louvain-la-Neuve QCD and jets physics at the LHC with CMS during the first year of data taking Pavel Demin UCL/FYNU Louvain-la-Neuve February 8, 2006 Bon appétit! February 8, 2006 Pavel Demin UCL/FYNU 1 Why this seminar?

More information

Measurements of the Vector boson production with the ATLAS Detector

Measurements of the Vector boson production with the ATLAS Detector Measurements of the Vector boson production with the ATLAS Detector Pavel Staroba for ATLAS Collaboration 1 W/Z measurements at ATLAS More than 50 publications in total. Wide range of topics is covered.

More information

arxiv:hep-ex/ v1 30 Sep 1997

arxiv:hep-ex/ v1 30 Sep 1997 CMS CR 997/0 SEARCHES FOR SUSY AT LHC arxiv:hep-ex/970903v 30 Sep 997 For the CMS Collaboration Avtandyl Kharchilava Institute of Physics, Georgian Academy of Sciences, Tbilisi ABSTRACT One of the main

More information

Collider overview and kinematics

Collider overview and kinematics 1 Collider overview and kinematics QCD studies at colliders 2 ee - ep - pp QCD collider studies Short Long distance Q: large momentum scale PEP, PETRA, Cornell, LEP, SLD, NLC SLAC, FNAL, CERN, HERA, erhic

More information

High Energy Physics. QuarkNet summer workshop June 24-28, 2013

High Energy Physics. QuarkNet summer workshop June 24-28, 2013 High Energy Physics QuarkNet summer workshop June 24-28, 2013 1 The Birth of Particle Physics In 1896, Thompson showed that electrons were particles, not a fluid. In 1905, Einstein argued that photons

More information

Tevatron Physics Prospects. Paul Grannis, for the CDF and DØ collaborations ICFA Seminar, Oct

Tevatron Physics Prospects. Paul Grannis, for the CDF and DØ collaborations ICFA Seminar, Oct Tevatron Physics Prospects Paul Grannis, for the CDF and DØ collaborations ICFA Seminar, Oct. 29 2008 CDF and DØ Operations Fermilab is planning to run CDF and DØ through FY2010. The Tevatron is now delivering

More information

Searches for Physics Beyond the Standard Model at the Tevatron

Searches for Physics Beyond the Standard Model at the Tevatron FERMILAB-CONF-10-704-E-PPD Proceedings of the XXX. Physics in Collision Searches for Physics Beyond the Standard Model at the Tevatron Chris Hays 1 for the CDF and D0 Collaborations (1) Oxford University,

More information

Master Thesis Topics 2013/14 in Experimental Particle Physics

Master Thesis Topics 2013/14 in Experimental Particle Physics July 2, 23 Master Thesis Topics 23/4 in Experimental Particle Physics at LS Schaile At LS Schaile we offer a broad spectrum of master thesis topics in experimental elementary particle physics. Contacts:

More information

Introduction to Hadron Collider Physics. Mark Lancaster. Oct 6 th

Introduction to Hadron Collider Physics. Mark Lancaster. Oct 6 th Introduction to Hadron Collider Physics Mark Lancaster Oct 6 th 2009 http://www.hep.ucl.ac.uk/~markl/teaching/postgrad/hadron_collider 1974 (J/Ψ) (BNL AGS : pn) 1995 (FNAL Tevatron p-pbar) 1977 (FNAL

More information

Physics at the Fermilab Tevatron Collider. Darien Wood Northeastern University

Physics at the Fermilab Tevatron Collider. Darien Wood Northeastern University Physics at the Fermilab Tevatron Collider Darien Wood Northeastern University 1 Outline Introduction: collider experiments The Tevatron complex (review) Examples of physics studies at the Tevatron jet

More information