( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)"

Transcription

1 8 Conson o n & Ponn To Fo wll s quons w D B σ σ Fo bo n b sown (W) o s W w bo on o s l us n su su ul ow ns [W/ ] [W] su P su B W W s W A A s V A A : W W R o n o so n n: [/s W] W W 4 44

2 9 W : W F V R o n o so l n [/s W] σ σ Ps V V Ps Dss ow (o loss): W Ω Ω s P A V P Pow n olu nlos b su : W W n w Ponn quon P s ( ) ( ) ( ) W W Ps Psu Ts s Conson o n T on o nusol lon Fls In on u nsnnous l ( ) l ( ) l b ( ) R[ ( ) ] ( ) R ( ) [ ] R : Fls n lso b sb s n s I [ ] n ol sl R : os nnn boos (no ll) us nn o ss boos (no ll) us os R : W wll s o w osl ln ws n o w

3 W l o nn Ts s sl o u nlss o w σ s : B O n nl o l s l Ponn o o on ls n σ () σ () Fo () n () w (W) σ O s σ I n ol ( n ) n n s onbuon o ss ow us b o P σ. In o wos s ons s (ul n).

4 Ponn Vo Insnnous Ponn Vo s n s No: n ollowns I us s ls K o sn nsnnous ls.. n n ul ls o sn on ls.. onl sl nn W o w n s o on ls [ ] [ ] R R No : [ ] [ ] [ ] B A B A R R R [ ] R Now l s lul o T T n [ ] [ ] R R R R T T T T T T [ ] R Ws nsnnous Ponn o n s o -on ls s n b: [ ] [ ] [ ] R R R

5 A on o n nss Rll w n n n s W () ( ) Now l s lul o s qun.. W W () ( ) ( ) bu ( ) [ ( ) ] R n W () R[ ] R[ ] W * { ( ) ( )} 4 { R[ ] } 4 R[ ] 4 4 T s n b W W T T R[ ] 4 T. 4 4 ll W 4 Lon-Lon Dsson W ol oslln lon n nulus s ss n sn Ts lon osllo ol s on ll Lon ol. I s no ll ol o o s su bu w n o sons o ubon. A

6 wn Lon oul ol ws no nown nul ss ss s o o lons. T Lon ssuon ws n bsn o l l l nos o os n n s on bu wn l s l lons wll n Lon o n wll b sl o qulbu oson. n wo sln l s o nw o b w l s ull b ow s onl oson n w w o ol snus b n o ls o On l s l lon os bu w ssu nulus ns son s - - D n s son o Foo n nson on T s lso on wn ss: D Fon on F on D D T on (n) s sul o lon nn w o os lons l onl s bonl o o l. quon o oon: F F F on F oo F nl (l) o Q Q (ssun on ls) F (sn o oo o) oo Fon D (on o) n D Q D Q

7 4 L s n D & Q () Q o N s : lon ss s : s : s Q s son o ln non-oonous nl quon oluon o bo onss o wo s: oln ( ) n ul ( ) soluons Coln soluon w s nsn sons s soluon o Q oonous nl quon (.. on ) Coln soluon (nsn sons) s Pul soluon w s s s soluon s o ns o us. L us ssu -on soluons su s nl quon Q Q / w D / n / n subsu s n ou Cluln P & usbl Q / Q / Rll w I) Assu ols nl II) Assu no ouln bwn ols III) T N ols un olu. In o wos N s nub o ols un olu.

8 5 Polon () P s n b NQ P w Q s sso w ol [C]. NQ s nson o: C C Usn () QN P w () N Q P / W lul o N Q P / Rll P P χ χ χ N Q / W n N Q w s nson o: s Tn χ χ Co bo w son ( on) quon 7 Now suos N oluls un olu n olul s Z lon n lons olul bnn qun (sonn qun) n n onsn n N Q w Osllo sn n Z Rl n n s o ( ) n b

9 6 R I [ ] [ ] ( ) ( ) ( ) ( ) ( ) Rll sln o lons sub o o Q ws n b Q /. No sln o lons o qulbu s snusol w qun o sou I s no n (no on n ou nl ol).. D n Q / n () No s. T qun s ll sonn o ss. Ts ol s so sons No s no n ( ) n. I sonn qun s lso o ( s o s) n w s n o >. Wl bo onsons o no losss n s o s ( ) s n onuon losss sso w s. Rll susson o s onu n s on. Wn n s sn sonn qun s oo o s quon o oonous nl quon o l quns. Rsonn qun s n n b D n > (s o un) No: / w

10 7 W quon In ollown l quns nsnnous B () D σ s () Fo () w () Fo () w s σ (4) w A A A A n No A ( A) A A ( ) A. Lln s n o n Tn () n b wn s ( ) (5) uos u s nll oonous ( s nnn o ) n Us A Lw [q. ()] o n q. (5) W ( ) σ s O ( ) σ s Fo Guss Lw ll n W quon o l l: σ s (6)

11 8 W quon o n l: σ s σ () T on w quons: σ s σ s σ s Fo sou on w [s q. (5-ls )] σ s () () (4) I onu s lso o ( σ σ ) n s In s o on ls o sou bu loss u [q. (4)] w σ s ( ) σ s (6) [ ( σ s )] [ σ ] w σ σ σ σ s onu. s s Dn: ( ) σ w n snn l n n s o w Anuon onsn [N/] Ps onsn [/] Poon onsn [/] n [ σ ] Fo losslss s ( σ ) o q. (6) w 678 No ( ) σ o losslss s. Tn n n s o losslss u.

12 9 Tn w n o n W quon o sl oonns o [ ] w As n l -oonns o l l us ss ollown: ) ( ) ( ) ( ) ( ) ( ) ( T nl quons o o oonns o l sl oluons o W quon To n soluons o w ssu n us son o bls nqu o W n w so s ll onsn quon. oluons

13 4 A B ( ) C ( ) D sn( ) os A B C ( ) D sn( ) os A B C ( ) D sn( ) os ± ll ln w soluons sn ll snn w soluons os o T o soluon osn ns on obl n boun onon. Fo l o ws onn n - n -ons n ln lon - on w : [ C os( ) D sn( ) ] [ C os( ) D sn( ) ] w u A B s osl ln w n nn o ) s nl ln w (o To s s no ollown R[ ( ) ] [ C os( ) D sn( ) ] C os( ) D sn( ) A os Fo ou o o [ ]

14 4 L s lo os( ) o n s Insn To ollow on W us s Z Z n s w us A os( ) Z onsn w ( Z ) V Z Z onsn V s ll s lo oluon o W quon n ou F bu Loss u Rll w quon o loss u ws n b σ () [ ] w σ ( ) On n q. () ( ) ( ) ( ) ( ) n so o o n

15 4 On n w oos soluon o o () n us son o bls o sow W onsn quon Tn s n b D C B A D C B A D C B A sn os sn os sn os onnl unons sn nu ln ws n bol osn n sn sn nu snn ws Cos o sn o Rll w ±. W oul qull n ± n w ou os: w on soul w oos ls lon -s s lon -s ls lon --s s lon -s ls lon -s ows lon -s ls lon --s ows lon -s

16 4 Fo osl ln w (-s) n ss ( w no n o nl sou o n) w us w s s os u n. n o sn o osl ln w n ss s w ou o o nn o u Tln ws o os ln o n ln nn ws os sn ( ) o os o n ( ) o os o n nsn ws o os o n Anu ln ws o os ln o n ln Anu snn ws os os os sn ( ) ( ) ( ) sn( ) sn( ) o os n n ( ) sn( ) os( ) os( ) sn( ) o os n n No : os os ( ) os( ) os( ) os( ) sn( ) sn( ) ( ) os( ) sn( ) sn( ) W quon n Clnl Coons Pousl w sol w quon ss o losslss n sou on n nul oon uos boun onon ( ol onson) o obl qus us o sol w quon n lnl oons. ow o w o bou s?

17 44 In lnl oons Tn [ ] Bu n wl Tn ow o w sol o. In o wos w s? No ws obn b usn Usn bo n w (W quon n losslss sou on) W n s onsn In lnl oons n ψ ψ ψ ψ n T us o n n lnl oon n wll sul n l nl quons: â â â

18 45 w ψ ψ ψ ψ ψ w ψ ( ) o No nl quons o quons wl nl quon o n oul l nl s no oul T soluons o os usul n onsun T n T os (T n T w s o WRT -on) boun lu obls n wll b ons. Fo n sson o ψ ( ψ ) w ψ ψ ψ ψ ψ w () ψ ψ () L ψ ( ) ( ). ubsu () n () n w : ( ) ( ) ( ) ( ) ( ) D bo ss b n w : W ( ) s onsn (4) n w s onl unon o o o s (w unons o n ) us qul o onsn ( ) o ll lus o w us w s no onsn Tn q. (4) n b wn s

19 46 ( ) ( ) No n bo w s onl unon o o o s us qul o onsn ( ) n sl o ous s w s w L us lso n quon n lnl oons) s onsn usn onsn quon w s ( ) W ( ) ( ) n ( ) (onsn quon o w onsn. Abo s lssl Bssl Dnl quon. ( ) ( ) ( ) ( ) u T soluon o ψ ψ w ψ ( ) ( ) s n b sls soluons o ψ w n () () ( ) ( ) W onsn quon ()

20 47 oluons o nn w A ( ) B sn( ) o n b os C D Tln w oluon o nn w A B sn o n b os C D Tln w oluon o () () Tln w ( ) A ( ) B ( ) o nn w ( ) C ( ) D Y ( ) () () ( ) ( ) nl unon o s n nl unon o son n ( ) Bssl unon o s n Y ( ) Bssl unon o son n ± K () () T unons os L sn L Y l soluons. W on s us n n obl ns on obls n (ull boun onons). ll (Bssl D. q.) s n b As n l ons ll lnl wu. T soluon ns o u < s n b: ψ n [ C ( ) D Y ( )] [ A os B ( )] [ C D ] sn No ns u soluon n us b snn ws soluon n us b o n soluon n us b ln ws. Fuo sn Y s snul n D

21 48 ψ n ( )[ A os B ( )][ C D ] C sn T l ous o u ( > ) us b ln n bo n n b o n n () ψ ou ( ) B ( )[ A os B sn ][ C D ] () W ( ) s osl ln w No ollown lons o nl unons o s n son n. () () ( ) π π π 4 π π π 4

22 49 Fls os T Pln w n Uno ln ws Fl s oon o s- oons o s ul l onuon o n boun lu obl. n l onuons (os) ss wll quons (w quon). Ts usull o s os. In T o n on n s onsn n lol ln nnn o. Ts ln s ll qus Pln. In nl qus lns no lll wo n ons lon o o w Ps Fon o T w I qus lns lll (.. s onon o lns o T o s) n w s w ln w. In o wos qus sus lll ln sus. I n on o lll ln qus sus l s qulu ln sus ( lu s s o ln) w s w uno ln w. In s s l s no unon o oons u qulu n qus ln

23 5 Ps ons o ln w W non w o w o w n b w o Cons ollown ln w: wn s onsn n n D o sou on Rll ( F ) F F Tn [ ] bu Usn w n lso sow I n lso b sown (W) n ( ) n u: s R

24 5 L s ssu suons o w n bo n n n s Rlon bwn n o ln ws Fo w â s un o lon. W n sson o n b wn s w / η η / s u nns n n w n n [ Ω] η 77 s s nns n. / π l sson o n s o n b oun o b η -ls o L (l-n )

25 5 Fsnl Rlon & Tnssson Cons T s o Pnul Polon: T n s n ln Pln o nn s ln Inn ws K Rl ws K Tns ws K θ Anl o nn θ Rlon nl θ Tns nl θ θ θ θ θ As s l s o s o ( θ nul o ln o nn) o T (l l s nss o oon on) o σ olon w sn sn os θ θ w snθ n θ n osθ n osθ Tn No lso n n. ( snθ osθ ) n w n n snθ n sn θ n os Fo η ( snθ osθ ) w ( osθ snθ ) η θ

26 5 Fo Rl w w w n os sn θ θ sn n os sn θ θ T l n n [ ( sn os ) ] [ ] θ θ [ osθ θ sn ] [ ( snθ osθ ) ] [ ] η Tns n snθ n snθ osθ n osθ n snθ osθ No [ ] [ ] osθ θ sn snθ osθ η θ θ θ θ n n sn θ n sn θ n osθ.. n os [ ] [ ] θ θ θ W now l B.C. ln n qun nnl n o b onnuous (wo oo l) ( ) ( ) nnl nnl ( ) nnl ( ) nnl No nnl oonns lon n snθ snθ snθ snθ snθ snθ osθ osθ osθ η η η

27 54 T bo s s o 4 quons n 4 unnowns ( θ θ ). I n b u o quons n unnown. On s s on w θ θ snθ θ θ qul) snθ s s nll s Lw o Ron (.. nn & l nls on nll s Lw o Ron snθ snθ n snθ n snθ n snθ n snθ Ts ss nnl oonn o oon o oss n s onnuous. T us o wo nll s lw (bo) wll u ou s o 4 quons n 4 unnowns o quons n unnowns: () osθ ( ) osθ () η η () n () n b sol o η osθ η osθ η osθ η osθ η osθ η osθ η osθ θ θ θ Usn η / n ulln o n boo b w / osθ / osθ / osθ / osθ osθ osθ osθ osθ Rll osθ n osθ osθ osθ n osθ osθ osθ osθ osθ osθ

28 55 n () n sll () No () n () lon n nssson on (Fsnl l ons) o T o olon. Two In Pobl W ons T o nul olon. T Fsnl lon ons n n b wn s: A () A A D () A D C A (slb nss s ) () A C (4) D C (5) D C C w (6) n osθ A A C D A ( ) Us (5) n () n

29 56 () C A C () C A Usn () n A A C A C In sl nn (W) w n sow T () (q. - 55) w () T No u n s n n. Tn () n () n b wn s T Tn T n osθ T Fo sson o w s n T ;.. s no lon o slb. Ts s ll onon. Rll n n osθ n osθ osθ osθ η osθ η osθ W ns o T (nssson on) un onon.

30 57 No w n ( T T T ( ). Rll. n un onon ) w w n ls n. Ts ss un onon slb onl nss s on ln w. A nol nn θ θ n onon (no lon o slb) n b η osθ η osθ wll sl o η η. No un onon w / [ ] / s ll ou l. T w n w w w wll l s / Fnl Rs: ou soul su (sl su) os su s l n Bws nls.

Emigration The movement of individuals out of an area The population decreases

Emigration The movement of individuals out of an area The population decreases Nm Clss D C 5 Puls S 5 1 Hw Puls Gw (s 119 123) Ts s fs ss us sb ul. I ls sbs fs ff ul sz xls w xl w ls w. Css f Puls ( 119) 1. W fu m ss f ul?. G sbu. Gw b. Ds. A suu 2. W s ul s sbu? I s b b ul. 3. A

More information

SE1.1. vloh=`lrkqv=c^jfiv=`lroq. eb`hib=_isai=ol`h=efiii=p` vloh=`lrkqv SITE PLAN - SECURITY. dbkbo^i=klqbp

SE1.1. vloh=`lrkqv=c^jfiv=`lroq. eb`hib=_isai=ol`h=efiii=p` vloh=`lrkqv SITE PLAN - SECURITY. dbkbo^i=klqbp NL PNL, N & NY PU UN NLL & N NL PNL NLY N LK YP (N LL YL NLY U) 8" L-NL LK " L-NL LK N NUL NN LK L-NL LN V NN-NN NN UY NL N N NUNL L LK N LN / NN UY NL N N NUL LK -N U- (LL YL N NLY U). N N PLNY N QU Y

More information

PHY2053 Summer C 2013 Exam 1 Solutions

PHY2053 Summer C 2013 Exam 1 Solutions PHY053 Sue C 03 E Soluon. The foce G on o G G The onl cobnon h e '/ = doubln.. The peed of lh le 8fulon c 86,8 le 60 n 60n h 4h d 4d fonh.80 fulon/ fonh 3. The dnce eled fo he ene p,, 36 (75n h 45 The

More information

LLOQ=UWQOW=^j @ LOW O LOO O U L U LO U O OOLL L L LOW U O O LO OUU O OOLL U O UO UO UX UXLY UL UOO Y Y U O OOLL O Y OUU O OOLL U L U U L U OU OO O W U O W ULY U U W LL W U W LL W ULY ULO K U L L L OOL

More information

[Let's Do ToPolio What We Did To Tokyo

[Let's Do ToPolio What We Did To Tokyo [L D W W D k /%// / j } b w k w kk w b N b b k z w - k w k k b b b b b w k b k w S b b- K k D R w b k k kk k w w "b b z b bk b w wk w kk w w k b b b b q V /VSRN O R S R SON - H R VL 11 N 11 q HK NONL KONDON

More information

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017

COMP 250. Lecture 29. graph traversal. Nov. 15/16, 2017 COMP 250 Ltur 29 rp trvrsl Nov. 15/16, 2017 1 Toy Rursv rp trvrsl pt rst Non-rursv rp trvrsl pt rst rt rst 2 Hs up! Tr wr w mstks n t sls or S. 001 or toy s ltur. So you r ollown t ltur rorns n usn ts

More information

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano

Divided. diamonds. Mimic the look of facets in a bracelet that s deceptively deep RIGHT-ANGLE WEAVE. designed by Peggy Brinkman Matteliano RIGHT-ANGLE WEAVE Dv mons Mm t look o ts n rlt tt s ptvly p sn y Py Brnkmn Mttlno Dv your mons nto trnls o two or our olors. FCT-SCON0216_BNB66 2012 Klm Pulsn Co. Ts mtrl my not rprou n ny orm wtout prmsson

More information

I;;"" I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5" i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT

I;; I _ t. . - I...AJ_ ~I 11 \_-., I. LIfI.l..(!;O '{. ~- --~--- _.L...,.._ J 5 i. I! I \ 1/ \. L, :,_. RAmE ABSTRACT 5 ;; _L_ 7 9 8 A Ll(;O '{ L _ OFFCAL RETURNS GENERAL ELECTON RAmE 98 9 w ;; (k4(ap 'A ' lee S'T'lTE 5'C TU AS c ; _ l6l>'

More information

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling.

4.1 Interval Scheduling. Chapter 4. Greedy Algorithms. Interval Scheduling: Greedy Algorithms. Interval Scheduling. Interval scheduling. Cptr 4 4 Intrvl Suln Gry Alortms Sls y Kvn Wyn Copyrt 005 Prson-Ason Wsly All rts rsrv Intrvl Suln Intrvl Suln: Gry Alortms Intrvl suln! Jo strts t s n nss t! Two os omptl ty on't ovrlp! Gol: n mxmum sust

More information

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1

Spanning Trees. BFS, DFS spanning tree Minimum spanning tree. March 28, 2018 Cinda Heeren / Geoffrey Tien 1 Spnnn Trs BFS, DFS spnnn tr Mnmum spnnn tr Mr 28, 2018 Cn Hrn / Gory Tn 1 Dpt-rst sr Vsts vrts lon snl pt s r s t n o, n tn ktrks to t rst junton n rsums own notr pt Mr 28, 2018 Cn Hrn / Gory Tn 2 Dpt-rst

More information

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x. IIT JEE/AIEEE MATHS y SUHAAG SIR Bhopl, Ph. (755)3 www.kolsss.om Qusion. & Soluion. In. Cl. Pg: of 6 TOPIC = INTEGRAL CALCULUS Singl Corr Typ 3 3 3 Qu.. L f () = sin + sin + + sin + hn h primiiv of f()

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

L...,,...lllM" l)-""" Si_...,...

L...,,...lllM l)- Si_...,... > 1 122005 14:8 S BF 0tt n FC DRE RE FOR C YER 2004 80?8 P01/ Rc t > uc s cttm tsus H D11) Rqc(tdk ;) wm1111t 4 (d m D m jud: US

More information

Get Funky this Christmas Season with the Crew from Chunky Custard

Get Funky this Christmas Season with the Crew from Chunky Custard Hol Gd Chcllo Adld o Hdly Fdy d Sudy Nhs Novb Dcb 2010 7p 11.30p G Fuky hs Chss Sso wh h Cw fo Chuky Cusd Fdy Nhs $99pp Sudy Nhs $115pp Tck pc cluds: Full Chss d buff, 4.5 hou bv pck, o sop. Ts & Codos

More information

5) An experiment consists of rolling a red die and a green die and noting the result of each roll. Find the events:

5) An experiment consists of rolling a red die and a green die and noting the result of each roll. Find the events: 1) A telephone sales representative makes successive calls to potential customers, and the result of each call is recorded as a sale (S) or no sale (N). Calls are continued until either 2 successive sales

More information

Ch. 22: Classical Theory of Harmonic Crystal

Ch. 22: Classical Theory of Harmonic Crystal C. : Clssl Toy o mo Cysl gl o ml moo o o os l s ld o ls o pl ollowg:. Eqlbm Pops p o ls d Islos Eqlbm sy d Cos Egs Tml Epso d lg. Tspo Pops T pd o lo Tm Fl o Wdm-Fz Lw pody Tml Cody o Islos Tsmsso o od.

More information

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009

SOUTHWESTERN ELECTRIC POWER COMPANY SCHEDULE H-6.1b NUCLEAR UNIT OUTAGE DATA. For the Test Year Ended March 31, 2009 Schedule H-6.lb SOUTHWSTRN LCTRIC POWR COMPANY SCHDUL H-6.1b NUCLAR UNIT OUTAG DATA For the Test Year nded March 31, 29 This schedule is not applicable to SVvPCO. 5 Schedule H-6.1 c SOUTHWSTRN LCTRIC POWR

More information

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction

Face Detection and Recognition. Linear Algebra and Face Recognition. Face Recognition. Face Recognition. Dimension reduction F Dtto Roto Lr Alr F Roto C Y I Ursty O solto: tto o l trs s s ys os ot. Dlt to t to ltpl ws. F Roto Aotr ppro: ort y rry s tor o so E.. 56 56 > pot 6556- stol sp A st o s t ps to ollto o pots ts sp. F

More information

On Fractional Operational Calculus pertaining to the product of H- functions

On Fractional Operational Calculus pertaining to the product of H- functions nenonl eh ounl of Enneen n ehnolo RE e-ssn: 2395-56 Volume: 2 ue: 3 une-25 wwwene -SSN: 2395-72 On Fonl Oeonl Clulu enn o he ou of - funon D VBL Chu, C A 2 Demen of hem, Unve of Rhn, u-3255, n E-ml : vl@hooom

More information

Lecture 20: Minimum Spanning Trees (CLRS 23)

Lecture 20: Minimum Spanning Trees (CLRS 23) Ltur 0: Mnmum Spnnn Trs (CLRS 3) Jun, 00 Grps Lst tm w n (wt) rps (unrt/rt) n ntrou s rp voulry (vrtx,, r, pt, onnt omponnts,... ) W lso suss jny lst n jny mtrx rprsntton W wll us jny lst rprsntton unlss

More information

Fluctuation-Electromagnetic Interaction of Rotating Neutral Particle with the Surface: Relativistic Theory

Fluctuation-Electromagnetic Interaction of Rotating Neutral Particle with the Surface: Relativistic Theory Fluuaon-lroagn Inraon of Roang Nural Parl w Surfa: Rlavs or A.A. Kasov an G.V. Dov as on fluuaon-lroagn or w av alula rar for of araon fronal on an ang ra of a nural parl roang nar a polarabl surfa. parl

More information

(Minimum) Spanning Trees

(Minimum) Spanning Trees (Mnmum) Spnnn Trs Spnnn trs Kruskl's lortm Novmr 23, 2017 Cn Hrn / Gory Tn 1 Spnnn trs Gvn G = V, E, spnnn tr o G s onnt surp o G wt xtly V 1 s mnml sust o s tt onnts ll t vrts o G G = Spnnn trs Novmr

More information

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE

L.3922 M.C. L.3922 M.C. L.2996 M.C. L.3909 M.C. L.5632 M.C. L M.C. L.5632 M.C. L M.C. DRIVE STAR NORTH STAR NORTH NORTH DRIVE N URY T NORTON PROV N RRONOUS NORTON NVRTNTY PROV. SPY S NY TY OR UT T TY RY OS NOT URNT T S TT T NORTON PROV S ORRT, NSR S POSS, VRY ORT S N ON N T S T TY RY. TS NORTON S N OP RO RORS RT SU "" YW No.

More information

Existing Conditions. View from Ice Rink Patio. Ice Rink Patio. Beginner Terrain and Lighting. Tubing Hill. Little Tow & Beginner Terrain

Existing Conditions. View from Ice Rink Patio. Ice Rink Patio. Beginner Terrain and Lighting. Tubing Hill. Little Tow & Beginner Terrain Bg T Lghg Tubg Hll Ic k P T f Bg T V f Sc Accss Nh Ll T & Bg T I Ex T Mc Bulg B f Bg T Pkg L & g Wll V f Ic k P MA S TE Bs A & Lghg Z E H E N AN ASSOCIATES, INC. ACHITECTUE PLANNING INTEIOS LANSCAPE ACHITECTUE

More information

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce

LA PRISE DE CALAIS. çoys, çoys, har - dis. çoys, dis. tons, mantz, tons, Gas. c est. à ce. C est à ce. coup, c est à ce > ƒ? @ Z [ \ _ ' µ `. l 1 2 3 z Æ Ñ 6 = Ð l sl (~131 1606) rn % & +, l r s s, r 7 nr ss r r s s s, r s, r! " # $ s s ( ) r * s, / 0 s, r 4 r r 9;: < 10 r mnz, rz, r ns, 1 s ; j;k ns, q r s { } ~ l r mnz,

More information

Chapter 4 Circular and Curvilinear Motions

Chapter 4 Circular and Curvilinear Motions Chp 4 Cicul n Cuilin Moions H w consi picls moing no long sigh lin h cuilin moion. W fis su h cicul moion, spcil cs of cuilin moion. Anoh mpl w h l sui li is h pojcil..1 Cicul Moion Unifom Cicul Moion

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

d e c b a d c b a d e c b a a c a d c c e b

d e c b a d c b a d e c b a a c a d c c e b FLAT PEYOTE STITCH Bin y mkin stoppr -- sw trou n pull it lon t tr until it is out 6 rom t n. Sw trou t in witout splittin t tr. You soul l to sli it up n own t tr ut it will sty in pl wn lt lon. Evn-Count

More information

Derivation of the differential equation of motion

Derivation of the differential equation of motion Divion of h iffnil quion of oion Fis h noions fin h will us fo h ivion of h iffnil quion of oion. Rollo is hough o -insionl isk. xnl ius of h ll isnc cn of ll (O) - IDU s cn of gviy (M) θ ngl of inclinion

More information

elnpol^l SSJU (tl = N) gnot

elnpol^l SSJU (tl = N) gnot ZZ'Uap 66-' S fbul - alnph lluuur!^u SSf, psnu '6 ajns ' l/mu) l,u l fuan 's 'b rll ' p9 'z p6 ua ' "'s pr.u6lu rna u! 6url6ll l4s a11 ap]sap na plnm'6lu l bulm ll psnu aln5 11r1/vu) l,u lusl ll l p usal

More information

Three Phase Asymmetrical Load Flow for Four-Wire Distribution Networks

Three Phase Asymmetrical Load Flow for Four-Wire Distribution Networks T Aytl Lo Flow o Fou-W Dtuto Ntwo M. Mo *, A. M. Dy. M. A Dtt o Eltl E, A Uvty o Toloy Hz Av., T 59, I * El: o8@yoo.o Att-- Mjoty o tuto two ul u to ul lo, yty to l two l ut. T tt o tuto yt ult y o ovt

More information

Chapter 5: Quantization of Radiation in Cavities and Free Space

Chapter 5: Quantization of Radiation in Cavities and Free Space Quu O f Ph Ol Fh R Cll vy Ch 5: Quz f R Cv F S 5 Cll ly 5 Cll Cvy ly Mxwll u f lg J 4 h lv l C fl vy W f h g f h vy Th vy u luly ll W l u h J Cvy F Mxwll u v h wv u Th v u lv h f h fu h vy I w wh h v l

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

SOUTH. Bus Map. From 25 October travelsouthyorkshire.com/sbp

SOUTH. Bus Map. From 25 October travelsouthyorkshire.com/sbp SOUT SFFIL u Mp F Ocb 1 N Sff p vb f Tv Su Y If Sff vuc/sp Sff u Pp - v Sff Sff u Pp cu w pv u w: u p bu w b vu c f u-p v Fqu vc ub f u Fw u c bu w w f cc v w cv f? 3 f-p p Sff bu Ipv cu fc b up % 0,000

More information

Determination of slot leakage inductance for three-phase induction motor winding using an analytical method

Determination of slot leakage inductance for three-phase induction motor winding using an analytical method ACHIVES OF EECTICA EGIEEIG VO 6 pp 569-59 DOI 78/--6 Dtnton of ot ntn fo t-p nton oto wnn n n nt to JA STASZAK Dptnt of Et Mn n Mton St K Unvt of Tnoo Tą PP 7 K Pon -: j@tp v: v: 5 Att: T t nto o pon fo

More information

A H C H. for the homeless WRIGHT AND HAMMER FIRST STREET CAMPUS EXPANSION 1220 FIRST STREET, NW ALBUQUERQUE, NEW MEXICO. CITY OF ALBUQUERQUE - estamp

A H C H. for the homeless WRIGHT AND HAMMER FIRST STREET CAMPUS EXPANSION 1220 FIRST STREET, NW ALBUQUERQUE, NEW MEXICO. CITY OF ALBUQUERQUE - estamp W N MM 1 7 3 5 L O V, N.. L B U Q U Q U, N. M. CY LBUQUQU - emp W N MM C CONC NFOMON: N MM, POJ C 1735 LO V, N LBUQUQU, NM 87110 enise@wrightandammer.com C 1 2 2 0 F, N W JM L. W M X CO M CONULN OUP BY

More information

ieski. a n d H. A. Lange.

ieski. a n d H. A. Lange. G 34 D 0 D 90 : 5S D Vz S D NEWS W Vz z F D < - ;»( S S C S W C - z z! L D F F V Q4 R U O G P O N G-34 q O G

More information

GEORGE F. JOWETT. HOLDER -of NUMEROUS DIPLOMAS and GOLD. MEDALS for ACTUAL MERIT

GEORGE F. JOWETT. HOLDER -of NUMEROUS DIPLOMAS and GOLD. MEDALS for ACTUAL MERIT GEORGE F OWE ANADAS SRONGES AHLEE HOLDER of NUMEROUS DPLOMAS nd GOLD MEDALS for AUAL MER AUHOR LEURER AND REOGNZED AUHORY ON PHYSAL EDUAON NKERMAN ONARO ANADA P : 6 23 D:::r P ul lv:; j"3: t your ltr t:

More information

Simultaneous equation models with spatially autocorrelated error components

Simultaneous equation models with spatially autocorrelated error components MPRA Munich Personal RePEc Archive Simultaneous equation models with spatially autocorrelated error components Claude Marius AMBA OYON and Taoufiki Mbratana University of Yaounde II, University of Yaounde

More information

UNIVERSITY OF SWAZILAND MAIN EXAMINATION PAPER 2015 PROBABILITY AND STATISTICS ANSWER ANY FIVE QUESTIONS.

UNIVERSITY OF SWAZILAND MAIN EXAMINATION PAPER 2015 PROBABILITY AND STATISTICS ANSWER ANY FIVE QUESTIONS. UNIVERSITY OF SWAZILAND MAIN EXAMINATION PAPER 2015 TITLE OF PAPER PROBABILITY AND STATISTICS COURSE CODE EE301 TIME ALLOWED 3 HOURS INSTRUCTIONS ANSWER ANY FIVE QUESTIONS. REQUIREMENTS SCIENTIFIC CALCULATOR

More information

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf Objecie F s w Tnsfome Moionl To be ble o fin nsfome. moionl nsfome n moionl. 331 1 331 Mwell s quion: ic Fiel D: Guss lw :KV : Guss lw H: Ampee s w Poin Fom Inegl Fom D D Q sufce loop H sufce H I enclose

More information

Tangram Fractions Overview: Students will analyze standard and nonstandard

Tangram Fractions Overview: Students will analyze standard and nonstandard ACTIVITY 1 Mtrils: Stunt opis o tnrm mstrs trnsprnis o tnrm mstrs sissors PROCEDURE Skills: Dsriin n nmin polyons Stuyin onrun Comprin rtions Tnrm Frtions Ovrviw: Stunts will nlyz stnr n nonstnr tnrms

More information

NO-Sl~l 966 RN INTERPRETiTION OF THE 02 AMGR ELECTRON SPECTRUNl(U) 1/1

NO-Sl~l 966 RN INTERPRETiTION OF THE 02 AMGR ELECTRON SPECTRUNl(U) 1/1 NOSl~l 966 RN INTERPRETiTION OF THE 02 AMGR ELETRON SPETRUNl(U) 1/1 MRSHINGTON UNIV MRSHINOTON D DEPT OF HEMISTRY UNSSIIEDH SANDE ET AL. OT 95 TR2S NSSSI4BSK9852 FO74 N 1 tgeorge UASIIE G? N L L. Q.. 1111111

More information

MICHIGAN, Many Changes Taken Place Since 1844 The pleasant home of Mr. ami. A picnic dinner and program West Main street on trunk line

MICHIGAN, Many Changes Taken Place Since 1844 The pleasant home of Mr. ami. A picnic dinner and program West Main street on trunk line BLUB AK NOB A + $ VOLU XXXV LOLL Y A BANK L AD DA ON LABL A GAN ) O L O U D A Y A U G U 2 2 929 N O 3 G 844 O A 8 K N B $2500000 ; - - 2500000 B - G A L 2500000 D z A A U - - B- 2 O 600000 - - q A - B

More information

F102 1/4 AMP +240 VDC SEE FIGURE 5-14 FILAMENT AND OVEN CKTS BLU J811 BREAK-IN TB103 TO S103 TRANSMITTER ASSOCIATED CAL OFF FUNCTION NOTE 2 STANDBY

F102 1/4 AMP +240 VDC SEE FIGURE 5-14 FILAMENT AND OVEN CKTS BLU J811 BREAK-IN TB103 TO S103 TRANSMITTER ASSOCIATED CAL OFF FUNCTION NOTE 2 STANDBY OWR OR F0 M NOT S0 RT OF FUNTI FL0 T0 OWR SULY SUSSIS T0 T0 WIR FOR 0 V OWR SULY SUSSIS T0 WIR FOR V 0 0 RT V0 RT V0. V RT V0 RT V0 NOT. V. V NOT +0 V 0 +0 V. V 0 FUNTI NOT L +0 V S FIUR - FILMNT N OVN

More information

Physics 15 Second Hour Exam

Physics 15 Second Hour Exam hc 5 Second Hou e nwe e Mulle hoce / ole / ole /6 ole / ------------------------------- ol / I ee eone ole lee how ll wo n ode o ecee l ced. I ou oluon e llegle no ced wll e gen.. onde he collon o wo 7.

More information

Housing Market Monitor

Housing Market Monitor M O O D Y È S A N A L Y T I C S H o u s i n g M a r k e t M o n i t o r I N C O R P O R A T I N G D A T A A S O F N O V E M B E R İ Ī Ĭ Ĭ E x e c u t i v e S u m m a r y E x e c u t i v e S u m m a r y

More information

'NOTAS"CRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak

'NOTASCRITICAS PARA UNA TEDRIA DE M BUROCRACIA ESTATAL * Oscar Oszlak OVí "^Ox^ OqAÍ"^ Dcument SD-11 \ 'NOTAS"CRTCAS PARA UNA TEDRA DE M BUROCRACA ESTATAL * Oscr Oszlk * El presente dcument que se reprduce pr us exclusv de ls prtcpntes de curss de Prrms de Cpctcón, se h

More information

Integrated Optical Waveguides

Integrated Optical Waveguides Su Opls Faha Raa Cll Uvs Chap 8 Ia Opal Wavus 7 Dl Slab Wavus 7 Iu: A va f ff a pal wavus a us f a u lh a hp Th s bas pal wavu s a slab wavus shw blw Th suu s uf h - Lh s u s h b al al fl a h -la fas Cla

More information

Spectra and E2 Transition Strengths for N=Z EvenEven Nuclei in IBM-3 Dynamical Symmetry Limits with Good s and d Boson Isospins

Spectra and E2 Transition Strengths for N=Z EvenEven Nuclei in IBM-3 Dynamical Symmetry Limits with Good s and d Boson Isospins Annals of Physics 265, 101133 (1998) Article No. PH975766 Spectra and E2 Transition Strengths for N=Z EvenEven Nuclei in IBM-3 Dynamical Symmetry Limits with Good s and d Boson Isospins V. K. B. Kota Physical

More information

LIVESTOCK & AGRICULTURE

LIVESTOCK & AGRICULTURE LIVSTOK & AGRIULTUR GRAD 4 SIN GO WITH TH FLOW: PRODURS & ONSUMRS AT TH FAIR LIVSTOK & TAHR G F SIN AGRIULTUR G W Flw P & F I l wll: **U wl y F. **Iy w. ** wb y v F. y y l v Hv y w w v w l y w y y Dv y?

More information

Physics 201 Lecture 4

Physics 201 Lecture 4 Phscs 1 Lectue 4 ltoda: hapte 3 Lectue 4 v Intoduce scalas and vectos v Peom basc vecto aleba (addton and subtacton) v Inteconvet between atesan & Pola coodnates Stat n nteestn 1D moton poblem: ace 9.8

More information

Self-Adjusting Top Trees

Self-Adjusting Top Trees Th Polm Sl-jsting Top Ts ynmi ts: ol: mintin n n-tx ost tht hngs o tim. link(,w): ts n g twn tis n w. t(,w): lts g (,w). pplition-spii t ssoit with gs n/o tis. ont xmpls: in minimm-wight g in th pth twn

More information

I if +5sssi$ E sr. Egglg[[l[aggegr glieiffi*gi I I a. gl$[fli$ilg1li3fi[ Ell F rss. F$EArgi. SEgh*rqr. H uf$:xdx. FsfileE

I if +5sssi$ E sr. Egglg[[l[aggegr glieiffi*gi I I a. gl$[fli$ilg1li3fi[ Ell F rss. F$EArgi. SEgh*rqr. H uf$:xdx. FsfileE (tl Sh*q +sss$!! ll ss s ;s$ll s ; B 3 $ Sest -9[*; s$t 1,1 - e^ -" H u$xdx fd $A sfle *9,9* '. s. \^ >X!l P s H 2.ue ^ O - HS 1- -l ( l[[l[e lff* l$[fl$l1l3f[ U, -.1 $tse;es s TD T' ' t B $*l$ \l - 1

More information

ON THE DIFFERENTIAL EQUATIONS OF HILL IN THE THEORY OF THE MOTION OF THE MOON (II)

ON THE DIFFERENTIAL EQUATIONS OF HILL IN THE THEORY OF THE MOTION OF THE MOON (II) ON THE DIFFERENTIAL EQUATIONS OF HILL IN THE THEORY OF THE MOTION OF THE MOON (II) BY J. F. STEFFENSEN in Copenhagen i. In a former paper with the same title 1 (quoted below as "I") polar coordinates r

More information

Introduction. Voice Coil Motors. Introduction - Voice Coil Velocimeter Electromechanical Systems. F = Bli

Introduction. Voice Coil Motors. Introduction - Voice Coil Velocimeter Electromechanical Systems. F = Bli UNIVERSITY O TECHNOLOGY, SYDNEY ACULTY O ENGINEERING 4853 Elecroechncl Syses Voce Col Moors Topcs o cover:.. Mnec Crcus 3. EM n Voce Col 4. orce n Torque 5. Mhecl Moel 6. Perornce Voce cols re wely use

More information

IMPROVEMENT OF AN APPROXIMATE SET OF LATENT ROOTS AND MODAL COLUMNS OF A MATRIX BY METHODS AKIN TO THOSE OF CLASSICAL PERTURBATION THEORY

IMPROVEMENT OF AN APPROXIMATE SET OF LATENT ROOTS AND MODAL COLUMNS OF A MATRIX BY METHODS AKIN TO THOSE OF CLASSICAL PERTURBATION THEORY IMPROVEMENT OF AN APPROXIMATE SET OF LATENT ROOTS AND MODAL COLUMNS OF A MATRIX BY METHODS AKIN TO THOSE OF CLASSICAL PERTURBATION THEORY By H. A. JAHN {University of Birmingham) [Received 7 October 947]

More information

French Scheme of Work 2 Year Cycle for Mixed Age Classes Years 5 & 6 Year A - 35 lessons x 45 minutes Year B - 35 lessons x 45 minutes

French Scheme of Work 2 Year Cycle for Mixed Age Classes Years 5 & 6 Year A - 35 lessons x 45 minutes Year B - 35 lessons x 45 minutes Frnh Shm f Wr 2 Yr Cl fr Mid A Cl Yr 5 & 6 Yr A - 35 ln 45 mut Yr B - 35 ln 45 mut YEAR A Prt 1 D hp b - 5 ln Prt 1 D nu trrdir 8 ln Lnu Cntnt Knwld but Lnu Lnu Cntnt Knwld but Lnu Vbulr Indfit rt Vbulr

More information

Erlkönig. t t.! t t. t t t tj "tt. tj t tj ttt!t t. e t Jt e t t t e t Jt

Erlkönig. t t.! t t. t t t tj tt. tj t tj ttt!t t. e t Jt e t t t e t Jt Gsng Po 1 Agio " " lkö (Compl by Rhol Bckr, s Moifi by Mrk S. Zimmr)!! J "! J # " c c " Luwig vn Bhovn WoO 131 (177) I Wr Who!! " J J! 5 ri ris hro' h spä h, I urch J J Nch rk un W Es n wil A J J is f

More information

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25

Modeling and Predicting Sequences: HMM and (may be) CRF. Amr Ahmed Feb 25 Modelg d redcg Sequeces: HMM d m be CRF Amr Ahmed 070 Feb 25 Bg cure redcg Sgle Lbel Ipu : A se of feures: - Bg of words docume - Oupu : Clss lbel - Topc of he docume - redcg Sequece of Lbels Noo Noe:

More information

COMP 465: Data Mining More on PageRank

COMP 465: Data Mining More on PageRank COMP 465: Dt Mnng Moe on PgeRnk Sldes Adpted Fo: www.ds.og (Mnng Mssve Dtsets) Powe Iteton: Set = 1/ 1: = 2: = Goto 1 Exple: d 1/3 1/3 5/12 9/24 6/15 = 1/3 3/6 1/3 11/24 6/15 1/3 1/6 3/12 1/6 3/15 Iteton

More information

SHELL CANADA PIPING AND INSTRUMENT DIAGRAM QUEST CCS PROJECT LEGENDS AND SYMBOLS QUEST CCS PROJECT UNIT COMMON "!!

SHELL CANADA PIPING AND INSTRUMENT DIAGRAM QUEST CCS PROJECT LEGENDS AND SYMBOLS QUEST CCS PROJECT UNIT COMMON !! .. 2 S 222... 2. SSU TON Y K PS S M P PM T S N QUST S POJT. S NON N N NSTUMNT M QUST S POJT S W NO.. 2... NT M T \\\2\WNS\UTTS\2\2..pid MO T22 PM Yahm 2. UNT 2 OMMON NS N SYMOS .. SSU T 2 2 2. TON Y K

More information

Development of a Dynamic Model of a Small High-Speed Autonomous Underwater Vehicle

Development of a Dynamic Model of a Small High-Speed Autonomous Underwater Vehicle lp i Ml Sll Hi-Sp Uw Vil Hi N., il J. Silwll Bl p Elil p Eii Viii Pli Ii S Uii Bl, V 1 Eil: {, ilwll }@. P : i p, Wii, KS 777 W L. N p p O Eii Viii Pli Ii S Uii Bl, V 1 Eil: @. i l i lp ll, ip w il. il

More information

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

More information

GMm. 10a-0. Satellite Motion. GMm U (r) - U (r ) how high does it go? Escape velocity. Kepler s 2nd Law ::= Areas Angular Mom. Conservation!!!!

GMm. 10a-0. Satellite Motion. GMm U (r) - U (r ) how high does it go? Escape velocity. Kepler s 2nd Law ::= Areas Angular Mom. Conservation!!!! F Satllt Moton 10a-0 U () - U ( ) 0 f ow g dos t go? scap locty Kpl s nd Law ::= Aas Angula Mo. Consaton!!!! Nwton s Unsal Law of Gaty 10a-1 M F F 1) F acts along t ln connctng t cnts of objcts Cntal Foc

More information

w a s t h e t a r g e t f o r b i t t e r Gear* e d m y p o s i t i o n and. I s h a l l a c c e p t will ^travel a r o u n d t h e c o u n t r y, ;

w a s t h e t a r g e t f o r b i t t e r Gear* e d m y p o s i t i o n and. I s h a l l a c c e p t will ^travel a r o u n d t h e c o u n t r y, ; M M KER xor z > &5W3-> --1>-««K-U- - W - - - - ~ - -~-- >N!V- ---- - -> GENEROR MM GENE q - O F L N ; / U W 4 K -W RLPH GENZURG GERR RNGUHEO N F N L G H O - P -UM UN F - M W P W G

More information

Chester Transportation Center to 69th Street

Chester Transportation Center to 69th Street 9 0 1 u i c b F 8 y, 26 1 20 A T P E f Ef o 69 ig pigfi Lsow Cusom ic 610-734-1300 TDD/TTY 215-580-7853 www.sp.og Bisop A o o A A Cuc L D m pou R L Ri y A 37 Pipi Iio Aipo A Cocios 4 : 37, 109,, 114, 117,

More information

Topics on QCD and Spin Physics

Topics on QCD and Spin Physics Topics on QCD and Spin Physics (sixth lecture) Rodolfo Sassot Universidad de Buenos Aires HUGS 21, JLAB June 21 Spin (revisited)? naive quark spin parton spin QCD parton spin polarized DIS:? EMC experiment:

More information

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations

Chapter Runge-Kutta 2nd Order Method for Ordinary Differential Equations Cter. Runge-Kutt nd Order Metod or Ordnr Derentl Eutons Ater redng ts cter ou sould be ble to:. understnd te Runge-Kutt nd order metod or ordnr derentl eutons nd ow to use t to solve roblems. Wt s te Runge-Kutt

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3 - - - - ff ff - - - - - - B B BB f f f f f f f 6 96 f f f f f f f 6 f LF LZ f 6 MM f 9 P D RR DD M6 M6 M6 M. M. M. M. M. SL. E 6 6 9 ZB Z EE RC/ RC/ RC/ RC/ RC/ ZM 6 F FP 6 K KK M. M. M. M. M M M M f f

More information

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco > p >>>> ft^. 2 Tble f Generl rdnes. t^-t - +«0 -P k*ph? -- i t t i S i-h l -H i-h -d. *- e Stf H2 t s - ^ d - 'Ct? "fi p= + V t r & ^ C d Si d n. M. s - W ^ m» H ft ^.2. S'Sll-pl e Cl h /~v S s, -P s'l

More information

\I~= Ixllim ~=clxl < 1 for

\I~= Ixllim ~=clxl < 1 for 972 0 CHAPTER 12 INFINITE SEQUENCES AND SERIES 36. S4n-l = Co + CIX + C2X2 + C3X3 + CoX4 + CIX5 + C2X6 + C3X7 +... + C3X4n-l = (Co +CIX+ C2X2 +C3x3) (1 +'x4 +X8 +... + x4n-4) -. Co +CIX +C2X42 +C3X3 asn

More information

MATERIAL SEE BOM ANGLES = 2 FINISH N/A

MATERIAL SEE BOM ANGLES = 2 FINISH N/A 9 NOTS:. SSML N NSPT PR SOP 0-9... NSTLL K STKR N X L STKR TO NS O SROU WT TP. 3. PR-PK LNR RNS WT P (XTRM PRSSUR NL R ) RS OR NNRN PPROV QUVLNT. 4. OLOR TT Y T SLS ORR. RRN T MNS OM OR OMPONNTS ONTNN

More information

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices.

Theorem 1. An undirected graph is a tree if and only if there is a unique simple path between any two of its vertices. Cptr 11: Trs 11.1 - Introuton to Trs Dnton 1 (Tr). A tr s onnt unrt rp wt no sp ruts. Tor 1. An unrt rp s tr n ony tr s unqu sp pt twn ny two o ts vrts. Dnton 2. A root tr s tr n w on vrtx s n snt s t

More information

d. Event D = { RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR, SSL, SRS, SLS, RSS, LSS }

d. Event D = { RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR, SSL, SRS, SLS, RSS, LSS } Section 1 a Event A { RRR, LLL, SSS } b Event B { RLS, RSL, LRS, LSR, SRL, SLR } c Event C { RRL, RRS, RLR, RSR, LRR, SRR } d Event D { RRL, RRS, RLR, RSR, LRR, SRR, LLR, LLS, LRL, LSL, RLL, SLL, SSR,

More information

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c L i f e t i m e M a n a g e m e n t o f F l a-b s ah s e d S S D s U s i n g R e c o v e r-a y w a r e D y n a m i c T h r o t t l i n g S u n g j i n L e, e T a e j i n K i m, K y u n g h o, Kainmd J

More information

An Optimization Model for Empty Container Reposition under Uncertainty

An Optimization Model for Empty Container Reposition under Uncertainty n Omzon Mode o Emy onne Reoson nde neny eodo be n Demen o Mnemen nd enooy QM nd ene de Reee s es nsos Moné nd Mssmo D Fneso Demen o Lnd Enneen nesy o Iy o Zdds Demen o Lnd Enneen nesy o Iy Inodon. onne

More information

Thank You! $20,000+ Anonymous

Thank You! $20,000+ Anonymous T D $20,000+ Ay $10,000+ Fll Fly Cbl T Ew & S Vbl $5,000+ Ay M. & M. T Fll M. Fl H. Hwz D. & M. G A. Ky $2,500+ M. Plp J. Bly, III J & Klly Bzly S T. & My C. Fll Mk & E G R Hy Jy & Ell Jll Fly Ly F Cy

More information

FAIR FOOD GRADE 4 SOCIAL STUDIES SWEET TREATS GALORE THE FREE ENTERPRISE SYSTEM AT WORK

FAIR FOOD GRADE 4 SOCIAL STUDIES SWEET TREATS GALORE THE FREE ENTERPRISE SYSTEM AT WORK FAIR FOOD GRADE 4 SOCIAL STUDIES SWEET TREATS GALORE THE FREE ENTERPRISE SYSTEM AT WORK TEACHER G Fu SOCIAL STUDIES If yu v w h, h Tx S F h pl b! Flk vl fm ll v lh uqu uly w. Epul hf pv h ppuy um, h f

More information

QUESTIONNAIRE FOR WEST BENGAL Demand Side Management & Renewable Energy in India: Capacity Building of CSOs -- DREC PROJECT. Ešlc a pðå u LR abé

QUESTIONNAIRE FOR WEST BENGAL Demand Side Management & Renewable Energy in India: Capacity Building of CSOs -- DREC PROJECT. Ešlc a pðå u LR abé Ešlc a pðå u LR abé 1z Ešlc a l e j 2z Sm l e j 3z Ešlc a l WL e J k N k Nl hhle (NË j, b e, hôl, fe L X, j h Cm eðl CaÉ c pçf ZÑ b L A a BhnÉL) WL e g e eðl (STD Code pq) j h Cm eðl C- jm 4z Hm L - 1z

More information

IJRET: International Journal of Research in Engineering and Technology eissn: pissn:

IJRET: International Journal of Research in Engineering and Technology eissn: pissn: IJRE: Iiol Joul o Rh i Eii d holo I: 39-63 I: 3-738 VRIE OF IME O RERUIME FOR ILE RDE MOWER EM WI DIFFERE EO FOR EXI D WO E OF DEIIO VI WO REOLD IVOLVI WO OMOE. Rvihd. iiv i oo i Mhi R Eii oll RM ROU ih

More information

Exponential Stability Analysis of a System Comprised of a Robot and its Associated Safety Mechanism

Exponential Stability Analysis of a System Comprised of a Robot and its Associated Safety Mechanism rongs of nnul onfrn of hn nsu of ommunons Eponnl Sbl nlss of Ssm omprs of obo n s sso Sf Mhnsm Whu GUO ng YNG prmn of Mhms n nforms sn Zhngzhou Unvrs of lgh nusr Zhngzhou hn; E-ml: whguosr@hooomn; ngp66@hoon

More information

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s

i;\-'i frz q > R>? >tr E*+ [S I z> N g> F 'x sa :r> >,9 T F >= = = I Y E H H>tr iir- g-i I * s I!,i --' - = a trx - H tnz rqx o >.F g< s Ire tr () -s 5 C /? >9 T > ; '. ; J ' ' J. \ ;\' \.> ). L; c\ u ( (J ) \ 1 ) : C ) (... >\ > 9 e!) T C). '1!\ /_ \ '\ ' > 9 C > 9.' \( T Z > 9 > 5 P + 9 9 ) :> : + (. \ z : ) z cf C : u 9 ( :!z! Z c (! $ f 1 :.1 f.

More information

Swords/Airport Ú City Centre Route Maps

Swords/Airport Ú City Centre Route Maps /p Ú p lb p b l v b f p Ú lb EWOW O l b l l E l E l pl E Þ lf IO bl W p E lb EIWY V WO p E IIE W O p EUE UE O O IEE l l l l v V b l l b vl pp p l W l E v Y W IE l bb IOW O b OE E l l ' l bl E OU f l W

More information

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong

Depth First Search. Yufei Tao. Department of Computer Science and Engineering Chinese University of Hong Kong Dprtmnt o Computr Sn n Ennrn Cns Unvrsty o Hon Kon W v lry lrn rt rst sr (BFS). Toy, w wll suss ts sstr vrson : t pt rst sr (DFS) lortm. Our susson wll on n ous on rt rps, us t xtnson to unrt rps s strtorwr.

More information

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs.

4r, o I. >fi. a IE. v atr. ite. a z. a til. o a. o o. 0..c. E lrl .',,# View thousands of Crane Specifications on FreeCraneSpecs. i View husns Crne Speiiins n reecrnespes.m :: :r R: 8 @ il llj v u L u 4r,? >i C) lrl? n R 0&l r'q1 rlr n rrei i 5 n llvvj lv 8 s S llrvvj Sv TT [ > 1 \ l? l:i rg l n - l l. l8 l l 5 l u r l 9? { q i :{r.

More information

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2

Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork and res u lts 2 Internal Innovation @ C is c o 2 0 0 6 C i s c o S y s t e m s, I n c. A l l r i g h t s r e s e r v e d. C i s c o C o n f i d e n t i a l 1 Agenda Rationale for ETG S eek ing I d eas ETG fram ew ork

More information

Get Started on CreateSpace

Get Started on CreateSpace {paperback self publishing process} Account Set Up Go to CreateSpace.com Click Sign up Fill out Create Account info fields * Under What type of media you are considering punlishing?, you may want to choose

More information

RANDOM WALKS WITH WmOM INDICES AND NEGATIVE DRIm COmmONED TO STAY ~QTIVE

RANDOM WALKS WITH WmOM INDICES AND NEGATIVE DRIm COmmONED TO STAY ~QTIVE PROBABILITY AND MATHEMATICAL STATISTICS VOI. 4 FIISC. i (198.q, p 117-zw RANDOM WALKS WITH WOM INDICES AND NEGATIVE DRI COONED TO STAY ~QTIVE A. SZUBARGA AND P). SZYNAL (LUBJJN) t Abstract. Let {X,, k

More information

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË

CHELOURANYAN CALENDAR FOR YEAR 3335 YEAR OF SAI RHAVË CHELOURANYAN CALENDAR FOR YEAR YEAR OF SAI RHAVË I tou woust n unon wt our Motr, now tt tou st nvr t Hr. I tou woust sp t v o mttr, now tt tr s no mttr n no v. ~Cry Mry KEY TO CALENDAR T Dys o t W In t

More information

T_s. e r So Dg. R a n. Ri de. The h o u r s for the tour and»adi\ idual r e s i d e n c e s, thus pro- r o n.

T_s. e r So Dg. R a n. Ri de. The h o u r s for the tour and»adi\ idual r e s i d e n c e s, thus pro- r o n. W V M N O Nx W O V! W O N O N - Y O N N VL N 25 M 4 946 M L O M 946 z z U J V- D J q V- J K W M Lj W L j N 5 J 946 J W O W W L j O M 6 W x 72 W W L j M 3 W Lj 9?45 J N \ 2 945 2470 O 200 W O L j Q W! W

More information

Ewa Marciniak, Jakub Trybuła OPTIMAL DIVIDEND POLICY IN DISCRETE TIME

Ewa Marciniak, Jakub Trybuła OPTIMAL DIVIDEND POLICY IN DISCRETE TIME DEMONSTRATIO MATHEMATICA Vol XLVII No 1 2014 Ewa Marciniak, Jakub Trybuła OPTIMAL DIVIDEND POLICY IN DISCRETE TIME Abstract A problem of optimal dividend policy for a firm with a bank loan is considered

More information

R a. Aeolian Church. A O g C. Air, Storm, Wind. P a h. Affinity: Clan Law. r q V a b a. R 5 Z t 6. c g M b. Atroxic Church. d / X.

R a. Aeolian Church. A O g C. Air, Storm, Wind. P a h. Affinity: Clan Law. r q V a b a. R 5 Z t 6. c g M b. Atroxic Church. d / X. A M W A A A A R A O C A () A 6 A A G A A A A A A-C Au A A P 0 V A T < Au J Az01 Az02 A Au A A A A R 5 Z 6 M B G B B B P T Bu B B B B S B / X B A Cu A, S, W A: S Hu Ru A: C L A, S, F, S A, u F C, R C F

More information

Ranging detection algorithm for indoor UWB channels

Ranging detection algorithm for indoor UWB channels Ranging detection algorithm for indoor UWB channels Choi Look LAW and Chi XU Positioning and Wireless Technology Centre Nanyang Technological University 1. Measurement Campaign Objectives Obtain a database

More information

Luiz Leal Oak Ridge National Laboratory. of Massachusetts Institute. of Technology (MIT)

Luiz Leal Oak Ridge National Laboratory. of Massachusetts Institute. of Technology (MIT) LzLl OkRdgNlLby LsPsdhNl Egg Dp f h MsshssIs f Thlgy(MIT) Csy f Lz Ll, Ok Rdg Nl Lby. Usd wh pss. NI T Idpd Tsp Eq f Φ(E,,Ωˆ ) Ωˆ. Φ + Σ Φ = dωˆ ' de'σ s (E' E, Ωˆ ' Ω)Φ(E', ',Ωˆ ) + S 4 π 0 Σ Msplsss

More information

Analysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball

Analysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball Al f Effc f Ru Ac f Tjc f Tl T Bll Juk Nu Mchcl Scc Egg, Gu Schl f Egg, Ng Uv, Fu-ch, Chku-ku, Ng, J Ak Nkh Mchcl Scc Egg, Gu Schl f Egg, Ng Uv, Fu-ch, Chku-ku, Ng, J Yhku Hkw Mchcl Scc Egg, Gu Schl f

More information

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th

4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n tr t d n R th n r t d n 20 2 :24 T P bl D n, l d t z d http:.h th tr t. r pd l 4 8 N v btr 20, 20 th r l f ff nt f l t. r t pl n f r th n tr t n f h h v lr d b n r d t, rd n t h h th t b t f l rd n t f th rld ll b n

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information