Available online at ScienceDirect. Physics Procedia 47 (2013 ) 33 38

Size: px
Start display at page:

Download "Available online at ScienceDirect. Physics Procedia 47 (2013 ) 33 38"

Transcription

1 Available online a ScienceDirec Physics Procedia 47 3 ) Scienific Workshop on Nuclear Fission Dynamics and he Emission of Promp Neurons and Gamma Rays, Biarriz, France, 8-3 November 1 Effecs of Fission Fragmens on he Angular Disribuion of Scission Neurons T. Wada a *, T. Asano a, M. Hirokane a, N. Carjan b, M. Rizea b a Deparmen of Pure and Applied Physics, Kansai Universiy, Yamae-cho, Suia , Japan b Naional Insiue of Physics and Nuclear Engineering, Reacorului 3, RO-7715, POB-MG6, Magurele-Buchares, Romania Absrac We invesigae he effecs of he fission fragmens on he angular disribuion of scission neurons. The ime evoluion of he wave funcion of he scission neuron is obained by inegraing he ime-dependen Schrödinger equaion. The effecs of he re-absorpion and scaering by he fission fragmens are aken ino accoun by means of he opical poenial. The angular disribuion is srongly modified by he presence of he fragmens. Dependence on he magniude of he absorpion is discussed. Influence of he finieness of he grid size is also discussed The T. Wada, Auhors. T. Asano, Published M. Hirokane, by Elsevier N. B.V. Carjan, Open M. access Rizea. under Published CC BY-NC-ND by Elsevier license. B.V. Selecion and peer-review under responsibiliy of of Join Research Cenre -- Insiue for for Reference Maerials and and Measuremens Keywords: nuclear fission; scission neuron; neuron emission; angular disribuion; ime-dependen Schrödinger equaion; 1. Inroducion In low energy fission, such as sponaneous fission and hermal neuron induced fission, here are wo main neuron emission processes: scission neurons and pos-scission neurons. A he momen of scission, he neck ha has conneced he wo fission fragmens rupures, followed by he quick absorpion of he neck prorusions by he fragmens. On his abrup change of nuclear shape, i is probable ha nucleons are lef behind in he neck region and are observed as paricle emission. On he oher hand, pos-scission neurons are emied from excied fission fragmens; he process is supposed o be a hermal emission. Aemps have been made o separae he yield of scission neurons in low energy fission (Franklyn, 1978, Kornilov, 1), hey repored ha 1-% of he oal neuron yield could be scission neurons. I is also aemped o esimae he number of scission neurons heoreically (Carjan, 7, Carjan, 1). The resuls depend on he nuclear shape such as he neck radius before scission. If we exrac he reliable number of scission neurons from experimens, we can ge informaion on he nuclear shape a he ime of scission. * Corresponding auhor. Tel.: address: wadaaka@kansai-u.ac.jp The Auhors. Published by Elsevier B.V. Open access under CC BY-NC-ND license. Selecion and peer-review under responsibiliy of Join Research Cenre - Insiue for Reference Maerials and Measuremens doi:1.116/j.phpro

2 34 T. Wada e al. / Physics Procedia 47 ( 13 ) The angular disribuion of he scission neuron is a key o separae i from pos-scission neurons. These componens can be separaed by aking he kinemaical condiion ino accoun; pos-scission neurons are emied from he moving source (fully acceleraed fragmens) while he emission of scission neurons is supposed o be isoropic in he lowes order approximaion. However, since he scission neurons are emied in he close viciniy of he fission fragmens, he final angular disribuion is influenced by he re-absorpion and he scaering by he fragmens. In he previous work (Wada, 11), we proposed a formulaion based on he ime-independen scaering heory. We observed a srongly modified angular disribuion due o he scaering and re-absorpion by he fission fragmens. In his paper, we presen an alernaive approach based on he ime-dependen Schrödinger equaion. In he nex secion, a formulaion is given o calculae he angular disribuion of he scission neurons in which he effec of he re-absorpion and he scaering is aken ino accoun in erms of he opical poenials. Resuls are presened for wo cases, one is a purely absorpive case and he oher is he case ha includes he aracive poenial. The effecs of he fission fragmens on he angular disribuion of scission neurons are discussed. Finally, a summary is given.. Framework We sar wih a ime-dependen Schrödinger equaion (TDSE), 1 i H, H U, 1, ) m where denoes he neuron wave funcion, H is he Hamilonian, and U is he poenial ha represens he effec of he fission fragmens. The ime developmen is obained wih he use of he mid-poin inegraion, ( ) ( ) i H ( / ). () By decomposing ino he real and he imaginary par, = R + ii, he numerical soluion is obained using he following formula (he leapfrog mehod), / ) ) ) / ) HI ( H ) / ). (3) Some modificaion is necessary when we inroduce an imaginary poenial in H, / ) ) W / ) W / ) ) / ) H R H R ) / ) W W / ) / ), (4) where H is given as H = H R + iw. The poenial U is parameerized in Woods-Saxon form cenered a he posiion of he fragmens, U (, z) 1 exp V iw ( z a B) r F 1 exp where B is he half-disance beween he fragmens, a is he diffuseness, and r F is he radius of he poenials. For simpliciy, we assume symmeric fission. V iw ( z a B) r F, (5)

3 T. Wada e al. / Physics Procedia 47 ( 13 ) Assuming he axial symmery, we solve he TDSE in wo-dimensional grid space (, z). The original emission of he scission neurons is assumed o be isoropic, and we adop a Gaussian wave packe for he iniial wave funcion, (=) = C exp( ( + z )), where C is a normalizaion consan and is he widh of he wave packe. We now se a sphere of radius R and calculae he neuron flux on his spherical surface, j( r, ) 1 im * *. We hen calculae he number of ougoing neurons per uni solid angle per uni ime and inegrae i wih ime o obain he neuron angular disribuion, i.e., he number of neurons per uni solid angle ha passed he surface up o ime, (6) d (, ) d (, ' ) d' j( R,, ' ) n( R, ) R d' d d d, n e r. (7) In order o avoid arificial reflecions of he wave funcion a he border of he grid, we pu a week absorbing poenial ouside of he sphere of radius R. We ake a quadraic form for he absorbing poenial. The srengh is deermined o minimize he effec of he reflecion. 3. Resuls We invesigae he fission of 36 U ha corresponds o he neuron induced fission of 35 U as an example. An imporan parameer in he calculaion is he iniial separaion beween he fragmens. From a sysemaic sudy of he average oal kineic energy (TKE) of he fragmens, Zhao e al. (Zhao, ) deduced he elongaion parameer which is he raio beween he average disance beween he fragmens o he conac disance r (A 1/3 1 + A 1/3 ), where A 1 and A are he mass numbers of he fragmens and r = 1.17 fm. The average disance beween he fragmens was deermined so ha he corresponding poin charge Coulomb energy is equal o he average TKE. They obained = 1.53 for he asymmeric fission in U region. In he calculaion, we se he parameer B as B = r (A 1/3 1 + A 1/3 )/. The disance beween he grid poins is ypically.1 fm in boh z- and -direcions. The ime sep for he inegraion is ypically =. fm/c. The radius R is se o 5 fm and he inegraion is performed up o = 4x1 1 s. Figure 1 shows he calculaed angular disribuion of scission neurons for he case of purely absorpive poenials (V = ). The widh of he iniial wave packe is deermined o give he average energy of neuron = 1.5 MeV. In calculaing he ime developmen, we ake accoun of he moion of he fragmens due o he Coulomb repulsion beween he fragmens. The pre-scission kineic energy of 1 MeV is assumed. The fragmens lie along z-axis, i.e., we have he absorpive poenials around and 18 degrees. As we increase he magniude of he absorpion, he yields around and 18 degrees decrease significanly, while he yield a 9 degrees does no change much. The resuling angular disribuion has a peak a 9 degrees and can be easily disinguished from ha of he pos-scission componen. Nex, we invesigae he case wih aracive real poenials ogeher wih he absorpion. Figure shows he resuls wih V = 4 MeV. The difference from he purely absorpive case is clearly seen in paricular a and 18 degrees. The yield a degrees is srongly enhanced by he aracion of he real poenial and i decreases drasically as he absorpion becomes sronger. In paricular, in he case where we ake he aracive poenial alone, i.e., W =, he disribuion is srongly peaked around and 18 degrees. For he case wih W = 5 MeV, he yield around 9 degrees also decreases significanly, resuling in a raher fla angular disribuion. Thus, he angular disribuion of he scission neurons depends srongly on he srengh of he absorpion.

4 36 T. Wada e al. / Physics Procedia 47 ( 13 ) In Fig. 3, we display he ime developmen of he angular disribuion of scission neurons. I is seen ha he yield around 8) degrees grows rapidly firs. We may say ha his is because of he higher velociy of neurons in he fragmens caused by he aracive poenials. A = x1-1 s, we do no ye observe a peak around 9 degrees. Then a = 3x1-1 s, he peak around 9 degrees sars o grow and i keeps growing up o = 4x1-1 s. I should be noed here ha he ime scale menioned above depends crucially on he radius R of he sphere on which we observe he ougoing flux of neurons. Fig. 1. Angular disribuion wih purely absorpive poenials: W = 1 MeV (do-dashed line), W = MeV (dashed line), and W = 5 MeV (solid line). Fig.. Angular disribuion wih aracive poenials V = 4 MeV and absorpive poenials: W = (do-do-dashed line), W = 1 MeV (do-dashed line), W = MeV (dashed line), and W = 5 MeV (solid line).

5 T. Wada e al. / Physics Procedia 47 ( 13 ) Fig. 3. Time developmen of he angular disribuion of scission neurons wih aracive (V = 4MeV) and absorpive (W = 5MeV) poenials: = 1x1-1 s (do-do-dashed), = x1-1 s (do-dashed), = 3x1-1 s (dashed), and = 4x1-1 s (solid). Fig. 4. (a) Illusraion of he relaionship beween he radius R and he emission angle ; (b) Comparison of he angular disribuions wih differen R; R = 3 fm (dashed) and R = 5 fm (solid). Because we are working in a finie grid size, he radius R of he sphere on which we coun he ougoing neuron flux mus be finie. When a neuron is scaered by he fragmen whose posiion is shifed from he origin, he emission angle is modified because of he finieness of he radius R. Therefore, he angular disribuion calculaed in his way depends on he size of R. The siuaion is illusraed in Fig. 4(a). A paricle

6 38 T. Wada e al. / Physics Procedia 47 ( 13 ) is emied o an angle from a poin ha is displaced from he origin. When we deec he paricle on he sphere wih radius R 1, we coun ha he paricle is emied o he angle 1, while if we deec i a a larger radius R, we coun ha i is emied o he angle. As can be seen in Fig. 4(a), we obain 1 < <. When R approaches infiniy, we have no ambiguiies in he definiion of he angle. In Fig. 4(b), we display he comparison of he angular disribuion wih wo values of he radius, R = 5 fm and R = 3 fm, for he case wih V = 4 MeV and W = 5 MeV. In hese calculaions, he moion of he fragmens was no aken ino accoun. Compared wih he case wih R = 5 fm, he case wih R = 3 fm shows larger yields around and 18 degrees, and he peak around 4 degrees is shifed o a smaller angle. Though, some differences are seen beween he wo cases, he essenial feaures of he angular disribuion have no changed. We invesigaed more cases saring from differen iniial disribuion, e.g., changing he disance beween he fragmens or changing he widh of he iniial Gaussian wave packe. I is found ha he final angular disribuion depends considerably on he iniial disribuion of he neurons. Since he informaion on he angular disribuion of he scission neurons is very imporan o separae hem from oher neuron sources, furher invesigaion wih more realisic iniial wave funcion is necessary and is under progress. Because of he simpliciy of he framework, i is raher easy o exend he calculaion o mass-asymmeric fission. I is of ineres o invesigae he righ-lef asymmery of he angular disribuion since i is supposed o depend sensiively on he disribuion of he emission poins. 4. Summary The effecs of he re-absorpion and scaering by he fission fragmens on he angular disribuion of scission neurons have been invesigaed in he framework of he ime-dependen Schrödinger equaion. A formulaion has been given o calculae he angular disribuion from he neuron flux on a spherical surface wih finie radius R. I has been demonsraed ha he absorpive poenial diminishes he yields around and 18 degrees, resuling in he angular disribuion ha has a peak around 9 degrees. On he oher hand, he aracive poenial enhances he yields around and 18 degrees. The final angular disribuion depends srongly on he magniude of he absorpion and on he iniial disribuion of he scission neurons. Acknowledgemens The auhors would like o express heir graiude o Prof. M. Io for discussions and encouragemens. This work is suppored in par by JSPS Gran-in-Aid for Scienific Research (No ). References Carjan, N., Talou, P., Sero, O., 7. Emission of scission neurons in he sudden approximaion. Nucl. Phys. A 79, 1. Carjan, N., Rizea, M., 1, Scission neurons and oher scission properies as funcion of mass asymmery in 35 U(n h,f). Phys. Rev. C8, Franklyn, C. B., Hofmeyer, C., Mingay, D. W., Angular correlaion of neurons from hermal-neuron fission of 35 U. Phys. Le. B 78, 564. Kornilov, N. V., e al., 1. New evidence of an inense scission neuron source in he 5 Cf sponaneous fission. Nucl. Phys. A 686, 187. Wada, T., Nishioka, R., Asano, T., 11. Re-absorpion and scaering of scission neurons by he fission fragmens. Proc. Sci. Workshop on Nuclear Fission Dynamics and he Emission of Promp Neurons and Gamma Rays, JRC Sci. and Tech. Repors 64789, 163. Zhao, Y. L., e al.,. Degrees of deformaion a scission and correlaed fission properies of aomic nuclei. Phys. Rev. C6, 1461.

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle

Physics 235 Chapter 2. Chapter 2 Newtonian Mechanics Single Particle Chaper 2 Newonian Mechanics Single Paricle In his Chaper we will review wha Newon s laws of mechanics ell us abou he moion of a single paricle. Newon s laws are only valid in suiable reference frames,

More information

ψ(t) = V x (0)V x (t)

ψ(t) = V x (0)V x (t) .93 Home Work Se No. (Professor Sow-Hsin Chen Spring Term 5. Due March 7, 5. This problem concerns calculaions of analyical expressions for he self-inermediae scaering funcion (ISF of he es paricle in

More information

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum

Lecture 4 Kinetics of a particle Part 3: Impulse and Momentum MEE Engineering Mechanics II Lecure 4 Lecure 4 Kineics of a paricle Par 3: Impulse and Momenum Linear impulse and momenum Saring from he equaion of moion for a paricle of mass m which is subjeced o an

More information

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4.

Reading from Young & Freedman: For this topic, read sections 25.4 & 25.5, the introduction to chapter 26 and sections 26.1 to 26.2 & 26.4. PHY1 Elecriciy Topic 7 (Lecures 1 & 11) Elecric Circuis n his opic, we will cover: 1) Elecromoive Force (EMF) ) Series and parallel resisor combinaions 3) Kirchhoff s rules for circuis 4) Time dependence

More information

The motions of the celt on a horizontal plane with viscous friction

The motions of the celt on a horizontal plane with viscous friction The h Join Inernaional Conference on Mulibody Sysem Dynamics June 8, 18, Lisboa, Porugal The moions of he cel on a horizonal plane wih viscous fricion Maria A. Munisyna 1 1 Moscow Insiue of Physics and

More information

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still.

Lecture 2-1 Kinematics in One Dimension Displacement, Velocity and Acceleration Everything in the world is moving. Nothing stays still. Lecure - Kinemaics in One Dimension Displacemen, Velociy and Acceleraion Everyhing in he world is moving. Nohing says sill. Moion occurs a all scales of he universe, saring from he moion of elecrons in

More information

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits

Exponential Weighted Moving Average (EWMA) Chart Under The Assumption of Moderateness And Its 3 Control Limits DOI: 0.545/mjis.07.5009 Exponenial Weighed Moving Average (EWMA) Char Under The Assumpion of Moderaeness And Is 3 Conrol Limis KALPESH S TAILOR Assisan Professor, Deparmen of Saisics, M. K. Bhavnagar Universiy,

More information

The expectation value of the field operator.

The expectation value of the field operator. The expecaion value of he field operaor. Dan Solomon Universiy of Illinois Chicago, IL dsolom@uic.edu June, 04 Absrac. Much of he mahemaical developmen of quanum field heory has been in suppor of deermining

More information

KINEMATICS IN ONE DIMENSION

KINEMATICS IN ONE DIMENSION KINEMATICS IN ONE DIMENSION PREVIEW Kinemaics is he sudy of how hings move how far (disance and displacemen), how fas (speed and velociy), and how fas ha how fas changes (acceleraion). We say ha an objec

More information

arxiv:cond-mat/ May 2002

arxiv:cond-mat/ May 2002 -- uadrupolar Glass Sae in para-hydrogen and orho-deuerium under pressure. T.I.Schelkacheva. arxiv:cond-ma/5538 6 May Insiue for High Pressure Physics, Russian Academy of Sciences, Troisk 49, Moscow Region,

More information

Class Meeting # 10: Introduction to the Wave Equation

Class Meeting # 10: Introduction to the Wave Equation MATH 8.5 COURSE NOTES - CLASS MEETING # 0 8.5 Inroducion o PDEs, Fall 0 Professor: Jared Speck Class Meeing # 0: Inroducion o he Wave Equaion. Wha is he wave equaion? The sandard wave equaion for a funcion

More information

IB Physics Kinematics Worksheet

IB Physics Kinematics Worksheet IB Physics Kinemaics Workshee Wrie full soluions and noes for muliple choice answers. Do no use a calculaor for muliple choice answers. 1. Which of he following is a correc definiion of average acceleraion?

More information

Vehicle Arrival Models : Headway

Vehicle Arrival Models : Headway Chaper 12 Vehicle Arrival Models : Headway 12.1 Inroducion Modelling arrival of vehicle a secion of road is an imporan sep in raffic flow modelling. I has imporan applicaion in raffic flow simulaion where

More information

1. VELOCITY AND ACCELERATION

1. VELOCITY AND ACCELERATION 1. VELOCITY AND ACCELERATION 1.1 Kinemaics Equaions s = u + 1 a and s = v 1 a s = 1 (u + v) v = u + as 1. Displacemen-Time Graph Gradien = speed 1.3 Velociy-Time Graph Gradien = acceleraion Area under

More information

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source

Multi-scale 2D acoustic full waveform inversion with high frequency impulsive source Muli-scale D acousic full waveform inversion wih high frequency impulsive source Vladimir N Zubov*, Universiy of Calgary, Calgary AB vzubov@ucalgaryca and Michael P Lamoureux, Universiy of Calgary, Calgary

More information

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution

Physics 127b: Statistical Mechanics. Fokker-Planck Equation. Time Evolution Physics 7b: Saisical Mechanics Fokker-Planck Equaion The Langevin equaion approach o he evoluion of he velociy disribuion for he Brownian paricle migh leave you uncomforable. A more formal reamen of his

More information

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes

23.2. Representing Periodic Functions by Fourier Series. Introduction. Prerequisites. Learning Outcomes Represening Periodic Funcions by Fourier Series 3. Inroducion In his Secion we show how a periodic funcion can be expressed as a series of sines and cosines. We begin by obaining some sandard inegrals

More information

From Particles to Rigid Bodies

From Particles to Rigid Bodies Rigid Body Dynamics From Paricles o Rigid Bodies Paricles No roaions Linear velociy v only Rigid bodies Body roaions Linear velociy v Angular velociy ω Rigid Bodies Rigid bodies have boh a posiion and

More information

arxiv: v1 [math.na] 23 Feb 2016

arxiv: v1 [math.na] 23 Feb 2016 EPJ Web of Conferences will be se by he publisher DOI: will be se by he publisher c Owned by he auhors, published by EDP Sciences, 16 arxiv:163.67v1 [mah.na] 3 Feb 16 Numerical Soluion of a Nonlinear Inegro-Differenial

More information

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes

23.5. Half-Range Series. Introduction. Prerequisites. Learning Outcomes Half-Range Series 2.5 Inroducion In his Secion we address he following problem: Can we find a Fourier series expansion of a funcion defined over a finie inerval? Of course we recognise ha such a funcion

More information

Effects of Coordinate Curvature on Integration

Effects of Coordinate Curvature on Integration Effecs of Coordinae Curvaure on Inegraion Chrisopher A. Lafore clafore@gmail.com Absrac In his paper, he inegraion of a funcion over a curved manifold is examined in he case where he curvaure of he manifold

More information

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé

Bias in Conditional and Unconditional Fixed Effects Logit Estimation: a Correction * Tom Coupé Bias in Condiional and Uncondiional Fixed Effecs Logi Esimaion: a Correcion * Tom Coupé Economics Educaion and Research Consorium, Naional Universiy of Kyiv Mohyla Academy Address: Vul Voloska 10, 04070

More information

Flow-Induced Vibration Analysis of Supported Pipes with a Crack

Flow-Induced Vibration Analysis of Supported Pipes with a Crack Flow-Induced Vibraion Analsis of Suppored Pipes wih a Crack Jin-Huk Lee, Samer Masoud Al-Said Deparmen of Mechanical Engineering American Universi of Sharjah, UAE Ouline Inroducion and Moivaion Aeroacousicall

More information

Keywords: thermal stress; thermal fatigue; inverse analysis; heat conduction; regularization

Keywords: thermal stress; thermal fatigue; inverse analysis; heat conduction; regularization Proceedings Inverse Analysis for Esimaing Temperaure and Residual Sress Disribuions in a Pipe from Ouer Surface Temperaure Measuremen and Is Regularizaion Shiro Kubo * and Shoki Taguwa Deparmen of Mechanical

More information

Lab #2: Kinematics in 1-Dimension

Lab #2: Kinematics in 1-Dimension Reading Assignmen: Chaper 2, Secions 2-1 hrough 2-8 Lab #2: Kinemaics in 1-Dimension Inroducion: The sudy of moion is broken ino wo main areas of sudy kinemaics and dynamics. Kinemaics is he descripion

More information

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin

ACE 562 Fall Lecture 4: Simple Linear Regression Model: Specification and Estimation. by Professor Scott H. Irwin ACE 56 Fall 005 Lecure 4: Simple Linear Regression Model: Specificaion and Esimaion by Professor Sco H. Irwin Required Reading: Griffihs, Hill and Judge. "Simple Regression: Economic and Saisical Model

More information

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients

A Note on the Equivalence of Fractional Relaxation Equations to Differential Equations with Varying Coefficients mahemaics Aricle A Noe on he Equivalence of Fracional Relaxaion Equaions o Differenial Equaions wih Varying Coefficiens Francesco Mainardi Deparmen of Physics and Asronomy, Universiy of Bologna, and he

More information

Some Basic Information about M-S-D Systems

Some Basic Information about M-S-D Systems Some Basic Informaion abou M-S-D Sysems 1 Inroducion We wan o give some summary of he facs concerning unforced (homogeneous) and forced (non-homogeneous) models for linear oscillaors governed by second-order,

More information

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II

Zürich. ETH Master Course: L Autonomous Mobile Robots Localization II Roland Siegwar Margaria Chli Paul Furgale Marco Huer Marin Rufli Davide Scaramuzza ETH Maser Course: 151-0854-00L Auonomous Mobile Robos Localizaion II ACT and SEE For all do, (predicion updae / ACT),

More information

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi

Navneet Saini, Mayank Goyal, Vishal Bansal (2013); Term Project AML310; Indian Institute of Technology Delhi Creep in Viscoelasic Subsances Numerical mehods o calculae he coefficiens of he Prony equaion using creep es daa and Herediary Inegrals Mehod Navnee Saini, Mayank Goyal, Vishal Bansal (23); Term Projec

More information

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x

WEEK-3 Recitation PHYS 131. of the projectile s velocity remains constant throughout the motion, since the acceleration a x WEEK-3 Reciaion PHYS 131 Ch. 3: FOC 1, 3, 4, 6, 14. Problems 9, 37, 41 & 71 and Ch. 4: FOC 1, 3, 5, 8. Problems 3, 5 & 16. Feb 8, 018 Ch. 3: FOC 1, 3, 4, 6, 14. 1. (a) The horizonal componen of he projecile

More information

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product

- If one knows that a magnetic field has a symmetry, one may calculate the magnitude of B by use of Ampere s law: The integral of scalar product 11.1 APPCATON OF AMPEE S AW N SYMMETC MAGNETC FEDS - f one knows ha a magneic field has a symmery, one may calculae he magniude of by use of Ampere s law: The inegral of scalar produc Closed _ pah * d

More information

6.2 Transforms of Derivatives and Integrals.

6.2 Transforms of Derivatives and Integrals. SEC. 6.2 Transforms of Derivaives and Inegrals. ODEs 2 3 33 39 23. Change of scale. If l( f ()) F(s) and c is any 33 45 APPLICATION OF s-shifting posiive consan, show ha l( f (c)) F(s>c)>c (Hin: In Probs.

More information

MEI Mechanics 1 General motion. Section 1: Using calculus

MEI Mechanics 1 General motion. Section 1: Using calculus Soluions o Exercise MEI Mechanics General moion Secion : Using calculus. s 4 v a 6 4 4 When =, v 4 a 6 4 6. (i) When = 0, s = -, so he iniial displacemen = - m. s v 4 When = 0, v = so he iniial velociy

More information

Displacement ( x) x x x

Displacement ( x) x x x Kinemaics Kinemaics is he branch of mechanics ha describes he moion of objecs wihou necessarily discussing wha causes he moion. 1-Dimensional Kinemaics (or 1- Dimensional moion) refers o moion in a sraigh

More information

20. Applications of the Genetic-Drift Model

20. Applications of the Genetic-Drift Model 0. Applicaions of he Geneic-Drif Model 1) Deermining he probabiliy of forming any paricular combinaion of genoypes in he nex generaion: Example: If he parenal allele frequencies are p 0 = 0.35 and q 0

More information

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should

In this chapter the model of free motion under gravity is extended to objects projected at an angle. When you have completed it, you should Cambridge Universiy Press 978--36-60033-7 Cambridge Inernaional AS and A Level Mahemaics: Mechanics Coursebook Excerp More Informaion Chaper The moion of projeciles In his chaper he model of free moion

More information

Electrical and current self-induction

Electrical and current self-induction Elecrical and curren self-inducion F. F. Mende hp://fmnauka.narod.ru/works.hml mende_fedor@mail.ru Absrac The aricle considers he self-inducance of reacive elemens. Elecrical self-inducion To he laws of

More information

10. State Space Methods

10. State Space Methods . Sae Space Mehods. Inroducion Sae space modelling was briefly inroduced in chaper. Here more coverage is provided of sae space mehods before some of heir uses in conrol sysem design are covered in he

More information

Position, Velocity, and Acceleration

Position, Velocity, and Acceleration rev 06/2017 Posiion, Velociy, and Acceleraion Equipmen Qy Equipmen Par Number 1 Dynamic Track ME-9493 1 Car ME-9454 1 Fan Accessory ME-9491 1 Moion Sensor II CI-6742A 1 Track Barrier Purpose The purpose

More information

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing

Application of a Stochastic-Fuzzy Approach to Modeling Optimal Discrete Time Dynamical Systems by Using Large Scale Data Processing Applicaion of a Sochasic-Fuzzy Approach o Modeling Opimal Discree Time Dynamical Sysems by Using Large Scale Daa Processing AA WALASZE-BABISZEWSA Deparmen of Compuer Engineering Opole Universiy of Technology

More information

v A Since the axial rigidity k ij is defined by P/v A, we obtain Pa 3

v A Since the axial rigidity k ij is defined by P/v A, we obtain Pa 3 The The rd rd Inernaional Conference on on Design Engineering and Science, ICDES 14 Pilsen, Czech Pilsen, Republic, Czech Augus Republic, 1 Sepember 1-, 14 In-plane and Ou-of-plane Deflecion of J-shaped

More information

Numerical Solution of a Nonlinear Integro-Differential Equation

Numerical Solution of a Nonlinear Integro-Differential Equation EPJ Web of Conferences 18, 17 (16) DOI: 1.151/ epjconf/ 161817 C Owned by he auhors, published by EDP Sciences, 16 Numerical Soluion of a Nonlinear Inegro-Differenial Equaion Ján Buša 1,a, Michal Hnaič,3,4,b,

More information

Linear Response Theory: The connection between QFT and experiments

Linear Response Theory: The connection between QFT and experiments Phys540.nb 39 3 Linear Response Theory: The connecion beween QFT and experimens 3.1. Basic conceps and ideas Q: How do we measure he conduciviy of a meal? A: we firs inroduce a weak elecric field E, and

More information

Suggested Problem Solutions Associated with Homework #5

Suggested Problem Solutions Associated with Homework #5 Suggesed Problem Soluions Associaed wih Homework #5 431 (a) 8 Si has proons and neurons (b) 85 3 Rb has 3 proons and 48 neurons (c) 5 Tl 81 has 81 proons and neurons 43 IDENTIFY and SET UP: The ex calculaes

More information

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration

Solution: b All the terms must have the dimension of acceleration. We see that, indeed, each term has the units of acceleration PHYS 54 Tes Pracice Soluions Spring 8 Q: [4] Knowing ha in he ne epression a is acceleraion, v is speed, is posiion and is ime, from a dimensional v poin of view, he equaion a is a) incorrec b) correc

More information

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series

k 1 k 2 x (1) x 2 = k 1 x 1 = k 2 k 1 +k 2 x (2) x k series x (3) k 2 x 2 = k 1 k 2 = k 1+k 2 = 1 k k 2 k series Final Review A Puzzle... Consider wo massless springs wih spring consans k 1 and k and he same equilibrium lengh. 1. If hese springs ac on a mass m in parallel, hey would be equivalen o a single spring

More information

RC, RL and RLC circuits

RC, RL and RLC circuits Name Dae Time o Complee h m Parner Course/ Secion / Grade RC, RL and RLC circuis Inroducion In his experimen we will invesigae he behavior of circuis conaining combinaions of resisors, capaciors, and inducors.

More information

Electromagnetic Induction: The creation of an electric current by a changing magnetic field.

Electromagnetic Induction: The creation of an electric current by a changing magnetic field. Inducion 1. Inducion 1. Observaions 2. Flux 1. Inducion Elecromagneic Inducion: The creaion of an elecric curren by a changing magneic field. M. Faraday was he firs o really invesigae his phenomenon o

More information

Integration Over Manifolds with Variable Coordinate Density

Integration Over Manifolds with Variable Coordinate Density Inegraion Over Manifolds wih Variable Coordinae Densiy Absrac Chrisopher A. Lafore clafore@gmail.com In his paper, he inegraion of a funcion over a curved manifold is examined in he case where he curvaure

More information

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors

V AK (t) I T (t) I TRM. V AK( full area) (t) t t 1 Axial turn-on. Switching losses for Phase Control and Bi- Directionally Controlled Thyristors Applicaion Noe Swiching losses for Phase Conrol and Bi- Direcionally Conrolled Thyrisors V AK () I T () Causing W on I TRM V AK( full area) () 1 Axial urn-on Plasma spread 2 Swiching losses for Phase Conrol

More information

A Note on Fractional Electrodynamics. Abstract

A Note on Fractional Electrodynamics. Abstract Commun Nonlinear Sci Numer Simula 8 (3 589 593 A Noe on Fracional lecrodynamics Hosein Nasrolahpour Absrac We invesigae he ime evoluion o he racional elecromagneic waves by using he ime racional Maxwell's

More information

Final Spring 2007

Final Spring 2007 .615 Final Spring 7 Overview The purpose of he final exam is o calculae he MHD β limi in a high-bea oroidal okamak agains he dangerous n = 1 exernal ballooning-kink mode. Effecively, his corresponds o

More information

Suggested Practice Problems (set #2) for the Physics Placement Test

Suggested Practice Problems (set #2) for the Physics Placement Test Deparmen of Physics College of Ars and Sciences American Universiy of Sharjah (AUS) Fall 014 Suggesed Pracice Problems (se #) for he Physics Placemen Tes This documen conains 5 suggesed problems ha are

More information

The following report makes use of the process from Chapter 2 in Dr. Cumming s thesis.

The following report makes use of the process from Chapter 2 in Dr. Cumming s thesis. Zaleski 1 Joseph Zaleski Mah 451H Final Repor Conformal Mapping Mehods and ZST Hele Shaw Flow Inroducion The Hele Shaw problem has been sudied using linear sabiliy analysis and numerical mehods, bu a novel

More information

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010

Simulation-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Simulaion-Solving Dynamic Models ABE 5646 Week 2, Spring 2010 Week Descripion Reading Maerial 2 Compuer Simulaion of Dynamic Models Finie Difference, coninuous saes, discree ime Simple Mehods Euler Trapezoid

More information

Inventory Control of Perishable Items in a Two-Echelon Supply Chain

Inventory Control of Perishable Items in a Two-Echelon Supply Chain Journal of Indusrial Engineering, Universiy of ehran, Special Issue,, PP. 69-77 69 Invenory Conrol of Perishable Iems in a wo-echelon Supply Chain Fariborz Jolai *, Elmira Gheisariha and Farnaz Nojavan

More information

Two Coupled Oscillators / Normal Modes

Two Coupled Oscillators / Normal Modes Lecure 3 Phys 3750 Two Coupled Oscillaors / Normal Modes Overview and Moivaion: Today we ake a small, bu significan, sep owards wave moion. We will no ye observe waves, bu his sep is imporan in is own

More information

Solutions from Chapter 9.1 and 9.2

Solutions from Chapter 9.1 and 9.2 Soluions from Chaper 9 and 92 Secion 9 Problem # This basically boils down o an exercise in he chain rule from calculus We are looking for soluions of he form: u( x) = f( k x c) where k x R 3 and k is

More information

2001 November 15 Exam III Physics 191

2001 November 15 Exam III Physics 191 1 November 15 Eam III Physics 191 Physical Consans: Earh s free-fall acceleraion = g = 9.8 m/s 2 Circle he leer of he single bes answer. quesion is worh 1 poin Each 3. Four differen objecs wih masses:

More information

A unit root test based on smooth transitions and nonlinear adjustment

A unit root test based on smooth transitions and nonlinear adjustment MPRA Munich Personal RePEc Archive A uni roo es based on smooh ransiions and nonlinear adjusmen Aycan Hepsag Isanbul Universiy 5 Ocober 2017 Online a hps://mpra.ub.uni-muenchen.de/81788/ MPRA Paper No.

More information

The Contradiction within Equations of Motion with Constant Acceleration

The Contradiction within Equations of Motion with Constant Acceleration The Conradicion wihin Equaions of Moion wih Consan Acceleraion Louai Hassan Elzein Basheir (Daed: July 7, 0 This paper is prepared o demonsrae he violaion of rules of mahemaics in he algebraic derivaion

More information

Scattering and Decays from Fermi s Golden Rule including all the s and c s

Scattering and Decays from Fermi s Golden Rule including all the s and c s PHY 362L Supplemenary Noe Scaering and Decays from Fermi s Golden Rule including all he s and c s (originally by Dirac & Fermi) References: Griffins, Inroducion o Quanum Mechanics, Prenice Hall, 1995.

More information

DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND

DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND DEPARTMENT OF ECONOMICS AND FINANCE COLLEGE OF BUSINESS AND ECONOMICS UNIVERSITY OF CANTERBURY CHRISTCHURCH, NEW ZEALAND Asymmery and Leverage in Condiional Volailiy Models Michael McAleer WORKING PAPER

More information

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance

2.1: What is physics? Ch02: Motion along a straight line. 2.2: Motion. 2.3: Position, Displacement, Distance Ch: Moion along a sraigh line Moion Posiion and Displacemen Average Velociy and Average Speed Insananeous Velociy and Speed Acceleraion Consan Acceleraion: A Special Case Anoher Look a Consan Acceleraion

More information

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws

Chapter 15: Phenomena. Chapter 15 Chemical Kinetics. Reaction Rates. Reaction Rates R P. Reaction Rates. Rate Laws Chaper 5: Phenomena Phenomena: The reacion (aq) + B(aq) C(aq) was sudied a wo differen emperaures (98 K and 35 K). For each emperaure he reacion was sared by puing differen concenraions of he 3 species

More information

Estimation of Kinetic Friction Coefficient for Sliding Rigid Block Nonstructural Components

Estimation of Kinetic Friction Coefficient for Sliding Rigid Block Nonstructural Components 7 Esimaion of Kineic Fricion Coefficien for Sliding Rigid Block Nonsrucural Componens Cagdas Kafali Ph.D. Candidae, School of Civil and Environmenal Engineering, Cornell Universiy Research Supervisor:

More information

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits EEE25 ircui Analysis I Se 4: apaciors, Inducors, and Firs-Order inear ircuis Shahriar Mirabbasi Deparmen of Elecrical and ompuer Engineering Universiy of Briish olumbia shahriar@ece.ubc.ca Overview Passive

More information

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0.

Decimal moved after first digit = 4.6 x Decimal moves five places left SCIENTIFIC > POSITIONAL. a) g) 5.31 x b) 0. PHYSICS 20 UNIT 1 SCIENCE MATH WORKSHEET NAME: A. Sandard Noaion Very large and very small numbers are easily wrien using scienific (or sandard) noaion, raher han decimal (or posiional) noaion. Sandard

More information

Wavepacket and Dispersion

Wavepacket and Dispersion Wavepacke and Dispersion Andreas Wacker 1 Mahemaical Physics, Lund Universiy Sepember 18, 2017 1 Moivaion A wave is a periodic srucure in space and ime wih periods λ and T, respecively. Common examples

More information

Internet Traffic Modeling for Efficient Network Research Management Prof. Zhili Sun, UniS Zhiyong Liu, CATR

Internet Traffic Modeling for Efficient Network Research Management Prof. Zhili Sun, UniS Zhiyong Liu, CATR Inerne Traffic Modeling for Efficien Nework Research Managemen Prof. Zhili Sun, UniS Zhiyong Liu, CATR UK-China Science Bridge Workshop 13-14 December 2011, London Ouline Inroducion Background Classical

More information

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole

Phys 221 Fall Chapter 2. Motion in One Dimension. 2014, 2005 A. Dzyubenko Brooks/Cole Phys 221 Fall 2014 Chaper 2 Moion in One Dimension 2014, 2005 A. Dzyubenko 2004 Brooks/Cole 1 Kinemaics Kinemaics, a par of classical mechanics: Describes moion in erms of space and ime Ignores he agen

More information

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II

Module 3: The Damped Oscillator-II Lecture 3: The Damped Oscillator-II Module 3: The Damped Oscillaor-II Lecure 3: The Damped Oscillaor-II 3. Over-damped Oscillaions. This refers o he siuaion where β > ω (3.) The wo roos are and α = β + α 2 = β β 2 ω 2 = (3.2) β 2 ω 2 = 2

More information

Non-equilibrium Green functions I

Non-equilibrium Green functions I Non-equilibrium Green funcions I Joachim Keller Lieraure: H. Haug, A.-P. Jauho, Quanum Kineics in Transpor and Opics of Semiconducors J. Rammer, H. Smih, Quanum field-heoreical mehod in ranspor heory of

More information

STATE-SPACE MODELLING. A mass balance across the tank gives:

STATE-SPACE MODELLING. A mass balance across the tank gives: B. Lennox and N.F. Thornhill, 9, Sae Space Modelling, IChemE Process Managemen and Conrol Subjec Group Newsleer STE-SPACE MODELLING Inroducion: Over he pas decade or so here has been an ever increasing

More information

arxiv:physics/ v1 [physics.ed-ph] 6 Feb 2004

arxiv:physics/ v1 [physics.ed-ph] 6 Feb 2004 The Herz conac in chain elasic collisions P. Parício Insiuo Superior de Engenharia de Lisboa Rua Conselheiro Emídio Naarro, P-949-4 Lisboa, Porugal (January 4) arxi:physics/46 [physics.ed-ph] 6 Feb 4 A

More information

1 Evaluating Chromatograms

1 Evaluating Chromatograms 3 1 Evaluaing Chromaograms Hans-Joachim Kuss and Daniel Sauffer Chromaography is, in principle, a diluion process. In HPLC analysis, on dissolving he subsances o be analyzed in an eluen and hen injecing

More information

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3

Unit 1 Test Review Physics Basics, Movement, and Vectors Chapters 1-3 A.P. Physics B Uni 1 Tes Reiew Physics Basics, Moemen, and Vecors Chapers 1-3 * In sudying for your es, make sure o sudy his reiew shee along wih your quizzes and homework assignmens. Muliple Choice Reiew:

More information

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time.

Nature Neuroscience: doi: /nn Supplementary Figure 1. Spike-count autocorrelations in time. Supplemenary Figure 1 Spike-coun auocorrelaions in ime. Normalized auocorrelaion marices are shown for each area in a daase. The marix shows he mean correlaion of he spike coun in each ime bin wih he spike

More information

IMPACT OF AN OBLIQUE BREAKING WAVE ON A WALL

IMPACT OF AN OBLIQUE BREAKING WAVE ON A WALL Source: Physics of Fluids Vol 6 No pp 6-64 4 DOI: 6/64445 IMPACT OF AN OIQUE REAKING WAVE ON A WA Jian-Jun SHU School of Mechanical & Aerospace Engineering Nanyang Technological Universiy 5 Nanyang Avenue

More information

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method

Improved Approximate Solutions for Nonlinear Evolutions Equations in Mathematical Physics Using the Reduced Differential Transform Method Journal of Applied Mahemaics & Bioinformaics, vol., no., 01, 1-14 ISSN: 179-660 (prin), 179-699 (online) Scienpress Ld, 01 Improved Approimae Soluions for Nonlinear Evoluions Equaions in Mahemaical Physics

More information

Content-Based Shape Retrieval Using Different Shape Descriptors: A Comparative Study Dengsheng Zhang and Guojun Lu

Content-Based Shape Retrieval Using Different Shape Descriptors: A Comparative Study Dengsheng Zhang and Guojun Lu Conen-Based Shape Rerieval Using Differen Shape Descripors: A Comparaive Sudy Dengsheng Zhang and Guojun Lu Gippsland School of Compuing and Informaion Technology Monash Universiy Churchill, Vicoria 3842

More information

At the end of this lesson, the students should be able to understand

At the end of this lesson, the students should be able to understand Insrucional Objecives A he end of his lesson, he sudens should be able o undersand Sress concenraion and he facors responsible. Deerminaion of sress concenraion facor; experimenal and heoreical mehods.

More information

Chapter 12: Velocity, acceleration, and forces

Chapter 12: Velocity, acceleration, and forces To Feel a Force Chaper Spring, Chaper : A. Saes of moion For moion on or near he surface of he earh, i is naural o measure moion wih respec o objecs fixed o he earh. The 4 hr. roaion of he earh has a measurable

More information

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n

Module 2 F c i k c s la l w a s o s f dif di fusi s o i n Module Fick s laws of diffusion Fick s laws of diffusion and hin film soluion Adolf Fick (1855) proposed: d J α d d d J (mole/m s) flu (m /s) diffusion coefficien and (mole/m 3 ) concenraion of ions, aoms

More information

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem)

Week 1 Lecture 2 Problems 2, 5. What if something oscillates with no obvious spring? What is ω? (problem set problem) Week 1 Lecure Problems, 5 Wha if somehing oscillaes wih no obvious spring? Wha is ω? (problem se problem) Sar wih Try and ge o SHM form E. Full beer can in lake, oscillaing F = m & = ge rearrange: F =

More information

Rapid Termination Evaluation for Recursive Subdivision of Bezier Curves

Rapid Termination Evaluation for Recursive Subdivision of Bezier Curves Rapid Terminaion Evaluaion for Recursive Subdivision of Bezier Curves Thomas F. Hain School of Compuer and Informaion Sciences, Universiy of Souh Alabama, Mobile, AL, U.S.A. Absrac Bézier curve flaening

More information

Variations of the Magnetic Moment of Fast Ions in Spherical Tori

Variations of the Magnetic Moment of Fast Ions in Spherical Tori TH/P3- Variaions of he Magneic Momen of Fas Ions in Spherical Tori V.A.Yavorskij), D.Darrow), V.Ya.Goloborod ko), N.Gorelenkov), U. Holzmueller- Seinacker3), M.Isobe4), S.M. Kaye), S.N.Reznik), K.Schoepf3)

More information

Fractional Method of Characteristics for Fractional Partial Differential Equations

Fractional Method of Characteristics for Fractional Partial Differential Equations Fracional Mehod of Characerisics for Fracional Parial Differenial Equaions Guo-cheng Wu* Modern Teile Insiue, Donghua Universiy, 188 Yan-an ilu Road, Shanghai 51, PR China Absrac The mehod of characerisics

More information

Non-uniform circular motion *

Non-uniform circular motion * OpenSax-CNX module: m14020 1 Non-uniform circular moion * Sunil Kumar Singh This work is produced by OpenSax-CNX and licensed under he Creaive Commons Aribuion License 2.0 Wha do we mean by non-uniform

More information

Robust estimation based on the first- and third-moment restrictions of the power transformation model

Robust estimation based on the first- and third-moment restrictions of the power transformation model h Inernaional Congress on Modelling and Simulaion, Adelaide, Ausralia, 6 December 3 www.mssanz.org.au/modsim3 Robus esimaion based on he firs- and hird-momen resricions of he power ransformaion Nawaa,

More information

Advanced Organic Chemistry

Advanced Organic Chemistry Lalic, G. Chem 53A Chemisry 53A Advanced Organic Chemisry Lecure noes 1 Kineics: A racical Approach Simple Kineics Scenarios Fiing Experimenal Daa Using Kineics o Deermine he Mechanism Doughery, D. A.,

More information

On a Discrete-In-Time Order Level Inventory Model for Items with Random Deterioration

On a Discrete-In-Time Order Level Inventory Model for Items with Random Deterioration Journal of Agriculure and Life Sciences Vol., No. ; June 4 On a Discree-In-Time Order Level Invenory Model for Iems wih Random Deerioraion Dr Biswaranjan Mandal Associae Professor of Mahemaics Acharya

More information

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University

THE MYSTERY OF STOCHASTIC MECHANICS. Edward Nelson Department of Mathematics Princeton University THE MYSTERY OF STOCHASTIC MECHANICS Edward Nelson Deparmen of Mahemaics Princeon Universiy 1 Classical Hamilon-Jacobi heory N paricles of various masses on a Euclidean space. Incorporae he masses in he

More information

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE

EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Version April 30, 2004.Submied o CTU Repors. EXPLICIT TIME INTEGRATORS FOR NONLINEAR DYNAMICS DERIVED FROM THE MIDPOINT RULE Per Krysl Universiy of California, San Diego La Jolla, California 92093-0085,

More information

Sub Module 2.6. Measurement of transient temperature

Sub Module 2.6. Measurement of transient temperature Mechanical Measuremens Prof. S.P.Venkaeshan Sub Module 2.6 Measuremen of ransien emperaure Many processes of engineering relevance involve variaions wih respec o ime. The sysem properies like emperaure,

More information

LAB 6: SIMPLE HARMONIC MOTION

LAB 6: SIMPLE HARMONIC MOTION 1 Name Dae Day/Time of Lab Parner(s) Lab TA Objecives LAB 6: SIMPLE HARMONIC MOTION To undersand oscillaion in relaion o equilibrium of conservaive forces To manipulae he independen variables of oscillaion:

More information

BEng (Hons) Telecommunications. Examinations for / Semester 2

BEng (Hons) Telecommunications. Examinations for / Semester 2 BEng (Hons) Telecommunicaions Cohor: BTEL/14/FT Examinaions for 2015-2016 / Semeser 2 MODULE: ELECTROMAGNETIC THEORY MODULE CODE: ASE2103 Duraion: 2 ½ Hours Insrucions o Candidaes: 1. Answer ALL 4 (FOUR)

More information

Interpretation of special relativity as applied to earth-centered locally inertial

Interpretation of special relativity as applied to earth-centered locally inertial Inerpreaion of special relaiviy as applied o earh-cenered locally inerial coordinae sysems in lobal osiioning Sysem saellie experimens Masanori Sao Honda Elecronics Co., Ld., Oyamazuka, Oiwa-cho, Toyohashi,

More information

INTEGRAL EQUATION FOR THE TRANSITION DENSITY OF THE MULTIDIMENSIONAL MARKOV RANDOM FLIGHT

INTEGRAL EQUATION FOR THE TRANSITION DENSITY OF THE MULTIDIMENSIONAL MARKOV RANDOM FLIGHT Theory of Sochasic Processes Vol. 2 (36), no. 2, 215, pp. 42 53 ALEXANDER D. KOLESNIK INTEGRAL EQUATION FOR THE TRANSITION DENSITY OF THE MULTIDIMENSIONAL MARKOV RANDOM FLIGHT We consider he Markov random

More information