( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)"

Transcription

1 8 Conson o n & Ponn To Fo wll s quons w D B σ σ Fo bo n b sown (W) o s W w bo on o s l us n su su ul ow ns [W/ ] [W] su P su B W W s W A A s V A A : W W R o n o so n n: [/s W] W W 4 44

2 9 W : W F V R o n o so l n [/s W] σ σ Ps V V Ps Dss ow (o loss): W Ω Ω s P A V P Pow n olu nlos b su : W W n w Ponn quon P s ( ) ( ) ( ) W W Ps Psu Ts s Conson o n T on o nusol lon Fls In on u nsnnous l ( ) l ( ) l b ( ) R[ ( ) ] ( ) R ( ) [ ] R : Fls n lso b sb s n s I [ ] n ol sl R : os nnn boos (no ll) us nn o ss boos (no ll) us os R : W wll s o w osl ln ws n o w

3 W l o nn Ts s sl o u nlss o w σ s : B O n nl o l s l Ponn o o on ls n σ () σ () Fo () n () w (W) σ O s σ I n ol ( n ) n n s onbuon o ss ow us b o P σ. In o wos s ons s (ul n).

4 Ponn Vo Insnnous Ponn Vo s n s No: n ollowns I us s ls K o sn nsnnous ls.. n n ul ls o sn on ls.. onl sl nn W o w n s o on ls [ ] [ ] R R No : [ ] [ ] [ ] B A B A R R R [ ] R Now l s lul o T T n [ ] [ ] R R R R T T T T T T [ ] R Ws nsnnous Ponn o n s o -on ls s n b: [ ] [ ] [ ] R R R

5 A on o n nss Rll w n n n s W () ( ) Now l s lul o s qun.. W W () ( ) ( ) bu ( ) [ ( ) ] R n W () R[ ] R[ ] W * { ( ) ( )} 4 { R[ ] } 4 R[ ] 4 4 T s n b W W T T R[ ] 4 T. 4 4 ll W 4 Lon-Lon Dsson W ol oslln lon n nulus s ss n sn Ts lon osllo ol s on ll Lon ol. I s no ll ol o o s su bu w n o sons o ubon. A

6 wn Lon oul ol ws no nown nul ss ss s o o lons. T Lon ssuon ws n bsn o l l l nos o os n n s on bu wn l s l lons wll n Lon o n wll b sl o qulbu oson. n wo sln l s o nw o b w l s ull b ow s onl oson n w w o ol snus b n o ls o On l s l lon os bu w ssu nulus ns son s - - D n s son o Foo n nson on T s lso on wn ss: D Fon on F on D D T on (n) s sul o lon nn w o os lons l onl s bonl o o l. quon o oon: F F F on F oo F nl (l) o Q Q (ssun on ls) F (sn o oo o) oo Fon D (on o) n D Q D Q

7 4 L s n D & Q () Q o N s : lon ss s : s : s Q s son o ln non-oonous nl quon oluon o bo onss o wo s: oln ( ) n ul ( ) soluons Coln soluon w s nsn sons s soluon o Q oonous nl quon (.. on ) Coln soluon (nsn sons) s Pul soluon w s s s soluon s o ns o us. L us ssu -on soluons su s nl quon Q Q / w D / n / n subsu s n ou Cluln P & usbl Q / Q / Rll w I) Assu ols nl II) Assu no ouln bwn ols III) T N ols un olu. In o wos N s nub o ols un olu.

8 5 Polon () P s n b NQ P w Q s sso w ol [C]. NQ s nson o: C C Usn () QN P w () N Q P / W lul o N Q P / Rll P P χ χ χ N Q / W n N Q w s nson o: s Tn χ χ Co bo w son ( on) quon 7 Now suos N oluls un olu n olul s Z lon n lons olul bnn qun (sonn qun) n n onsn n N Q w Osllo sn n Z Rl n n s o ( ) n b

9 6 R I [ ] [ ] ( ) ( ) ( ) ( ) ( ) Rll sln o lons sub o o Q ws n b Q /. No sln o lons o qulbu s snusol w qun o sou I s no n (no on n ou nl ol).. D n Q / n () No s. T qun s ll sonn o ss. Ts ol s so sons No s no n ( ) n. I sonn qun s lso o ( s o s) n w s n o >. Wl bo onsons o no losss n s o s ( ) s n onuon losss sso w s. Rll susson o s onu n s on. Wn n s sn sonn qun s oo o s quon o oonous nl quon o l quns. Rsonn qun s n n b D n > (s o un) No: / w

10 7 W quon In ollown l quns nsnnous B () D σ s () Fo () w () Fo () w s σ (4) w A A A A n No A ( A) A A ( ) A. Lln s n o n Tn () n b wn s ( ) (5) uos u s nll oonous ( s nnn o ) n Us A Lw [q. ()] o n q. (5) W ( ) σ s O ( ) σ s Fo Guss Lw ll n W quon o l l: σ s (6)

11 8 W quon o n l: σ s σ () T on w quons: σ s σ s σ s Fo sou on w [s q. (5-ls )] σ s () () (4) I onu s lso o ( σ σ ) n s In s o on ls o sou bu loss u [q. (4)] w σ s ( ) σ s (6) [ ( σ s )] [ σ ] w σ σ σ σ s onu. s s Dn: ( ) σ w n snn l n n s o w Anuon onsn [N/] Ps onsn [/] Poon onsn [/] n [ σ ] Fo losslss s ( σ ) o q. (6) w 678 No ( ) σ o losslss s. Tn n n s o losslss u.

12 9 Tn w n o n W quon o sl oonns o [ ] w As n l -oonns o l l us ss ollown: ) ( ) ( ) ( ) ( ) ( ) ( T nl quons o o oonns o l sl oluons o W quon To n soluons o w ssu n us son o bls nqu o W n w so s ll onsn quon. oluons

13 4 A B ( ) C ( ) D sn( ) os A B C ( ) D sn( ) os A B C ( ) D sn( ) os ± ll ln w soluons sn ll snn w soluons os o T o soluon osn ns on obl n boun onon. Fo l o ws onn n - n -ons n ln lon - on w : [ C os( ) D sn( ) ] [ C os( ) D sn( ) ] w u A B s osl ln w n nn o ) s nl ln w (o To s s no ollown R[ ( ) ] [ C os( ) D sn( ) ] C os( ) D sn( ) A os Fo ou o o [ ]

14 4 L s lo os( ) o n s Insn To ollow on W us s Z Z n s w us A os( ) Z onsn w ( Z ) V Z Z onsn V s ll s lo oluon o W quon n ou F bu Loss u Rll w quon o loss u ws n b σ () [ ] w σ ( ) On n q. () ( ) ( ) ( ) ( ) n so o o n

15 4 On n w oos soluon o o () n us son o bls o sow W onsn quon Tn s n b D C B A D C B A D C B A sn os sn os sn os onnl unons sn nu ln ws n bol osn n sn sn nu snn ws Cos o sn o Rll w ±. W oul qull n ± n w ou os: w on soul w oos ls lon -s s lon -s ls lon --s s lon -s ls lon -s ows lon -s ls lon --s ows lon -s

16 4 Fo osl ln w (-s) n ss ( w no n o nl sou o n) w us w s s os u n. n o sn o osl ln w n ss s w ou o o nn o u Tln ws o os ln o n ln nn ws os sn ( ) o os o n ( ) o os o n nsn ws o os o n Anu ln ws o os ln o n ln Anu snn ws os os os sn ( ) ( ) ( ) sn( ) sn( ) o os n n ( ) sn( ) os( ) os( ) sn( ) o os n n No : os os ( ) os( ) os( ) os( ) sn( ) sn( ) ( ) os( ) sn( ) sn( ) W quon n Clnl Coons Pousl w sol w quon ss o losslss n sou on n nul oon uos boun onon ( ol onson) o obl qus us o sol w quon n lnl oons. ow o w o bou s?

17 44 In lnl oons Tn [ ] Bu n wl Tn ow o w sol o. In o wos w s? No ws obn b usn Usn bo n w (W quon n losslss sou on) W n s onsn In lnl oons n ψ ψ ψ ψ n T us o n n lnl oon n wll sul n l nl quons: â â â

18 45 w ψ ψ ψ ψ ψ w ψ ( ) o No nl quons o quons wl nl quon o n oul l nl s no oul T soluons o os usul n onsun T n T os (T n T w s o WRT -on) boun lu obls n wll b ons. Fo n sson o ψ ( ψ ) w ψ ψ ψ ψ ψ w () ψ ψ () L ψ ( ) ( ). ubsu () n () n w : ( ) ( ) ( ) ( ) ( ) D bo ss b n w : W ( ) s onsn (4) n w s onl unon o o o s (w unons o n ) us qul o onsn ( ) o ll lus o w us w s no onsn Tn q. (4) n b wn s

19 46 ( ) ( ) No n bo w s onl unon o o o s us qul o onsn ( ) n sl o ous s w s w L us lso n quon n lnl oons) s onsn usn onsn quon w s ( ) W ( ) ( ) n ( ) (onsn quon o w onsn. Abo s lssl Bssl Dnl quon. ( ) ( ) ( ) ( ) u T soluon o ψ ψ w ψ ( ) ( ) s n b sls soluons o ψ w n () () ( ) ( ) W onsn quon ()

20 47 oluons o nn w A ( ) B sn( ) o n b os C D Tln w oluon o nn w A B sn o n b os C D Tln w oluon o () () Tln w ( ) A ( ) B ( ) o nn w ( ) C ( ) D Y ( ) () () ( ) ( ) nl unon o s n nl unon o son n ( ) Bssl unon o s n Y ( ) Bssl unon o son n ± K () () T unons os L sn L Y l soluons. W on s us n n obl ns on obls n (ull boun onons). ll (Bssl D. q.) s n b As n l ons ll lnl wu. T soluon ns o u < s n b: ψ n [ C ( ) D Y ( )] [ A os B ( )] [ C D ] sn No ns u soluon n us b snn ws soluon n us b o n soluon n us b ln ws. Fuo sn Y s snul n D

21 48 ψ n ( )[ A os B ( )][ C D ] C sn T l ous o u ( > ) us b ln n bo n n b o n n () ψ ou ( ) B ( )[ A os B sn ][ C D ] () W ( ) s osl ln w No ollown lons o nl unons o s n son n. () () ( ) π π π 4 π π π 4

22 49 Fls os T Pln w n Uno ln ws Fl s oon o s- oons o s ul l onuon o n boun lu obl. n l onuons (os) ss wll quons (w quon). Ts usull o s os. In T o n on n s onsn n lol ln nnn o. Ts ln s ll qus Pln. In nl qus lns no lll wo n ons lon o o w Ps Fon o T w I qus lns lll (.. s onon o lns o T o s) n w s w ln w. In o wos qus sus lll ln sus. I n on o lll ln qus sus l s qulu ln sus ( lu s s o ln) w s w uno ln w. In s s l s no unon o oons u qulu n qus ln

23 5 Ps ons o ln w W non w o w o w n b w o Cons ollown ln w: wn s onsn n n D o sou on Rll ( F ) F F Tn [ ] bu Usn w n lso sow I n lso b sown (W) n ( ) n u: s R

24 5 L s ssu suons o w n bo n n n s Rlon bwn n o ln ws Fo w â s un o lon. W n sson o n b wn s w / η η / s u nns n n w n n [ Ω] η 77 s s nns n. / π l sson o n s o n b oun o b η -ls o L (l-n )

25 5 Fsnl Rlon & Tnssson Cons T s o Pnul Polon: T n s n ln Pln o nn s ln Inn ws K Rl ws K Tns ws K θ Anl o nn θ Rlon nl θ Tns nl θ θ θ θ θ As s l s o s o ( θ nul o ln o nn) o T (l l s nss o oon on) o σ olon w sn sn os θ θ w snθ n θ n osθ n osθ Tn No lso n n. ( snθ osθ ) n w n n snθ n sn θ n os Fo η ( snθ osθ ) w ( osθ snθ ) η θ

26 5 Fo Rl w w w n os sn θ θ sn n os sn θ θ T l n n [ ( sn os ) ] [ ] θ θ [ osθ θ sn ] [ ( snθ osθ ) ] [ ] η Tns n snθ n snθ osθ n osθ n snθ osθ No [ ] [ ] osθ θ sn snθ osθ η θ θ θ θ n n sn θ n sn θ n osθ.. n os [ ] [ ] θ θ θ W now l B.C. ln n qun nnl n o b onnuous (wo oo l) ( ) ( ) nnl nnl ( ) nnl ( ) nnl No nnl oonns lon n snθ snθ snθ snθ snθ snθ osθ osθ osθ η η η

27 54 T bo s s o 4 quons n 4 unnowns ( θ θ ). I n b u o quons n unnown. On s s on w θ θ snθ θ θ qul) snθ s s nll s Lw o Ron (.. nn & l nls on nll s Lw o Ron snθ snθ n snθ n snθ n snθ n snθ Ts ss nnl oonn o oon o oss n s onnuous. T us o wo nll s lw (bo) wll u ou s o 4 quons n 4 unnowns o quons n unnowns: () osθ ( ) osθ () η η () n () n b sol o η osθ η osθ η osθ η osθ η osθ η osθ η osθ θ θ θ Usn η / n ulln o n boo b w / osθ / osθ / osθ / osθ osθ osθ osθ osθ Rll osθ n osθ osθ osθ n osθ osθ osθ osθ osθ osθ

28 55 n () n sll () No () n () lon n nssson on (Fsnl l ons) o T o olon. Two In Pobl W ons T o nul olon. T Fsnl lon ons n n b wn s: A () A A D () A D C A (slb nss s ) () A C (4) D C (5) D C C w (6) n osθ A A C D A ( ) Us (5) n () n

29 56 () C A C () C A Usn () n A A C A C In sl nn (W) w n sow T () (q. - 55) w () T No u n s n n. Tn () n () n b wn s T Tn T n osθ T Fo sson o w s n T ;.. s no lon o slb. Ts s ll onon. Rll n n osθ n osθ osθ osθ η osθ η osθ W ns o T (nssson on) un onon.

30 57 No w n ( T T T ( ). Rll. n un onon ) w w n ls n. Ts ss un onon slb onl nss s on ln w. A nol nn θ θ n onon (no lon o slb) n b η osθ η osθ wll sl o η η. No un onon w / [ ] / s ll ou l. T w n w w w wll l s / Fnl Rs: ou soul su (sl su) os su s l n Bws nls.

Introduction to Inertial Dynamics

Introduction to Inertial Dynamics nouon o nl Dn Rz S Jon Hokn Unv Lu no on uon of oon of ul-jon oo o onl W n? A on of o fo ng on ul n oon of. ou n El: A ll of l off goun. fo ng on ll fo of gv: f-g g9.8 /. f o ll, n : f g / f g 9.8.9 El:

More information

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C

Appendix. In the absence of default risk, the benefit of the tax shield due to debt financing by the firm is 1 C E C nx. Dvon o h n wh In h sn o ul sk h n o h x shl u o nnng y h m s s h ol ouon s h num o ssus s h oo nom x s h sonl nom x n s h v x on quy whh s wgh vg o vn n l gns x s. In hs s h o sonl nom xs on h x shl

More information

Telecommunications BUILDING INTERCOM CALL BUTTON WITH 3/4"C AND PULL STRING TO ACCESSIBLE CEILING SPACE. MOUNT 48" AFF.

Telecommunications BUILDING INTERCOM CALL BUTTON WITH 3/4C AND PULL STRING TO ACCESSIBLE CEILING SPACE. MOUNT 48 AFF. 0 NOOY SYMO S N NOOY NOS: NO: his is a standard symbol list and not all items listed may be used. bbreviations () XSN OV NS OO NMW - UNOUN ONU OY ONO UNS ONO NS O ONO UNS OWN NS OX OX U OP SUON UN OO,

More information

SYMMETRICAL COMPONENTS

SYMMETRICAL COMPONENTS SYMMETRCA COMPONENTS Syl oponn llow ph un of volg n un o pl y h p ln yl oponn Con h ph ln oponn wh Engy Convon o 4 o o wh o, 4 o, 6 o Engy Convon SYMMETRCA COMPONENTS Dfn h opo wh o Th o of pho : pov ph

More information

Emigration The movement of individuals out of an area The population decreases

Emigration The movement of individuals out of an area The population decreases Nm Clss D C 5 Puls S 5 1 Hw Puls Gw (s 119 123) Ts s fs ss us sb ul. I ls sbs fs ff ul sz xls w xl w ls w. Css f Puls ( 119) 1. W fu m ss f ul?. G sbu. Gw b. Ds. A suu 2. W s ul s sbu? I s b b ul. 3. A

More information

Bayesian Estimation of the parameters of the Weibull-Weibull Length-Biased mixture distributions using time censored data

Bayesian Estimation of the parameters of the Weibull-Weibull Length-Biased mixture distributions using time censored data Bys Eso of h s of h Wull-Wull gh-bs xu suos usg so S. A. Sh N Bouss I.S.S. Co Uvsy I.N.P.S. Algs Uvsy shsh@yhoo.o ou005@yhoo.o As I hs h s of h Wull-Wull lgh s xu suos s usg h Gs slg hqu u y I sog sh.

More information

Analysis of Laser-Driven Particle Acceleration from Planar Transparent Boundaries *

Analysis of Laser-Driven Particle Acceleration from Planar Transparent Boundaries * SAC-PUB-8 Al 6 Anl of -Dn Pcl Acclon fo Pln Tnn Boun * T. Pln.. Gnon oo Snfo Un Snfo CA 945 Ac Th cl lo h ncon wn onochoc ln w l n lc lcon n h nc of hn lcc nn oun. I foun h h gn of h ncon wn h l n h lcon

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wv hnon hyscs 5c cur 4 Coupl Oscllors! H& con 4. Wh W D s T " u forc oscllon " olv h quon of oon wh frcon n foun h sy-s soluon " Oscllon bcos lr nr h rsonnc frquncy " hs chns fro 0 π/ π s h frquncy ncrss

More information

A Review of Dynamic Models Used in Simulation of Gear Transmissions

A Review of Dynamic Models Used in Simulation of Gear Transmissions ANALELE UNIVERSITĂłII ETIMIE MURGU REŞIłA ANUL XXI NR. ISSN 5-797 Zol-Ios Ko Io-ol Mulu A Rvw o ls Us Sulo o G Tsssos Th vsgo o lv s lu gg g olg l us o sov sg u o pps g svl s oug o h ps. Th pupos o h ols

More information

ELECTROMAGNETISM, NUCLEAR STRUCTURES & GRAVITATION

ELECTROMAGNETISM, NUCLEAR STRUCTURES & GRAVITATION . l & a s s Vo Flds o as l axwll a l sla () l Fld () l olasao () a Flx s () a Fld () a do () ad è s ( ). F wo Sala Flds s b dd l a s ( ) ad oool a s ( ) a oal o 4 qaos 3 aabls - w o Lal osas - oz abo Lal-Sd

More information

Convergence tests for the cluster DFT calculations

Convergence tests for the cluster DFT calculations Covgc ss o h clus DF clculos. Covgc wh spc o bss s. s clculos o bss s covgc hv b po usg h PBE ucol o 7 os gg h-b. A s o h Guss bss ss wh csg s usss hs b us clug h -G -G** - ++G(p). A l sc o. Å h c bw h

More information

9.4 Absorption and Dispersion

9.4 Absorption and Dispersion 9.4 Absoon and Dsson 9.4. loagn Wavs n Conduos un dnsy n a onduo ollowng Oh s law: J Th Maxwll s uaons n a onduo lna da should b: ρ B B B J To sly h suaon w agu ha h hag dsaas uly n a aoso od. Fo h onnuy

More information

6 C. Carbon-based materials. Graphene. Graphene applications. Ηλεκτρικές και οπτικές και ιδιότητες γραφενίου

6 C. Carbon-based materials. Graphene. Graphene applications. Ηλεκτρικές και οπτικές και ιδιότητες γραφενίου Unvs o Ionnn Dpmn o Mls Sn & nnn Compuonl Mls Sn Cbon-bs mls Ηλεκτρικές και οπτικές και ιδιότητες γραφενίου 6 C los Los Mls Sn & nnn, Unvs o Ionnn, G Gphn Gphn pplons on-om-h pln sh o sp -bon bon oms Pu

More information

An action with positive kinetic energy term for general relativity. T. Mei

An action with positive kinetic energy term for general relativity. T. Mei An ton wt post nt ny t fo n tty T (Dptnt of Jon Cnt Cn o Unsty Wn H PRO Pop s Rp of Cn E-: to@nn tow@pwn ) Astt: At fst w stt so sts n X: 7769 n tn sn post nt ny oont onton n y X: 7769 w psnt n ton wt

More information

Handout on. Crystal Symmetries and Energy Bands

Handout on. Crystal Symmetries and Energy Bands dou o Csl s d g Bds I hs lu ou wll l: Th loshp bw ss d g bds h bs of sp-ob ouplg Th loshp bw ss d g bds h ps of sp-ob ouplg C 7 pg 9 Fh Coll Uvs d g Bds gll hs oh Th sl pol ss ddo o h l slo s: Fo pl h

More information

NUCON NRNON CONRNC ON CURRN RN N CHNOOGY, 011 oo uul o w ul x ol volv y y oll. y ov,., - o lo ll vy ul o Mo l u v ul (G) v Gl vlu oll. u 3- [11]. 000

NUCON NRNON CONRNC ON CURRN RN N CHNOOGY, 011 oo uul o w ul x ol volv y y oll. y ov,., - o lo ll vy ul o Mo l u v ul (G) v Gl vlu oll. u 3- [11]. 000 NU O HMB NRM UNVRY, HNOOGY, C 8 0 81, 8 3-1 01 CMBR, 0 1 1 l oll oll ov ll lvly lu ul uu oll ul. w o lo u uol u z. ul l u oll ul. quk, oll, vl l, lk lo, - ul o u v (G) v Gl o oll. ul l u vlu oll ul uj

More information

SE1.1. vloh=`lrkqv=c^jfiv=`lroq. eb`hib=_isai=ol`h=efiii=p` vloh=`lrkqv SITE PLAN - SECURITY. dbkbo^i=klqbp

SE1.1. vloh=`lrkqv=c^jfiv=`lroq. eb`hib=_isai=ol`h=efiii=p` vloh=`lrkqv SITE PLAN - SECURITY. dbkbo^i=klqbp NL PNL, N & NY PU UN NLL & N NL PNL NLY N LK YP (N LL YL NLY U) 8" L-NL LK " L-NL LK N NUL NN LK L-NL LN V NN-NN NN UY NL N N NUNL L LK N LN / NN UY NL N N NUL LK -N U- (LL YL N NLY U). N N PLNY N QU Y

More information

PHY2053 Summer C 2013 Exam 1 Solutions

PHY2053 Summer C 2013 Exam 1 Solutions PHY053 Sue C 03 E Soluon. The foce G on o G G The onl cobnon h e '/ = doubln.. The peed of lh le 8fulon c 86,8 le 60 n 60n h 4h d 4d fonh.80 fulon/ fonh 3. The dnce eled fo he ene p,, 36 (75n h 45 The

More information

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees

5/1/2018. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees. Huffman Coding Trees /1/018 W usully no strns y ssnn -lnt os to ll rtrs n t lpt (or mpl, 8-t on n ASCII). Howvr, rnt rtrs our wt rnt rquns, w n sv mmory n ru trnsmttl tm y usn vrl-lnt non. T s to ssn sortr os to rtrs tt our

More information

LLOQ=UWQOW=^j @ LOW O LOO O U L U LO U O OOLL L L LOW U O O LO OUU O OOLL U O UO UO UX UXLY UL UOO Y Y U O OOLL O Y OUU O OOLL U L U U L U OU OO O W U O W ULY U U W LL W U W LL W ULY ULO K U L L L OOL

More information

The University of Sydney MATH 2009

The University of Sydney MATH 2009 T Unvrsty o Syny MATH 2009 APH THEOY Tutorl 7 Solutons 2004 1. Lt t sonnt plnr rp sown. Drw ts ul, n t ul o t ul ( ). Sow tt s sonnt plnr rp, tn s onnt. Du tt ( ) s not somorp to. ( ) A onnt rp s on n

More information

A simple 2-D interpolation model for analysis of nonlinear data

A simple 2-D interpolation model for analysis of nonlinear data Vol No - p://oog//n Nl Sn A mpl -D npolon mol o nl o nonln M Zmn Dpmn o Cvl Engnng Fl o nolog n Engnng Yo Unv Yo In; m@ml Rv M ; v Apl ; p M ABSRAC o mnon volm n wg o nonnom o n o po vlon o mnng n o ng

More information

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms

Exam 2 Solutions. Jonathan Turner 4/2/2012. CS 542 Advanced Data Structures and Algorithms CS 542 Avn Dt Stutu n Alotm Exm 2 Soluton Jontn Tun 4/2/202. (5 ont) Con n oton on t tton t tutu n w t n t 2 no. Wt t mllt num o no tt t tton t tutu oul ontn. Exln you nw. Sn n mut n you o u t n t, t n

More information

BEACH PLACE APARTMENTS 29th STREET AND ARCTIC AVENUE VIRGINIA BEACH, VIRGINIA

BEACH PLACE APARTMENTS 29th STREET AND ARCTIC AVENUE VIRGINIA BEACH, VIRGINIA S WNS N NO US, OP, O POU, N WO O P O NN W SO V WOU PSSON O NU SN SSOS NN NO O US O U ONSUON OON P P PNS th S N VNU VN, VN VNY P UON O UN YPS OO (UN ) Sheet ist 0.0 S 0. U VONS, SYOS, N NOS 0. O NOON 0.

More information

-Z ONGRE::IONAL ACTION ON FY 1987 SUPPLEMENTAL 1/1

-Z ONGRE::IONAL ACTION ON FY 1987 SUPPLEMENTAL 1/1 -Z-433 6 --OGRE::OA ATO O FY 987 SUPPEMETA / APPR)PRATO RfQUEST PAY AD PROGRAM(U) DE ARTMET OF DEES AS O' D 9J8,:A:SF ED DEFS! WA-H ODM U 7 / A 25 MRGOPf RESOUTO TEST HART / / AD-A 83 96 (~Go w - %A uj

More information

Stable Matching for Spectrum Market with Guaranteed Minimum Requirement

Stable Matching for Spectrum Market with Guaranteed Minimum Requirement Sl g Spum Gun mum Rqumn Yno n T S Ky Sw ngg ompu Sool Wun Uny nyno@wuun Yuxun Xong T S Ky Sw ngg ompu Sool Wun Uny xongyx@mlluun Qn Wng ompu Sool Wun Uny qnwng@wuun STRT Xoyn Y Sool mon Tlogy ow Uny X

More information

Why CEHCH? Completion of this program provides participants direct access to sit for the NAB HCBS exam.

Why CEHCH? Completion of this program provides participants direct access to sit for the NAB HCBS exam. Wy? T fus f s pns n us s p ssn pnns f w-bn & uny bs ss pg. Ts us s p n n ff s s bs p wn & uny bs ss pfssn. W uny n s f O s n n ns qu f sp u D, sussfu pn f s n us w nb yu ns n knwg bs. T O un f & sp n O

More information

Bespoke industrial units from 10,000 sq ft up to 1 million sq ft at the centre of advanced manufacturing in the UK

Bespoke industrial units from 10,000 sq ft up to 1 million sq ft at the centre of advanced manufacturing in the UK v Mufu 5/J M/J, b, 9Q Bk ul u f, q f u ll q f f v ufu K INFINIY K MS M fkb./ufu N IN Y If k, b l J f 5 l f w k uu K. I ju u v f M, J 5 u v f, J5., u, v l u Ml l 5 u w. K S MS IMN N MNFIN IN If k b uqu

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

CAVALIER SPA & SALON UPFIT

CAVALIER SPA & SALON UPFIT 7 9 0 7 V S & SO U 0 OY O, V, V U YS SSOS, S. V., SU 0 S V, O 77--7 : 77-- S 0// O OW O V OS. U o. 00 Sheet ist Sheet umber Sheet ame S WS O US, O, O OU, WO O O W SO V WOU SSO O U YS SSOS VY - S OO - S

More information

Chapter 14: Optical Parametric Oscillators

Chapter 14: Optical Parametric Oscillators Qunum Oc f Phnc n Olcnc hn n, Cnll Un Ch : Ocl Pmc Ocll. Inucn In h Ch w wll cu n cl mc cll. A mc cll lm lk l. Th ffnc h h cl n n h c cm n fm uln n mum u fm nnln cl mum whch h h cn h h 3 cl nnln. Cn n

More information

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity Fs s ν . Po Dfo ν Ps s - Do o - M os - o oos : o o w Uows o: - ss - - Ds W ows s o qos o so s os. w ows o fo s o oos s os of o os. W w o s s ss: - ss - - Ds - Ross o ows s s q s-s os s-sss os .. Do o ..

More information

Example: Two Stochastic Process u~u[0,1]

Example: Two Stochastic Process u~u[0,1] Co o Slo o Coco S Sh EE I Gholo h@h. ll Sochc Slo Dc Slo l h PLL c Mo o coco w h o c o Ic o Co B P o Go E A o o Po o Th h h o q o ol o oc o lco q ccc lco l Bc El: Uo Dbo Ucol Sl Ab bo col l G col G col

More information

Chapter 8: Propagating Quantum States of Radiation

Chapter 8: Propagating Quantum States of Radiation Quum Opcs f hcs Oplccs h R Cll Us Chp 8: p Quum Ss f R 8. lcmc Ms Wu I hs chp w wll cs pp quum ss f wus fs f spc. Cs h u shw lw f lcc wu. W ssum h h wu hs l lh qul h -c wll ssum l. Th lcc cs s fuc f l

More information

RAKE Receiver with Adaptive Interference Cancellers for a DS-CDMA System in Multipath Fading Channels

RAKE Receiver with Adaptive Interference Cancellers for a DS-CDMA System in Multipath Fading Channels AKE v wh Apv f Cs fo DS-CDMA Ss Muph Fg Chs JooHu Y Su M EEE JHog M EEE Shoo of E Egg Sou o Uvs Sh-og Gw-gu Sou 5-74 Ko E-: ohu@su As hs pp pv AKE v wh vs og s popos fo DS-CDMA ss uph fg hs h popos pv

More information

Pricing Arithmetic Average Reset Options With Control Variates

Pricing Arithmetic Average Reset Options With Control Variates cn Ac Av R Opon W Conol V U-LA LAO Aoc ofo of nnc pn of on n Bnkn onl Cnc Unv 64 C-nn R.c. p 6 wn l : 886--93939 85 : 886--93984 El A:lol@nccu.u.w COU-WE WA An ofo of nnc pn of nnc onl oun Unv of cnc n

More information

[Let's Do ToPolio What We Did To Tokyo

[Let's Do ToPolio What We Did To Tokyo [L D W W D k /%// / j } b w k w kk w b N b b k z w - k w k k b b b b b w k b k w S b b- K k D R w b k k kk k w w "b b z b bk b w wk w kk w w k b b b b q V /VSRN O R S R SON - H R VL 11 N 11 q HK NONL KONDON

More information

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e)

Improving Union. Implementation. Union-by-size Code. Union-by-Size Find Analysis. Path Compression! Improving Find find(e) POW CSE 36: Dt Struturs Top #10 T Dynm (Equvln) Duo: Unon-y-Sz & Pt Comprsson Wk!! Luk MDowll Summr Qurtr 003 M! ZING Wt s Goo Mz? Mz Construton lortm Gvn: ollton o rooms V Conntons twn t rooms (ntlly

More information

Rotations.

Rotations. oons j.lbb@phscs.o.c.uk To s summ Fmes of efeence Invnce une nsfomons oon of wve funcon: -funcons Eule s ngles Emple: e e - - Angul momenum s oon geneo Genec nslons n Noehe s heoem Fmes of efeence Conse

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

Caputo Equations in the frame of fractional operators with Mittag-Leffler kernels

Caputo Equations in the frame of fractional operators with Mittag-Leffler kernels nvenon Jounl o Reseh Tehnoloy n nneen & Mnemen JRTM SSN: 455-689 wwwjemom Volume ssue 0 ǁ Ooe 08 ǁ PP 9-45 Cuo uons n he me o onl oeos wh M-ele enels on Qn Chenmn Hou* Ynn Unvesy Jln Ynj 00 ASTRACT: n

More information

FIRST PART OF BOXER NAME FIRST PART OF BOXER NAME FIRST PART OF BOXER NAME FIRST PART OF BOXER NAME. Find the initial of your first name!

FIRST PART OF BOXER NAME FIRST PART OF BOXER NAME FIRST PART OF BOXER NAME FIRST PART OF BOXER NAME. Find the initial of your first name! M L L O P B O V D 1 0 1 4 1 8 W K # 4 O N H O H O D Y C N M 9 1 5/1 0 4 5 P P L D O N 1 5M N B nb /N m /N N m n o/ h p o n w h ou d ndp p hm f o hd P V C Wh Y oundb nb WHY ODO b n odu n ou f ndw om n d

More information

M A. L I O E T O W A R D N O N E A. N I D O H A R I T Y F O R A L L. " An Old Timor's DesorSptlon of HI* Camp Outfit. THE DEATH OF M R L A. R. WEEKS.

M A. L I O E T O W A R D N O N E A. N I D O H A R I T Y F O R A L L.  An Old Timor's DesorSptlon of HI* Camp Outfit. THE DEATH OF M R L A. R. WEEKS. J : UO XOW YOU ONY «00 V DVZ WOW R KO L O O W R D N O N N D O R Y O R L L VOL LOWLL KN OUNY NOVR 25 893 NO 22 W L L L K Y O WNR K 0? 0 LOR W Y K YUU U O LO L ND YL LOW R N D R O ND N L O O LL 0R8 D KOR

More information

Adrian Sfarti University of California, 387 Soda Hall, UC Berkeley, California, USA

Adrian Sfarti University of California, 387 Soda Hall, UC Berkeley, California, USA Innionl Jonl of Phoonis n Oil Thnolo Vol. 3 Iss. : 36-4 Jn 7 Rliisi Dnis n lonis in Unifol l n in Unifol Roin s-th Gnl ssions fo h loni 4-Vo Ponil in Sfi Unisi of Clifoni 387 So Hll UC Bkl Clifoni US s@ll.n

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy.

SAMPLE LITANY OF THE SAINTS E/G. Dadd9/F. Aadd9. cy. Christ, have. Lord, have mer cy. Christ, have A/E. Dadd9. Aadd9/C Bm E. 1. Ma ry and. mer cy. LTNY OF TH SNTS Cntrs Gnt flwng ( = c. 100) /G Ddd9/F ll Kybrd / hv Ddd9 hv hv Txt 1973, CL. ll rghts rsrvd. Usd wth prmssn. Musc: D. Bckr, b. 1953, 1987, D. Bckr. Publshd by OCP. ll rghts rsrvd. SMPL

More information

A011 REF LANDSCAPE / CIVIL FOR INFO DRAWING NOT FOR CONSTRUCTION ARCHITECTURAL SITE PLAN ARLINGTON PUBLIC SCHOOLS

A011 REF LANDSCAPE / CIVIL FOR INFO DRAWING NOT FOR CONSTRUCTION ARCHITECTURAL SITE PLAN ARLINGTON PUBLIC SCHOOLS S D S X JS K D L PUBL SLS LY SL # S S JS DDL SL South ld lebe d rlington, lient Project umber Y B LL J L.. 79 L D Project umber PD D hecked By " 9'- 9 " 9'" 9'- 9 " 9'" 9'" 9'- LDSP / L " 9'- 9 PJ (8.

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

MIL-DTL SERIES 2

MIL-DTL SERIES 2 o ll oo I--26482 I 2 I--26482 I 2 OI O 34 70 14 4 09 70 14 4 71 l, l o 74 l, u 75 lu, I ou 76 lu, luu, l oz luu, lol l luu, olv u ov lol l l l, v ll z 8, 10, 12, 14,, 18,, 22, o 24 I o lyou I--69 o y o

More information

Weighted Graphs. Weighted graphs may be either directed or undirected.

Weighted Graphs. Weighted graphs may be either directed or undirected. 1 In mny ppltons, o rp s n ssot numrl vlu, ll wt. Usully, t wts r nonntv ntrs. Wt rps my tr rt or unrt. T wt o n s otn rrr to s t "ost" o t. In ppltons, t wt my msur o t lnt o rout, t pty o ln, t nry rqur

More information

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity Fs s ν . Ioo ssfo of ss Ms 분체역학 G Ms 역학 Ms 열역학 o Ms 유체역학 F Ms o Ms 고체역학 o Ms 구조해석 ss Dfo of Ms o o w oo of os o of fos s s w o s s. Of fs o o of oo fos os o o o. s s o s of s os s o s o o of fos o. G fos

More information

I;;"" I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5" i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT

I;; I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5 i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT 5 ;; _L_ 7 9 8 A Ll(;O '{ L _ OFFCAL RETURNS GENERAL ELECTON RAmE 98 9 w ;; (k4(ap 'A ' lee S'T'lTE 5'C TU AS c ; _ l6l>'

More information

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

HYPERBOLIC ALTERNATING VIRTUAL LINK GROUPS

HYPERBOLIC ALTERNATING VIRTUAL LINK GROUPS HYPEROLIC ALERNAING VIRUAL LINK GROUPS JENS HARLANDER A. W y opoloy n omy of l lnk omplmn n op. W o op fn y Wn pnon of n pm n lnn l lnk CA(0) n ypol. MSC: 57M05, 57M50, 20F65, 20F67. Ky o: Alnn l kno,

More information

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = =

Let's revisit conditional probability, where the event M is expressed in terms of the random variable. P Ax x x = = L's rvs codol rol whr h v M s rssd rs o h rdo vrl. L { M } rrr v such h { M } Assu. { } { A M} { A { } } M < { } { } A u { } { } { A} { A} ( A) ( A) { A} A A { A } hs llows us o cosdr h cs wh M { } [ (

More information

',J -=*\? wh'? A*,a-- ilr u. 1,J ntor/uil,ll,{ ) uur/ui rlfi dl n xio $ u nr y? n. runhtdt/norn,1,,1,/, t lno',u rl,rl.

',J -=*\? wh'? A*,a-- ilr u. 1,J ntor/uil,ll,{ ) uur/ui rlfi dl n xio $ u nr y? n. runhtdt/norn,1,,1,/, t lno',u rl,rl. wh'? il u /offnimo.ffo uioalo -=*\? \,,1, o, /, o u,{u o l, uu l l* o, n f n unhd/non,1,,1,/, lno',u l,l., dl*l,,,1, uu/ui lfi dl n xio $ u n y? n ',J 1,J no/uil,ll,{ A*,a-- w. J* J $ f o f f o n 0" n

More information

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings. T H S PA G E D E CLA SSFED AW E O 2958 RS u blc Recod Key fo maon Ma n AR MATEREL COMM ND D cumen Type Call N u b e 03 V 7 Rcvd Rel 98 / 0 ndexe D 38 Eneed Dae RS l umbe 0 0 4 2 3 5 6 C D QC d Dac A cesson

More information

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall

Having a glimpse of some of the possibilities for solutions of linear systems, we move to methods of finding these solutions. The basic idea we shall Hvn lps o so o t posslts or solutons o lnr systs, w ov to tos o nn ts solutons. T s w sll us s to try to sply t syst y lntn so o t vrls n so ts qutons. Tus, w rr to t to s lnton. T prry oprton nvolv s

More information

Chapter 11: Matter-Photon Interactions and Cavity Quantum Electrodynamics

Chapter 11: Matter-Photon Interactions and Cavity Quantum Electrodynamics Quu Ocs f Phcs Olccs h Cll Usy Ch : M-Ph Ics Cy Quu lcycs. A S-Clsscl Ach Pcl-l Ics I hs Ch w wll s uu hy f h cs bw ch cls lcc fl. P hl f h u c lcs wll b cssy l ssbl hy. Yu h s Ch 5 h h ss wy uz s fs chs

More information

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee. B Pror NTERV FL/VAL ~RA1::1 1 21,, 1989 i n or Socil,, fir ll, Pror Fr rcru Sy Ar you lir SDC? Y, om um SM: corr n 'd m vry ummr yr. Now, y n y, f pr my ry for ummr my 1 yr Un So vr ummr cour d rr o l

More information

WOMAN Suffrage County Convention at Grand Rapids June 16tb. THB appcarance of the Tillage cemetery has been greatly improved this season.

WOMAN Suffrage County Convention at Grand Rapids June 16tb. THB appcarance of the Tillage cemetery has been greatly improved this season. LLL UNL G 2 U8 U 0 LU X LLL GN NY UN 3 84 NU 48 NK XLY 8 U KL LK LY 8L8 L L N U08 UNL j X UKL UL q : N N X L } $ L q G - 8 8 4 N LX q U U 0 L N -U j UXL 88 G U X KK N U N LL LL QULY G : XLULY N Y j - x

More information

Chapter 1 Fundamentals in Elasticity

Chapter 1 Fundamentals in Elasticity Fs s . Ioo ssfo of ss Ms 분체역학 G Ms 역학 Ms 열역학 o Ms 유체역학 F Ms o Ms 고체역학 o Ms 구조해석 ss Dfo of Ms o B o w oo of os o of fos s s w o s s. Of fs o o of oo fos os o o o. s s o s of s os s o s o o of fos o. G fos

More information

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i

CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A. Ήχος Πα. to os se e e na aș te e e slă ă ă vi i i i i CATAVASII LA NAȘTEREA DOMNULUI DUMNEZEU ȘI MÂNTUITORULUI NOSTRU, IISUS HRISTOS. CÂNTAREA I-A Ήχος α H ris to os s n ș t slă ă ă vi i i i i ți'l Hris to o os di in c ru u uri, în tâm pi i n ți i'l Hris

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

In which direction do compass needles always align? Why?

In which direction do compass needles always align? Why? AQA Trloy Unt 6.7 Mntsm n Eltromntsm - Hr 1 Complt t p ll: Mnt or s typ o or n t s stronst t t o t mnt. Tr r two typs o mnt pol: n. Wrt wt woul ppn twn t pols n o t mnt ntrtons low: Drw t mnt l lns on

More information

2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control.

2011 8th International Conference on Electrical Engineering, Computing Science and Automatic Control. 211 8 Il C Ell E Cpu S Au Cl Aly Cll I Al G Cl-Lp I Appl Pu DC S k u PD l R 1 F O 1 1 U Plé V Só ó A Nu Tlí S/N Pqu Cí y Tló TECNOTA K C V-S l E-l: @upux 87@l A Uully l ppl y l py ly x l l H l- lp uu u

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o:

ADORO TE DEVOTE (Godhead Here in Hiding) te, stus bat mas, la te. in so non mor Je nunc. la in. tis. ne, su a. tum. tas: tur: tas: or: ni, ne, o: R TE EVTE (dhd H Hdg) L / Mld Kbrd gú s v l m sl c m qu gs v nns V n P P rs l mul m d lud 7 súb Fí cón ví f f dó, cru gs,, j l f c r s m l qum t pr qud ct, us: ns,,,, cs, cut r l sns m / m fí hó sn sí

More information

EAST ELEVATION WEST ELEVATION NORTH ELEVATION ELEVATIONS SOUTH ELEVATION S301 CONSTRUCTION DOCUMENTS 7 M.P. A B C.8 D E

EAST ELEVATION WEST ELEVATION NORTH ELEVATION ELEVATIONS SOUTH ELEVATION S301 CONSTRUCTION DOCUMENTS 7 M.P. A B C.8 D E P W (YP) :: P :\evit Local\\L ublin _gregwilhelm@kordacomrvt ON N = ON OO ON Q N = ON OO ON L N = ON OO Q N = ON OO ON N ON L N = ON OO N = ON OO ON N = OY (" = ') ON N N = ON OO " " " ' ' ' ' ' ' LON

More information

THIS PAGE DECLASSIFIED IAW EO 12958

THIS PAGE DECLASSIFIED IAW EO 12958 L " ^ \ : / 4 a " G E G + : C 4 w i V T / J ` { } ( : f c : < J ; G L ( Y e < + a : v! { : [ y v : ; a G : : : S 4 ; l J / \ l " ` : 5 L " 7 F } ` " x l } l i > G < Y / : 7 7 \ a? / c = l L i L l / c f

More information

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri-

Ash Wednesday. First Introit thing. * Dómi- nos. di- di- nos, tú- ré- spi- Ps. ne. Dó- mi- Sál- vum. intra-vé-runt. Gló- ri- sh Wdsdy 7 gn mult- tú- st Frst Intrt thng X-áud m. ns ní- m-sr-cór- Ps. -qu Ptr - m- Sál- vum m * usqu 1 d fc á-rum sp- m-sr-t- ó- num Gló- r- Fí- l- Sp-rí- : quó-n- m ntr-vé-runt á- n-mm c * m- quó-n-

More information

Physics 120 Spring 2007 Exam #1 April 20, Name

Physics 120 Spring 2007 Exam #1 April 20, Name Phc 0 Spng 007 E # pl 0, 007 Ne P Mulple Choce / 0 Poble # / 0 Poble # / 0 Poble # / 0 ol / 00 In eepng wh he Unon College polc on cdec hone, ued h ou wll nehe ccep no pode unuhozed nce n he copleon o

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

333 Ravenswood Avenue

333 Ravenswood Avenue O AL i D wy Bl o S kw y y ph Rwoo S ho P ol D b y D Pk n i l Co Sn lo Aipo u i R D Wil low R h R M R O g n Ex py i A G z S S Mi lf O H n n iv Po D R A P g M ill y xpw CA Licn No 01856608 Ex p wy R 203

More information

Priority Search Trees - Part I

Priority Search Trees - Part I .S. 252 Pro. Rorto Taassa oputatoal otry S., 1992 1993 Ltur 9 at: ar 8, 1993 Sr: a Q ol aro Prorty Sar Trs - Part 1 trouto t last ltur, w loo at trval trs. or trval pot losur prols, ty us lar spa a optal

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

J = 1 J = 1 0 J J =1 J = Bout. Bin (1) Ey = 4E0 cos(kz (2) (2) (3) (4) (5) (3) cos(kz (1) ωt +pπ/2) (2) (6) (4) (3) iωt (3) (5) ωt = π E(1) E = [E e

J = 1 J = 1 0 J J =1 J = Bout. Bin (1) Ey = 4E0 cos(kz (2) (2) (3) (4) (5) (3) cos(kz (1) ωt +pπ/2) (2) (6) (4) (3) iωt (3) (5) ωt = π E(1) E = [E e ) ) Cov&o for rg h of olr&o for gog o&v r&o: - Look wv rog&g owr ou (look r&o). - F r wh o&o of fil vor. - I h CCWLHCP CWRHCP - u &l & hv oo g, h lr- fil vor r ou rgh- h orkrw for RHCP! 3) For h followg

More information

INF5820 MT 26 OCT 2012

INF5820 MT 26 OCT 2012 INF582 MT 26 OCT 22 H22 Jn Tor Lønnng l@.uo.no Tody Ssl hn rnslon: Th nosy hnnl odl Word-bsd IBM odl Trnng SMT xpl En o lgd n r d bygg..9 h.6 d.3.9 rgh.9 wh.4 buldng.45 oo.3 rd.25 srgh.7 by.3 onsruon.33

More information

Canonical Quantizing of Spinor Fields: Anti-Commutation Relations

Canonical Quantizing of Spinor Fields: Anti-Commutation Relations JOURNA ON POTONICS AND SPINTRONICS VO.5 NO. MAY 6 ISSN - 857 Prn ISSN - 858 Onln h://www.rrh.org/jornl/j/j.hml Cnonl Qnzng of Snor Fl: An-Common Rlon D. Grn PhD Unvr of Brln* Ar Nw mg of hr nor ro on h

More information

L...,,...lllM" l)-""" Si_...,...

L...,,...lllM l)- Si_...,... > 1 122005 14:8 S BF 0tt n FC DRE RE FOR C YER 2004 80?8 P01/ Rc t > uc s cttm tsus H D11) Rqc(tdk ;) wm1111t 4 (d m D m jud: US

More information

Neutrosophic Hyperideals of Semihyperrings

Neutrosophic Hyperideals of Semihyperrings Nuooph m Vol. 06 05 Uv o Nw Mo Nuooph Hpl o mhpg D Ml Dpm o Mhm j P Moh Collg Up Hooghl-758 mljumh@gml.om A. h pp w hv ou uooph hpl o mhpg o om opo o hm o u oo pop. Kwo: C Pou Compoo l o Nuooph mhpmg.

More information

Get Funky this Christmas Season with the Crew from Chunky Custard

Get Funky this Christmas Season with the Crew from Chunky Custard Hol Gd Chcllo Adld o Hdly Fdy d Sudy Nhs Novb Dcb 2010 7p 11.30p G Fuky hs Chss Sso wh h Cw fo Chuky Cusd Fdy Nhs $99pp Sudy Nhs $115pp Tck pc cluds: Full Chss d buff, 4.5 hou bv pck, o sop. Ts & Codos

More information

Acogemos, Señor, Tu Mensaje De Amor/ Embrace And Echo Your Word

Acogemos, Señor, Tu Mensaje De Amor/ Embrace And Echo Your Word 2 Pi Acogmos, Sñor, Tu Mnsj Amor/ Embrc And Echo r Word 1997 Los Angs Rigio Educon ongss dicd with dmiron r. E Rndr ESTROFAS/VERSES: Sopr/Bjo ontrl/ Tr.. Tn Tn Tn Tn Mn Mn Mn Mn INTRO: Upt Lt ( = c. 114)

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

SCALAR WAVE EQUATIONS draft 12 nov 2017

SCALAR WAVE EQUATIONS draft 12 nov 2017 SCLR WV QUTIONS ov 7 Ths hp s o su h us suls o h sl wv quo h s b o h o gl s o Mwll quos. I hols o h o h s opos o h lo-g (..) l b su o o h spl. Th suls ul o usg wv popgo sp oss s h so oos h osllo phoo spl.

More information

An energy and determinist approach of quantum mechanics

An energy and determinist approach of quantum mechanics A s quu s P VAUDON X Uvs Ls - F 5 T s Fs ss DIRA qu s sus Iu... 4 DIRA qu... 9 DIRA -ss... 6 ½... v DIRA qu... E DIRA qu s sus s s s... 7 E sus DIRA ss... 46 T wv- u... 55 T us DIRA ()... 59 P... 66 DE

More information

5) An experiment consists of rolling a red die and a green die and noting the result of each roll. Find the events:

5) An experiment consists of rolling a red die and a green die and noting the result of each roll. Find the events: 1) A telephone sales representative makes successive calls to potential customers, and the result of each call is recorded as a sale (S) or no sale (N). Calls are continued until either 2 successive sales

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information

Ch. 22: Classical Theory of Harmonic Crystal

Ch. 22: Classical Theory of Harmonic Crystal C. : Clssl Toy o mo Cysl gl o ml moo o o os l s ld o ls o pl ollowg:. Eqlbm Pops p o ls d Islos Eqlbm sy d Cos Egs Tml Epso d lg. Tspo Pops T pd o lo Tm Fl o Wdm-Fz Lw pody Tml Cody o Islos Tsmsso o od.

More information

The Natural Logarithmic Function: Integration. ix u = 9-x 2,du =-2xdx. ~dx= --~1(9-x~)- /~(-2x)dx ]..--~-g dx = lnx-5[ +C

The Natural Logarithmic Function: Integration. ix u = 9-x 2,du =-2xdx. ~dx= --~1(9-x~)- /~(-2x)dx ]..--~-g dx = lnx-5[ +C Section 5. The Natural Logarithmic Function: Integration 48 Section 5. The Natural Logarithmic Function: Integration. u = + l, du = d 4. u = - 5, du = d C i - 4 ----4ni +C X hl(4) + C. u = 9-,du =-d ~d=

More information

Trader Horn at Strand This Week

Trader Horn at Strand This Week - -N { 6 7 8 9 3 { 6 7 8 9 3 O OO O N U R Y Y 28 93 OU XXXX UO ONR ON N N Y OOR U RR NO N O 8 R Y R YR O O U- N O N N OR N RR R- 93 q 925 N 93; ( 928 ; 8 N x 5 z 25 x 2 R x q x 5 $ N x x? 7 x x 334 U 2

More information

On Fractional Operational Calculus pertaining to the product of H- functions

On Fractional Operational Calculus pertaining to the product of H- functions nenonl eh ounl of Enneen n ehnolo RE e-ssn: 2395-56 Volume: 2 ue: 3 une-25 wwwene -SSN: 2395-72 On Fonl Oeonl Clulu enn o he ou of - funon D VBL Chu, C A 2 Demen of hem, Unve of Rhn, u-3255, n E-ml : vl@hooom

More information

bounty Herald Times THURSDAY,- SEPTEMBER!7, 1925

bounty Herald Times THURSDAY,- SEPTEMBER!7, 1925 420 J 925 UU L 875 L 0 U «OJJ U U J OUU U ««J =» V ULU»» L U 4; J O O ] ; F < L < L V VV J 29 840 3 9 2 5 85 5 V U U»2 U U L L O OU F O OV O; X F O U «] ; U (JOVV q O ; < (» 4 V 50 26 U 7 925 UU OQ ; F

More information

am Switch Functions ode Table Function code llllljdd Positions & Rotation Angles " Internal circuit diagram h IIJ w z u T s y R Reversing Switch with.j-.-.6. Starter Stages and s arrangement " l II l A

More information

Exterior Building Renovations

Exterior Building Renovations xterior Building enovations Fifth treet Henderson, 0 Project : 0-0 ate: J, 0 OPL O L H F O O P L uite 00 outheast hird treet vansville, ndiana 0- :.. F:.. H POJ LOO HH VH OMMOWLH JFF J XH M V OH M FFH

More information

EQUATION SHEETS FOR ELEC

EQUATION SHEETS FOR ELEC QUTON SHTS FO C 47 Fbuay 7 QUTON SHTS FO C 47 Fbuay 7 hs hυ h ω ( J ) h.4 ω υ ( µ ) ( ) h h k π υ ε ( / s ) G Os (Us > x < a ) Sll s aw s s s Shal z z Shal buay (, aus ) z y y z z z Shal ls ( s sua, s

More information

Chapter 5 Transient Analysis

Chapter 5 Transient Analysis hpr 5 rs Alyss Jsug Jg ompl rspos rs rspos y-s rspos m os rs orr co orr Dffrl Equo. rs Alyss h ffrc of lyss of crcus wh rgy sorg lms (ucors or cpcors) & m-ryg sgls wh rss crcus s h h quos rsulg from r

More information