Proceeding of the 2010 International Conference on Industrial Engineering and Operations Management Dhaka, Bangladesh, January 9 10, 2010

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Proceeding of the 2010 International Conference on Industrial Engineering and Operations Management Dhaka, Bangladesh, January 9 10, 2010"

Transcription

1 roceedng of e 00 nernonl onference on ndusrl ngneerng nd Operons Mngeen k, Bngldes, Jnur 9 0, 00 A Tbu Serc Algor for eernng e conoc esgn reers of n negred roducon lnnng, Qul onrol nd revenve Mnennce olc Abdur R cul of Busness Adnsron Unvers of Ne Brunsck, redercon, NB, nd Mud Skl epren of Sses ngneerng Kng d Unvers of eroleu nd Mnerls, rn 36, Sud Arb Absrc n s ork, n negred odel of econoc producon qun, econoc desgn of n -conrol cr, nd prevenve nennce re nvesged under non-unfor qul conrol preers. Te effec on e expeced ol cos nd qul conrol cos s nvesged ree dfferen ssupons of e qul conrol preers. Usng bu sec lgor, e opl vlues of qul conrol preers, for dfferen M levels, re found. A non-unfor scee for splng frequenc, sple sze nd conrol l co-effcen provdes loer cos s copred o scees ere onl splng frequenc s ken s non-unfor. Keords Tbu serc lgor, econoc desgn preers, producon plnnng, qul conrol, prevenve nennce. nroducon Qul conrol, producon plnnng nd nennce polc re porn fcors n n nufcurng process. ffecve negron of ese fcors ll gve copn copeve edge of dvnge n e globl rke. Te cusoers ssfcon g led o n ncresed cos of producon process. Te opzon of producon cos s n porn re of reserc. conoc producon qun, econoc desgn of n -conrol cr, nd prevenve nennce re e ree n eleens n producon ngeen. n e ps, ese specs ve been consdered seprel nd dfferen odfcons ere de n e ndvdul odels o ceve opl producon coss. n s ork, n negred odel of econoc producon qun, qul conrol, nd prevenve nennce polc s suded. Opl vlues of desgn preers of e odel re obned usng bu-serc lgor.. Sse Operons nd Assupons Te se process s ssued s n R nd Ben- []. s ssued e process s producng sngle e. Te process s ne.e., ge s zero e sr nd s n n n-conrol se. Te process sf o n ouof-conrol se s e sse ges. Te e e process sfs o n ou-of-conrol se s rndo vrble. follos generl dsrbuon ncresng zrd re. Te produc qul s nspeced usng n -conrol cr. Te process s nspeced e nervls,,,, 3 K. s e nuber of qul nspecon nervls n producon ccle. revenve nennce cves re sceduled l neger ulples of qul nspecon nervls, us prevenve nennce cves re crred ou l, l, 3l, K. f l, ens e prevenve nennce cves re crred ou ec nspecon nervl. f l, ens e prevenve nennce cves re sceduled ec lernve nspecon nervl. Te process producon ccle ends qul nervls or rue lr, ndcng e process s ou-of-conrol. Te process s resored o n s good s ne se roug nennce. end s consn nd ll dends us be e. lsscl econoc producon qun Q odel ssupons ppl ere.

2 R nd Skl 3. Noons gure : nvenor levels, M s e es e - M 3. ecson Vrbles ecson vrbles reled o -conrol cr. Nuber of nspecon nervls n Sple sze - nspecon nervl k Splng frequenc - nspecon nervl onrol l co-effcen - nspecon nervl Oer noons for e -conrol cr re s follos. x xpeced e o resore sse o s good s ne se b xpeced e o perfor one M con xpeced e o repr sse en flure s deeced xed cos for splng Vrble cos of splng os of deecng flse lr Qul cos le producng n n n-conrol se Qul cos le producng n n ou-of-conrol se Mgnude of e sf n process en robbl, exceedng conrol ls; process n-conrol: - nspecon nervl robbl, no exceedng conrol ls; process ou-of-conrol: - nspecon nervl uulve e o sf dsrbuon qul o f M s crred ou - nspecon Te e end of - M nspecon nervl nd ere xpeced ol leng of producon ccle ncludng M e xpeced ol cos xpeced qul cos per producon ccle ncludng repr cos; M cos no ncluded Noon used for Q odel L Slvge vlue e end re uns per un e

3 R nd Skl roducon run roducon re uns per un e nvenor level e, nvenor oldng cos per un, per un e S 0 Seup cos per producon ccle T xpeced leng of producon ccle T xpeced leng of nvenor ccle H xpeced nvenor oldng cos per producon ccle Noon used for prevenve nennce 0 p p Mxu sse ge reducon os of cul M cves M xpeced prevenve nennce cos per producon ccle 3. negred Model Assupons Te process ssupons re kep e se s ose de n R nd Ben- []. uron of n n-conrol perod s ssued o follo n rbrr probbl dsrbuon f, vng n ncresng zrd re r, nd cuulve dsrbuon funcon. Te prevenve nennce cons reduce e ge of e sse proporonl o e cos of e nennce. f ere s no M, en ens e e o serc for n ssgnble cuse s neglgble. o x urng e M cv, s ssued producon ceses for e. p / p Te producon ends eer rue lr or e, cever occurs frs. f ere s no rue lr up o e en e ccle s lloed o connue for ddonl e. Tere s no cos of splng nd crng durng nervl. A e necessr nennce or equpen replceen s done. urng e nspecon, f n ou-of-conrol se s observed en producon ceses unl ccuuled on nd nvenor s depleed o zero. Oerse, producon connues. A slvge vlue s eploed n e odel, snce e resdul lfe beond cern ge for e sses nvolvng ncresng zrd re ll be rer sor. lure re, r of e sse s decresed fer ec M. Te ge reducon of e sse s funcon of e cos of e nennce. Le p denoe e effecve ge of e equpen rg before rg fer e γ quon gves e lner relonsp beeen M cos nd ge reducon of e sse, o ere γ η / p p ere η 0 < η or, s e perfecness fcor for e equpen. nd for,3, K,,. 4. Non-unfor Splng requenc, Sple Sze nd onrol L o-effcen n s ork, e -conrol cr preers re lso ssued o be nonunfor. As e process ges, e sple sze nd conrol l coeffcens cnge, re seleced fro O nd R [].

4 R nd Skl 4. Non-unfor splng frequenc Unfor splng provdes consn negred zrd re r for Mrkovn sock odel. Beneree nd R [3] exended s fc o non-mrkovn sock odels b coosng e leng of splng nervls, suc e negred zrd re over ec nervl s e se s for ll nervls, f e e process rens n n n-conrol se nd follos Webull dsrbuon. ere λ nd v re spe preers for e Webull dsrbuon. Snce flure re s reduced. quon becoes for 6 4. Non-unfor sple sze Non-unfor sple sze s seleced suc e relve proporon of sple sze o correspondng splng nervl s consn. T s,. ens sple sze drn per un e n ec splng nervl s consn. Usng fro quon 6, n expresson for non-unfor sple sze s obned, Non-unfor conrol l co-effcen s seleced suc poer of e conrol cr rens se n ec nervl xpeced Tol os xpeced ol cos per un of e s obned b, 9 Were T s gven b, 0 5. xpeced leng of producon ccle T 5. xpeced prevenve nennce cos M p, ere, ere 0 p f l,l,3l,... Oerse 0 p f l,l,3l,... Oerse 3

5 R nd Skl B U B B U A s clculed usng xpeced qul conrol cos xpeced nvenor oldng cos Le be e nvenor e. H s gven b, 6 A s e re under nd cn be clculed s follos; Le nd be e nvenor e nd nspecon nervls respecvel. ere B nd U re gven b, 7 > for for U,,,3, K U Opl reer A proble s foruled n e for of quon 9 connng fve decson vrbles, k, n, nd l. l s ken explcl nd dfferen Ts re found usng dfferen vlues of l. A bu serc lgor n Glover nd Tllrd [4] s used ere o fnd opl soluons. 7. scussons Selecon nd non-unfor scee for, n nd k s gl dependen on process pe nd operon. s possble selecon of non-unfor n nd k does no ve uc effec on expeced qul nd ol cos for cern processes. onsder e follong cses: 7. se onsder process nufcurng sngle e; e process follos e se ssupons s de n secon. Te e n producon s expensve nd requres desrucve esng. So, e cos ssoced kng sple sze b s lrge. So selecng non-unfor scee for n nd k poer of es ll ren consn for suc processes ll effec e bn er. xpeced ol cos ll be gl dependen on non-unfor sple sze snce, n ll be reduced n ec qul nspecon nervl. 7. se f ou n ou n ou n L d f bn bn bn Q α 0 A d H T f,...,,3

6 R nd Skl onsder process producng uooble pr on uoed N cne. Sze nd densons of suc prs re conrolled nd cecked roug n uoed process nd requres uc less e. n suc cses, e cos ssoced kng sple s ver sll. So, selecng non-unfor ll ve ver sll effec on qul conrol coss, unless e pr s exned n sepre qul depren. 8. oncluson n s ork e negred odel of producon, qul nd prevenve nennce s presened, ere nonunfor splng frequenc, sple sze, nd conrol l co-effcen ere seleced. xpeced ol nd qul conrol cos s nvesged for dfferen prevenve nennce polces. Tbu serc lgor s used o fnd opl vlues of sse vrbles. s found non-unfor scee for splng frequenc, sple sze nd conrol l co-effcen provded loer cos s copred o scees ere onl splng frequenc s ken s non-unfor. s lso dscussed selecon of non-unfor splng frequenc nd conrol l co-effcen no effec cern processes. Selecon for suc scees s dependen on e process nd operon under consderon. Acknoledgeen nncl sssnce of e Nonl Scences nd ngneerng Reserc ouncl of nd nd grns fro e cul of Busness Adnsron, UNB, s grefull cknoledged. Te uors ould lso lke o cknoledge Kng d Unvers of eroleu nd Mnerls for fclng s proec. Te sssnce of K Wlson, Rlp O llgn nd eb Ter, for png, proof redng nd edng e nuscrp, s grel ppreced. References. R, M.A, nd Ben-, M., 998, A Generlzed conoc Model for Jon eernon of roducon Run, nspecon Scedule, nd onrol r esgn, nernonl Journl of roducon Reserc, 36, O, H., nd R, M.A., 997, A nc Model for n -onrol r esgn, Trnscons, 96, Beneree,.K., nd R, M.A., 988, conoc esgn of -onrol rs Under Webull Sock Models, Tecnoercs, 304, Glover,., nd Tllrd,., 993, A User's Gude o Tbu Serc, Annls of Operons Reserc, 4, 3-8.

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Supporting information How to concatenate the local attractors of subnetworks in the HPFP n Effcen lgorh for Idenfyng Prry Phenoype rcors of Lrge-Scle Boolen Newor Sng-Mo Choo nd Kwng-Hyun Cho Depren of Mhecs Unversy of Ulsn Ulsn 446 Republc of Kore Depren of Bo nd Brn Engneerng Kore dvnced

More information

Midterm Exam. Thursday, April hour, 15 minutes

Midterm Exam. Thursday, April hour, 15 minutes Economcs of Grow, ECO560 San Francsco Sae Unvers Mcael Bar Sprng 04 Mderm Exam Tursda, prl 0 our, 5 mnues ame: Insrucons. Ts s closed boo, closed noes exam.. o calculaors of an nd are allowed. 3. Sow all

More information

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations Cter. Runge-Kutt nd Order Metod or Ordnr Derentl Eutons Ater redng ts cter ou sould be ble to:. understnd te Runge-Kutt nd order metod or ordnr derentl eutons nd ow to use t to solve roblems. Wt s te Runge-Kutt

More information

Advanced Electromechanical Systems (ELE 847)

Advanced Electromechanical Systems (ELE 847) (ELE 847) Dr. Smr ouro-rener Topc 1.4: DC moor speed conrol Torono, 2009 Moor Speed Conrol (open loop conrol) Consder he followng crcu dgrm n V n V bn T1 T 5 T3 V dc r L AA e r f L FF f o V f V cn T 4

More information

Introduction. Voice Coil Motors. Introduction - Voice Coil Velocimeter Electromechanical Systems. F = Bli

Introduction. Voice Coil Motors. Introduction - Voice Coil Velocimeter Electromechanical Systems. F = Bli UNIVERSITY O TECHNOLOGY, SYDNEY ACULTY O ENGINEERING 4853 Elecroechncl Syses Voce Col Moors Topcs o cover:.. Mnec Crcus 3. EM n Voce Col 4. orce n Torque 5. Mhecl Moel 6. Perornce Voce cols re wely use

More information

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula NCTU Deprme o Elecrcl d Compuer Egeerg Seor Course By Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos A. Euler Formul B. Ruge-Ku Formul C. A Emple or Four-Order Ruge-Ku Formul

More information

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading

Online Supplement for Dynamic Multi-Technology. Production-Inventory Problem with Emissions Trading Onlne Supplemen for Dynamc Mul-Technology Producon-Invenory Problem wh Emssons Tradng by We Zhang Zhongsheng Hua Yu Xa and Baofeng Huo Proof of Lemma For any ( qr ) Θ s easy o verfy ha he lnear programmng

More information

Excess Error, Approximation Error, and Estimation Error

Excess Error, Approximation Error, and Estimation Error E0 370 Statstcal Learnng Theory Lecture 10 Sep 15, 011 Excess Error, Approxaton Error, and Estaton Error Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton So far, we have consdered the fnte saple

More information

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that

THEORETICAL AUTOCORRELATIONS. ) if often denoted by γ. Note that THEORETICAL AUTOCORRELATIONS Cov( y, y ) E( y E( y))( y E( y)) ρ = = Var( y) E( y E( y)) =,, L ρ = and Cov( y, y ) s ofen denoed by whle Var( y ) f ofen denoed by γ. Noe ha γ = γ and ρ = ρ and because

More information

January Examinations 2012

January Examinations 2012 Page of 5 EC79 January Examnaons No. of Pages: 5 No. of Quesons: 8 Subjec ECONOMICS (POSTGRADUATE) Tle of Paper EC79 QUANTITATIVE METHODS FOR BUSINESS AND FINANCE Tme Allowed Two Hours ( hours) Insrucons

More information

? plate in A G in

? plate in A G in Proble (0 ponts): The plstc block shon s bonded to rgd support nd to vertcl plte to hch 0 kp lod P s ppled. Knong tht for the plstc used G = 50 ks, deterne the deflecton of the plte. Gven: G 50 ks, P 0

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION CHAPER : LINEAR DISCRIMINAION Dscrmnan-based Classfcaon 3 In classfcaon h K classes (C,C,, C k ) We defned dscrmnan funcon g j (), j=,,,k hen gven an es eample, e chose (predced) s class label as C f g

More information

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW) 8 Conson o n & Ponn To Fo wll s quons w D B σ σ Fo bo n b sown (W) o s W w bo on o s l us n su su ul ow ns [W/ ] [W] su P su B W W 4 444 s W A A s V A A : W W R o n o so n n: [/s W] W W 4 44 9 W : W F

More information

TSS = SST + SSE An orthogonal partition of the total SS

TSS = SST + SSE An orthogonal partition of the total SS ANOVA: Topc 4. Orhogonal conrass [ST&D p. 183] H 0 : µ 1 = µ =... = µ H 1 : The mean of a leas one reamen group s dfferen To es hs hypohess, a basc ANOVA allocaes he varaon among reamen means (SST) equally

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

EFFECT OF DISTANCES, SPACING AND NUMBER OF DOWELS IN A ROW ON THE LOAD CARRYING CAPACITY OF CONNECTIONS WITH DOWELS FAILING BY SPLITTING

EFFECT OF DISTANCES, SPACING AND NUMBER OF DOWELS IN A ROW ON THE LOAD CARRYING CAPACITY OF CONNECTIONS WITH DOWELS FAILING BY SPLITTING CIB-W8/5-7-7 INTERNATIONAL COUNCIL FOR RESEARCH AND INNOVATION IN BUILDIN AND CONSTRUCTION WORKIN COMMISSION W8 - TIMBER STRUCTURES EFFECT OF DISTANCES, SPACIN AND NUMBER OF DOWELS IN A ROW ON THE LOAD

More information

Lecture 2 M/G/1 queues. M/G/1-queue

Lecture 2 M/G/1 queues. M/G/1-queue Lecure M/G/ queues M/G/-queue Posson arrval process Arbrary servce me dsrbuon Sngle server To deermne he sae of he sysem a me, we mus now The number of cusomers n he sysems N() Tme ha he cusomer currenly

More information

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25 Modelg d redcg Sequeces: HMM d m be CRF Amr Ahmed 070 Feb 25 Bg cure redcg Sgle Lbel Ipu : A se of feures: - Bg of words docume - Oupu : Clss lbel - Topc of he docume - redcg Sequece of Lbels Noo Noe:

More information

MODEL SOLUTIONS TO IIT JEE ADVANCED 2014

MODEL SOLUTIONS TO IIT JEE ADVANCED 2014 MODEL SOLUTIONS TO IIT JEE ADVANCED Pper II Code PART I 6 7 8 9 B A A C D B D C C B 6 C B D D C A 7 8 9 C A B D. Rhc(Z ). Cu M. ZM Secon I K Z 8 Cu hc W mu hc 8 W + KE hc W + KE W + KE W + KE W + KE (KE

More information

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION

UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 2017 EXAMINATION INTERNATIONAL TRADE T. J. KEHOE UNIVERSITAT AUTÒNOMA DE BARCELONA MARCH 27 EXAMINATION Please answer wo of he hree quesons. You can consul class noes, workng papers, and arcles whle you are workng on he

More information

System in Weibull Distribution

System in Weibull Distribution Internatonal Matheatcal Foru 4 9 no. 9 94-95 Relablty Equvalence Factors of a Seres-Parallel Syste n Webull Dstrbuton M. A. El-Dacese Matheatcs Departent Faculty of Scence Tanta Unversty Tanta Egypt eldacese@yahoo.co

More information

Simplified Variance Estimation for Three-Stage Random Sampling

Simplified Variance Estimation for Three-Stage Random Sampling Deprmen of ppled Sscs Johnnes Kepler Unversy Lnz IFS Reserch Pper Seres 04-67 Smplfed rnce Esmon for Three-Sge Rndom Smplng ndres Quember Ocober 04 Smplfed rnce Esmon for Three-Sge Rndom Smplng ndres Quember

More information

1 Definition of Rademacher Complexity

1 Definition of Rademacher Complexity COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #9 Scrbe: Josh Chen March 5, 2013 We ve spent the past few classes provng bounds on the generalzaton error of PAClearnng algorths for the

More information

Solution in semi infinite diffusion couples (error function analysis)

Solution in semi infinite diffusion couples (error function analysis) Soluon n sem nfne dffuson couples (error funcon analyss) Le us consder now he sem nfne dffuson couple of wo blocks wh concenraon of and I means ha, n a A- bnary sysem, s bondng beween wo blocks made of

More information

A TWO-LEVEL LOAN PORTFOLIO OPTIMIZATION PROBLEM

A TWO-LEVEL LOAN PORTFOLIO OPTIMIZATION PROBLEM Proceedngs of he 2010 Wner Sulaon Conference B. Johansson, S. Jan, J. Monoya-Torres, J. Hugan, and E. Yücesan, eds. A TWO-LEVEL LOAN PORTFOLIO OPTIMIZATION PROBLEM JanQang Hu Jun Tong School of Manageen

More information

Lecture 4: Trunking Theory and Grade of Service (GOS)

Lecture 4: Trunking Theory and Grade of Service (GOS) Lecure 4: Trunkng Theory nd Grde of Servce GOS 4.. Mn Problems nd Defnons n Trunkng nd GOS Mn Problems n Subscrber Servce: lmed rdo specrum # of chnnels; mny users. Prncple of Servce: Defnon: Serve user

More information

Physics 201 Lecture 2

Physics 201 Lecture 2 Physcs 1 Lecure Lecure Chper.1-. Dene Poson, Dsplcemen & Dsnce Dsngush Tme nd Tme Inerl Dene Velocy (Aerge nd Insnneous), Speed Dene Acceleron Undersnd lgebrclly, hrough ecors, nd grphclly he relonshps

More information

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project

GMM parameter estimation. Xiaoye Lu CMPS290c Final Project GMM paraeer esaon Xaoye Lu M290c Fnal rojec GMM nroducon Gaussan ure Model obnaon of several gaussan coponens Noaon: For each Gaussan dsrbuon:, s he ean and covarance ar. A GMM h ures(coponens): p ( 2π

More information

COS 511: Theoretical Machine Learning

COS 511: Theoretical Machine Learning COS 5: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #0 Scrbe: José Sões Ferrera March 06, 203 In the last lecture the concept of Radeacher coplexty was ntroduced, wth the goal of showng that

More information

PHY2053 Summer C 2013 Exam 1 Solutions

PHY2053 Summer C 2013 Exam 1 Solutions PHY053 Sue C 03 E Soluon. The foce G on o G G The onl cobnon h e '/ = doubln.. The peed of lh le 8fulon c 86,8 le 60 n 60n h 4h d 4d fonh.80 fulon/ fonh 3. The dnce eled fo he ene p,, 36 (75n h 45 The

More information

Essential Prime Implicants

Essential Prime Implicants CS/EE 4/4: Comuer Aded Desgn of Dgl Crcus Chrs J. yers Lecure 8: rme Selecon nd UC Redng: Cher 4.-9 Essenl rme Imlcns Cube s n essenl rme mlcn of f conns mnerm no conned by ny oher rme mlcn of. f f All

More information

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur

Module 2. Random Processes. Version 2 ECE IIT, Kharagpur Module Random Processes Lesson 6 Functons of Random Varables After readng ths lesson, ou wll learn about cdf of functon of a random varable. Formula for determnng the pdf of a random varable. Let, X be

More information

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A.

Chapter 13. Gas Mixtures. Study Guide in PowerPoint. Thermodynamics: An Engineering Approach, 5th edition by Yunus A. Çengel and Michael A. Chapter 3 Gas Mxtures Study Gude n PowerPont to accopany Therodynacs: An Engneerng Approach, 5th edton by Yunus A. Çengel and Mchael A. Boles The dscussons n ths chapter are restrcted to nonreactve deal-gas

More information

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab Lecture Cer Models Cer Clbrton rofessor Slvo Svrese Coputtonl Vson nd Geoetry Lb Slvo Svrese Lecture - Jn 7 th, 8 Lecture Cer Models Cer Clbrton Recp of cer odels Cer clbrton proble Cer clbrton wth rdl

More information

The optimal delay of the second test is therefore approximately 210 hours earlier than =2.

The optimal delay of the second test is therefore approximately 210 hours earlier than =2. THE IEC 61508 FORMULAS 223 The optmal delay of the second test s therefore approxmately 210 hours earler than =2. 8.4 The IEC 61508 Formulas IEC 61508-6 provdes approxmaton formulas for the PF for smple

More information

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner. (C) 998 Gerald B Sheblé, all rghts reserved Lnear Prograng Introducton Contents I. What s LP? II. LP Theor III. The Splex Method IV. Refneents to the Splex Method What s LP? LP s an optzaton technque that

More information

EEM 486: Computer Architecture

EEM 486: Computer Architecture EEM 486: Compuer Archecure Lecure 4 ALU EEM 486 MIPS Arhmec Insrucons R-ype I-ype Insrucon Exmpe Menng Commen dd dd $,$2,$3 $ = $2 + $3 sub sub $,$2,$3 $ = $2 - $3 3 opernds; overfow deeced 3 opernds;

More information

Exponents and Powers

Exponents and Powers EXPONENTS AND POWERS 9 Exponents nd Powers CHAPTER. Introduction Do you know? Mss of erth is 5,970,000,000,000, 000, 000, 000, 000 kg. We hve lredy lernt in erlier clss how to write such lrge nubers ore

More information

HIERARCHICAL DECISIONS FOR LINEAR/NON-LINEAR DISJUNCTIVE PROBLEMS

HIERARCHICAL DECISIONS FOR LINEAR/NON-LINEAR DISJUNCTIVE PROBLEMS 2 nd Mercosur Congress on Chemcal Engneerng 4 h Mercosur Congress on Process Sysems Engneerng HIERARCHICAL DECISIONS FOR LINEAR/NON-LINEAR DISJUNCTIVE PROLEMS Jorge M. Monagna and Aldo R. Vecche * INGAR

More information

Class: Life-Science Subject: Physics

Class: Life-Science Subject: Physics Class: Lfe-Scence Subject: Physcs Frst year (6 pts): Graphc desgn of an energy exchange A partcle (B) of ass =g oves on an nclned plane of an nclned angle α = 3 relatve to the horzontal. We want to study

More information

Fingerprint Registration Using Centroid Structure and Line Segments 1

Fingerprint Registration Using Centroid Structure and Line Segments 1 IJCSS Inernonl Journl of Copuer Scence nd ewor Secur, VOL.6 o.3, Mrch 006 97 Fngerprn Regsron Usng Cenrod Srucure nd Lne Segens Deun Zho, Fe Su nd nn C ejng Unvers of Poss nd elecouncons, School of elecouncon

More information

The Dynamic Programming Models for Inventory Control System with Time-varying Demand

The Dynamic Programming Models for Inventory Control System with Time-varying Demand The Dynamc Programmng Models for Invenory Conrol Sysem wh Tme-varyng Demand Truong Hong Trnh (Correspondng auhor) The Unversy of Danang, Unversy of Economcs, Venam Tel: 84-236-352-5459 E-mal: rnh.h@due.edu.vn

More information

Infinite Length MMSE Decision Feedback Equalization

Infinite Length MMSE Decision Feedback Equalization Infnte Lengt SE ecson Feedbac Equalzaton FE N * * Y F Z ' Z SS ˆ Y Q N b... Infnte-Lengt ecson Feedbac Equalzer as reoval ^ Y Z Feedforward Flter Feedbac Flter - Input to Slcer - Z Y Assung prevous decsons

More information

v v at 1 2 d vit at v v 2a d

v v at 1 2 d vit at v v 2a d SPH3UW Unt. Accelerton n One Denon Pge o 9 Note Phyc Inventory Accelerton the rte o chnge o velocty. Averge ccelerton, ve the chnge n velocty dvded by the te ntervl, v v v ve. t t v dv Intntneou ccelerton

More information

Bayesian Model Selection for Structural Break Models *

Bayesian Model Selection for Structural Break Models * Baesan Model Selecon for Srucural Brea Models * Andrew T. Levn Federal eserve Board Jere M. Pger Unvers of Oregon Frs Verson: Noveber 005 Ths verson: Aprl 007 Absrac: We ae a Baesan approach o odel selecon

More information

Mechanics Physics 151

Mechanics Physics 151 Mechancs Physcs 5 Lecure 0 Canoncal Transformaons (Chaper 9) Wha We Dd Las Tme Hamlon s Prncple n he Hamlonan formalsm Dervaon was smple δi δ Addonal end-pon consrans pq H( q, p, ) d 0 δ q ( ) δq ( ) δ

More information

Numbers Related to Bernoulli-Goss Numbers

Numbers Related to Bernoulli-Goss Numbers ursh Journl of Anlyss n Nuber heory, 4, Vol., No., -8 Avlble onlne t htt://ubs.sceub.co/tnt///4 Scence n Eucton Publshng OI:.69/tnt---4 Nubers Relte to Bernoull-Goss Nubers Mohe Oul ouh Benough * érteent

More information

Rectilinear motion. Lecture 2: Kinematics of Particles. External motion is known, find force. External forces are known, find motion

Rectilinear motion. Lecture 2: Kinematics of Particles. External motion is known, find force. External forces are known, find motion Lecture : Kneatcs of Partcles Rectlnear oton Straght-Lne oton [.1] Analtcal solutons for poston/veloct [.1] Solvng equatons of oton Analtcal solutons (1 D revew) [.1] Nuercal solutons [.1] Nuercal ntegraton

More information

Implementation of Quantized State Systems in MATLAB/Simulink

Implementation of Quantized State Systems in MATLAB/Simulink SNE T ECHNICAL N OTE Implemenaon of Quanzed Sae Sysems n MATLAB/Smulnk Parck Grabher, Mahas Rößler 2*, Bernhard Henzl 3 Ins. of Analyss and Scenfc Compung, Venna Unversy of Technology, Wedner Haupsraße

More information

Variants of Pegasos. December 11, 2009

Variants of Pegasos. December 11, 2009 Inroducon Varans of Pegasos SooWoong Ryu bshboy@sanford.edu December, 009 Youngsoo Cho yc344@sanford.edu Developng a new SVM algorhm s ongong research opc. Among many exng SVM algorhms, we wll focus on

More information

8 factors of x. For our second example, let s raise a power to a power:

8 factors of x. For our second example, let s raise a power to a power: CH 5 THE FIVE LAWS OF EXPONENTS EXPONENTS WITH VARIABLES It s no time for chnge in tctics, in order to give us deeper understnding of eponents. For ech of the folloing five emples, e ill stretch nd squish,

More information

Hierarchical Forest Management with Anticipation : an. application to tactical-operational planning integration

Hierarchical Forest Management with Anticipation : an. application to tactical-operational planning integration Herarchcal Fores anageen wh Ancpaon : an applcaon o accal-operaonal plannng negraon Beaudon, D., Frare, J.-., LeBel, L. ars 2007 (revsed) Workng Paper D-2005-JF-7 Research Consoru n e-busness n he Fores

More information

Panel Data Regression Models

Panel Data Regression Models Panel Daa Regresson Models Wha s Panel Daa? () Mulple dmensoned Dmensons, e.g., cross-secon and me node-o-node (c) Pongsa Pornchawseskul, Faculy of Economcs, Chulalongkorn Unversy (c) Pongsa Pornchawseskul,

More information

Chapter 8 Indicator Variables

Chapter 8 Indicator Variables Chapter 8 Indcator Varables In general, e explanatory varables n any regresson analyss are assumed to be quanttatve n nature. For example, e varables lke temperature, dstance, age etc. are quanttatve n

More information

Background and Motivation: Importance of Pressure Measurements

Background and Motivation: Importance of Pressure Measurements Imornce of Pressre Mesremens: Pressre s rmry concern for mny engneerng lcons e.g. lf nd form drg. Cvon : Pressre s of fndmenl mornce n ndersndng nd modelng cvon. Trblence: Velocy-Pressre-Grden ensor whch

More information

Machine Learning. Support Vector Machines. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 8, Sept. 13, 2012 Based on slides from Eric Xing, CMU

Machine Learning. Support Vector Machines. Le Song. CSE6740/CS7641/ISYE6740, Fall Lecture 8, Sept. 13, 2012 Based on slides from Eric Xing, CMU Mchne Lernng CSE6740/CS764/ISYE6740 Fll 0 Support Vector Mchnes Le Song Lecture 8 Sept. 3 0 Bsed on sldes fro Erc Xng CMU Redng: Chp. 6&7 C.B ook Outlne Mu rgn clssfcton Constrned optzton Lgrngn dult Kernel

More information

The safety stock and inventory cost paradox in a stochastic lead time setting

The safety stock and inventory cost paradox in a stochastic lead time setting Dsney, S.M., Malz, A., Wang, X. and Warburon, R., (05), The safey soc and nvenory cos paradox n a sochasc lead me seng, 6 h Producon and Operaons Managemen Socey Annual Conference, Washngon, USA, May 8

More information

Population element: 1 2 N. 1.1 Sampling with Replacement: Hansen-Hurwitz Estimator(HH)

Population element: 1 2 N. 1.1 Sampling with Replacement: Hansen-Hurwitz Estimator(HH) Chapter 1 Samplng wth Unequal Probabltes Notaton: Populaton element: 1 2 N varable of nterest Y : y1 y2 y N Let s be a sample of elements drawn by a gven samplng method. In other words, s s a subset of

More information

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form

Denote the function derivatives f(x) in given points. x a b. Using relationships (1.2), polynomials (1.1) are written in the form SET OF METHODS FO SOUTION THE AUHY POBEM FO STIFF SYSTEMS OF ODINAY DIFFEENTIA EUATIONS AF atypov and YuV Nulchev Insttute of Theoretcal and Appled Mechancs SB AS 639 Novosbrs ussa Introducton A constructon

More information

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea

Table of C on t en t s Global Campus 21 in N umbe r s R e g ional Capac it y D e v e lopme nt in E-L e ar ning Structure a n d C o m p o n en ts R ea G Blended L ea r ni ng P r o g r a m R eg i o na l C a p a c i t y D ev elo p m ent i n E -L ea r ni ng H R K C r o s s o r d e r u c a t i o n a n d v e l o p m e n t C o p e r a t i o n 3 0 6 0 7 0 5

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Your Suggestions. Board/slides. Too fast/too slow. Book does not have enough examples.

Your Suggestions. Board/slides. Too fast/too slow. Book does not have enough examples. Your Suggestions Sale robles and eales in lecture. Donload recitation robles before recitation. Colete eercises in recitations. Reorganize eb site. Have oer oint slides available earlier. Overvie class

More information

NAME: SECOND EXAMINATION

NAME: SECOND EXAMINATION 1 Chemistry 64 Winter 1994 NAME: SECOND EXAMINATION THIS EXAMINATION IS WORTH 100 POINTS AND CONTAINS 4 (FOUR) QUESTIONS THEY ARE NOT EQUALLY WEIGHTED! YOU SHOULD ATTEMPT ALL QUESTIONS AND ALLOCATE YOUR

More information

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t

Description of the Force Method Procedure. Indeterminate Analysis Force Method 1. Force Method con t. Force Method con t Indeternate Analyss Force Method The force (flexblty) ethod expresses the relatonshps between dsplaceents and forces that exst n a structure. Prary objectve of the force ethod s to deterne the chosen set

More information

GORDON AND NEWELL QUEUEING NETWORKS AND COPULAS

GORDON AND NEWELL QUEUEING NETWORKS AND COPULAS Yugoslav Journal of Operaons Research Vol 9 (009) Number 0- DOI:0.98/YUJOR0900C GORDON AND NEWELL QUEUEING NETWORKS AND COPULAS Danel CIUIU Facul of Cvl Indusral and Agrculural Buldngs Techncal Unvers

More information

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press,

Lecture Slides for INTRODUCTION TO. Machine Learning. ETHEM ALPAYDIN The MIT Press, Lecure ldes for INRODUCION O Machne Learnng EHEM ALPAYDIN he MI Press, 004 alpaydn@boun.edu.r hp://.cpe.boun.edu.r/~ehe/l CHAPER 6: Densonaly Reducon Why Reduce Densonaly?. Reduces e copley: Less copuaon.

More information

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation

Statistics for Managers Using Microsoft Excel/SPSS Chapter 13 The Simple Linear Regression Model and Correlation Statstcs for Managers Usng Mcrosoft Excel/SPSS Chapter 13 The Smple Lnear Regresson Model and Correlaton 1999 Prentce-Hall, Inc. Chap. 13-1 Chapter Topcs Types of Regresson Models Determnng the Smple Lnear

More information

The Periodic Table of Elements

The Periodic Table of Elements The Periodic Table of Elements 8 Uuo Uus Uuh (9) Uup (88) Uuq (89) Uut (8) Uub (8) Rg () 0 Ds (9) 09 Mt (8) 08 Hs (9) 0 h () 0 Sg () 0 Db () 0 Rf () 0 Lr () 88 Ra () 8 Fr () 8 Rn () 8 At (0) 8 Po (09)

More information

Use 10 m/s 2 for the acceleration due to gravity.

Use 10 m/s 2 for the acceleration due to gravity. ANSWERS Prjecle mn s he ecrl sum w ndependen elces, hrznl cmpnen nd ercl cmpnen. The hrznl cmpnen elcy s cnsn hrughu he mn whle he ercl cmpnen elcy s dencl ree ll. The cul r nsnneus elcy ny pn lng he prblc

More information

Chapter 12 Lyes KADEM [Thermodynamics II] 2007

Chapter 12 Lyes KADEM [Thermodynamics II] 2007 Chapter 2 Lyes KDEM [Therodynacs II] 2007 Gas Mxtures In ths chapter we wll develop ethods for deternng therodynac propertes of a xture n order to apply the frst law to systes nvolvng xtures. Ths wll be

More information

Parameter estimation class 5

Parameter estimation class 5 Parameter estmaton class 5 Multple Ve Geometr Comp 9-89 Marc Pollefes Content Background: Projectve geometr (D, 3D), Parameter estmaton, Algortm evaluaton. Sngle Ve: Camera model, Calbraton, Sngle Ve Geometr.

More information

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e.

Our focus will be on linear systems. A system is linear if it obeys the principle of superposition and homogenity, i.e. SSTEM MODELLIN In order to solve a control syste proble, the descrptons of the syste and ts coponents ust be put nto a for sutable for analyss and evaluaton. The followng ethods can be used to odel physcal

More information

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh.

How to Prove the Riemann Hypothesis Author: Fayez Fok Al Adeh. How o Prove he Riemnn Hohesis Auhor: Fez Fok Al Adeh. Presiden of he Srin Cosmologicl Socie P.O.Bo,387,Dmscus,Sri Tels:963--77679,735 Emil:hf@scs-ne.org Commens: 3 ges Subj-Clss: Funcionl nlsis, comle

More information

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES. Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES. Institute for Mathematical Research, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia Malaysan Journal of Mahemacal Scences 9(2): 277-300 (2015) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Journal homeage: h://ensemumedumy/journal A Mehod for Deermnng -Adc Orders of Facorals 1* Rafka Zulkal,

More information

CYLINDER MADE FROM BRITTLE MATERIAL AND SUBJECT TO INTERNAL PRESSURE ONLY

CYLINDER MADE FROM BRITTLE MATERIAL AND SUBJECT TO INTERNAL PRESSURE ONLY CYLINDER MADE FROM BRITTLE MATERIAL AND SUBJECT TO INTERNAL PRESSURE ONLY STRESS DISTRIBUTION ACROSS THE CYLINDER WALL The stresses n cyner suject t ntern ressure ny cn e etermne t tw ctns n the cyner

More information

EXPONENTIAL PROBABILITY DISTRIBUTION

EXPONENTIAL PROBABILITY DISTRIBUTION MTH/STA 56 EXPONENTIAL PROBABILITY DISTRIBUTION As discussed in Exaple (of Secion of Unifor Probabili Disribuion), in a Poisson process, evens are occurring independenl a rando and a a unifor rae per uni

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Atoms and the Periodic Table

Atoms and the Periodic Table Atoms and the Periodic Table Parts of the Atom Proton Found in the nucleus Number of protons defines the element Charge +1, mass 1 Parts of the Atom Neutron Found in the nucleus Stabilizes the nucleus

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

Outline. Review Numerical Approach. Schedule for April and May. Review Simple Methods. Review Notation and Order

Outline. Review Numerical Approach. Schedule for April and May. Review Simple Methods. Review Notation and Order Sstes of Ordnar Dfferental Equatons Aprl, Solvng Sstes of Ordnar Dfferental Equatons Larr Caretto Mecancal Engneerng 9 Nuercal Analss of Engneerng Sstes Aprl, Outlne Revew bascs of nuercal solutons of

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting

CISE 301: Numerical Methods Lecture 5, Topic 4 Least Squares, Curve Fitting CISE 3: umercl Methods Lecture 5 Topc 4 Lest Squres Curve Fttng Dr. Amr Khouh Term Red Chpter 7 of the tetoo c Khouh CISE3_Topc4_Lest Squre Motvton Gven set of epermentl dt 3 5. 5.9 6.3 The reltonshp etween

More information

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model

( t) Outline of program: BGC1: Survival and event history analysis Oslo, March-May Recapitulation. The additive regression model BGC1: Survval and even hsory analyss Oslo, March-May 212 Monday May 7h and Tuesday May 8h The addve regresson model Ørnulf Borgan Deparmen of Mahemacs Unversy of Oslo Oulne of program: Recapulaon Counng

More information

Discrete Memoryless Channels

Discrete Memoryless Channels Dscrete Meorless Channels Source Channel Snk Aount of Inforaton avalable Source Entro Generall nos, dstorted and a be te varng ow uch nforaton s receved? ow uch s lost? Introduces error and lts the rate

More information

Source-Channel-Sink Some questions

Source-Channel-Sink Some questions Source-Channel-Snk Soe questons Source Channel Snk Aount of Inforaton avalable Source Entro Generall nos and a be te varng Introduces error and lts the rate at whch data can be transferred ow uch nforaton

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

Homework 9 Solutions. 1. (Exercises from the book, 6 th edition, 6.6, 1-3.) Determine the number of distinct orderings of the letters given:

Homework 9 Solutions. 1. (Exercises from the book, 6 th edition, 6.6, 1-3.) Determine the number of distinct orderings of the letters given: Homework 9 Solutons PROBLEM ONE 1 (Exercses from the book, th edton,, 1-) Determne the number of dstnct orderngs of the letters gven: (a) GUIDE Soluton: 5! (b) SCHOOL Soluton:! (c) SALESPERSONS Soluton:

More information

Polynomials. 1 More properties of polynomials

Polynomials. 1 More properties of polynomials Polynomals 1 More propertes of polynomals Recall that, for R a commutatve rng wth unty (as wth all rngs n ths course unless otherwse noted), we defne R[x] to be the set of expressons n =0 a x, where a

More information

Multi-load Optimal Design of Burner-inner-liner Under Performance Index Constraint by Second-Order Polynomial Taylor Series Method

Multi-load Optimal Design of Burner-inner-liner Under Performance Index Constraint by Second-Order Polynomial Taylor Series Method , 0005 (06) DOI: 0.05/ mecconf/06700005 ICMI 06 Mul-lod Opml Desgn of Burner-nner-lner Under Performnce Index Consrn by Second-Order Polynoml ylor Seres Mehod U Goqo, Wong Chun Nm, Zheng Mn nd ng Kongzheng

More information

European Journal of Operational Research

European Journal of Operational Research European Journal of Operaonal Research 267 2018 86 95 Conens lss avalable a ScenceDrec European Journal of Operaonal Research journal homepage: www.elsever.com/locae/ejor Producon, Manufacurng and Logscs

More information

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance

Bayes rule for a classification problem INF Discriminant functions for the normal density. Euclidean distance. Mahalanobis distance INF 43 3.. Repeon Anne Solberg (anne@f.uo.no Bayes rule for a classfcaon problem Suppose we have J, =,...J classes. s he class label for a pxel, and x s he observed feaure vecor. We can use Bayes rule

More information

On the number of regions in an m-dimensional space cut by n hyperplanes

On the number of regions in an m-dimensional space cut by n hyperplanes 6 On the nuber of regons n an -densonal space cut by n hyperplanes Chungwu Ho and Seth Zeran Abstract In ths note we provde a unfor approach for the nuber of bounded regons cut by n hyperplanes n general

More information

Additive Outliers (AO) and Innovative Outliers (IO) in GARCH (1, 1) Processes

Additive Outliers (AO) and Innovative Outliers (IO) in GARCH (1, 1) Processes Addve Oulers (AO) and Innovave Oulers (IO) n GARCH (, ) Processes MOHAMMAD SAID ZAINOL, SITI MERIAM ZAHARI, KAMARULZAMMAN IBRAHIM AZAMI ZAHARIM, K. SOPIAN Cener of Sudes for Decson Scences, FSKM, Unvers

More information

Uplink Call Admission Control Techniques for Multimedia Packet Transmission in UMTS WCDMA System

Uplink Call Admission Control Techniques for Multimedia Packet Transmission in UMTS WCDMA System Upln ll Admsson onrol Technues for Mulmed Pce Trnsmsson n UMTS WDMA Sysem Angel Hernández Soln, Anono Vldovnos Brdjí, Fernndo sdevll Plco 2 Elecroncs Engneerng nd ommuncons Dp. Unversy of Zrgoz. (Spn)

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

Tighter Bounds for Multi-Armed Bandits with Expert Advice

Tighter Bounds for Multi-Armed Bandits with Expert Advice Tgher Bounds for Mul-Armed Bnds wh Exper Advce H. Brendn McMhn nd Mhew Sreeer Google, Inc. Psburgh, PA 523, USA Absrc Bnd problems re clssc wy of formulng exploron versus exploon rdeoffs. Auer e l. [ACBFS02]

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

Obtaining the Optimal Order Quantities Through Asymptotic Distributions of the Stockout Duration and Demand

Obtaining the Optimal Order Quantities Through Asymptotic Distributions of the Stockout Duration and Demand he Seond Inernonl Symposum on Sohs Models n Relbly Engneerng Lfe Sene nd Operons Mngemen Obnng he Opml Order unes hrough Asympo Dsrbuons of he Sokou Duron nd Demnd Ann V Kev Nonl Reserh omsk Se Unversy

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak .65, MHD Theory of Fusion Sysems Prof. Freidberg Lecure 9: The High e Tokmk Summry of he Properies of n Ohmic Tokmk. Advnges:. good euilibrium (smll shif) b. good sbiliy ( ) c. good confinemen ( τ nr )

More information